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Abstract
Image denoising has a profound impact on the precision of estimated parameters in diffu-

sion kurtosis imaging (DKI). This work first proposes an approach to constructing a DKI

phantom that can be used to evaluate the performance of denoising algorithms in regard to

their abilities of improving the reliability of DKI parameter estimation. The phantom was con-

structed from a real DKI dataset of a human brain, and the pipeline used to construct the

phantom consists of diffusion-weighted (DW) image filtering, diffusion and kurtosis tensor

regularization, and DW image reconstruction. The phantom preserves the image structure

while minimizing image noise, and thus can be used as ground truth in the evaluation. Sec-

ond, we used the phantom to evaluate three representative algorithms of non-local means

(NLM). Results showed that one scheme of vector-based NLM, which uses DWI data with

redundant information acquired at different b-values, produced the most reliable estimation

of DKI parameters in terms of Mean Square Error (MSE), Bias and standard deviation (Std).

The result of the comparison based on the phantom was consistent with those based on

real datasets.

Introduction
Diffusion kurtosis imaging (DKI) [1] is a new in vivo method for diffusion imaging that origi-
nated from diffusion tensor imaging (DTI) [2]. DTI provides a way for probing the microstruc-
ture of biological tissues by measuring the diffusion coefficient of water molecules using
Gaussian models. Gaussian models can only be used to depict free diffusion processes [1].
However, water diffusion in biological tissues is normally restricted, which constitutes the basis
of DTI tractography, and therefore is not exactly Gaussian. To address this self-contradiction,
DKI is proposed to model the Gaussian coefficient of diffusion as well as the deviation from

PLOSONE | DOI:10.1371/journal.pone.0116986 February 2, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Zhou M-X, Yan X, Xie H-B, Zheng H, Xu D,
Yang G (2015) Evaluation of Non-Local Means
Based Denoising Filters for Diffusion Kurtosis
Imaging Using a New Phantom. PLoS ONE 10(2):
e0116986. doi:10.1371/journal.pone.0116986

Academic Editor: Yong Fan, Institution of
Automation, CAS, CHINA

Received: February 22, 2014

Accepted: December 17, 2014

Published: February 2, 2015

Copyright: © 2015 Zhou et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: This work is supported by Science
Research Startup Foundation of Shanghai Medical
Instrumentation College (Grant E102001400132),
China National Science Foundation (Grant
81471734), the Large Scale Equipment Foundation of
East China Normal University, and NIBIB Grant
1R03EB008235. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: Author Xu Yan is employed by
a commercial company, Siemens Healthcare, was a
MR collaboration scientist doing technique support in
this study under Siemens collaboration regulation

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116986&domain=pdf
http://creativecommons.org/licenses/by/4.0/


the Gaussian model, thereby providing new insights into the microstructures [3], [4], [5], [6],
[7]. DKI has already been successfully used in a wide range of clinical studies, including studies
in Parkinson’s disease [8], Huntington’s disease [9], epilepsy [10], aging [11], attention deficit
hyperactivity disorder [12] and cerebral gliomas [13].

DTI data are composed of baseline images without applying a diffusion gradient and a series
of diffusion-weighted (DW) images with diffusion gradients applied along different directions.
Typically, DW images are acquired at one b-value, which is an index calculated based on the
strength and duration of the diffusion gradient field, and the interval between the two opposite
gradients. The diffusion coefficient along a certain direction can be calculated using the follow-
ing equation:

Sn ¼ S0expð�bDnÞ ð1Þ

where S0 is the baseline signal, Sn is the DW image acquired with diffusion gradient along the
nth direction, b is the b-value of the applied diffusion gradient and Dn is the diffusion coeffi-
cient along the nth direction. To construct a diffusion tensor, at least seven DWmeasurements
are needed, including a baseline image.

In DTI, only one DW image is needed for each direction. However, DKI requires multiple
DW images at different b-values along each direction [1]. DKI uses the following equation to
depict the change of the signal intensity with respect to b-values:

SnðbÞ ¼ S0expð�bDn þ b2D2
nKn=6Þ ð2Þ

where S0, Sn, b, and Dn remain the same as in Eq. (1), and Kn is the kurtosis coefficient, which
depicts the deviation from a Gaussian model. For each direction, both Dn and Kn can be calcu-
lated by curve fitting using the baseline image and the corresponding DW images. Then mean
diffusion (MD) and mean kurtosis (MK) values can be calculated by averaging the Dn and Kn

along each direction [1]. The MD and MK can also be calculated from diffusion and kurtosis
tensor respectively, which are reconstructed using Dn and Kn along all directions [5]. The two
methods generate similar MD and MK values, while the direct averaging method makes no re-
striction on the number of diffusion gradient directions and therefore is more efficient in com-
putation [14].

To profile the kurtosis deviation, a typical DKI setting would employ the maximum b-value
from 2000 to 2500 s/mm2 [1], which is much higher than the 1000 s/mm2 that is typically used
in DTI. DW images in a DKI dataset therefore often suffer from heavier noise, resulting in low
signal-to-noise ratios (SNR) at these higher b-values. The noise, which is Rician [15], [16],
[17], in turn, may significantly affect the reliability of parameter estimation. A previous study
showed that Rician noise in DW images may lead to significant overestimation of the kurtosis
coefficients [15].

Various denoising methods have been developed to improve the quality of DW images,
such as the Gaussian filter [11], [18], anisotropic diffusion filter [19], [20], [21], [22], linear
minimummean squared error filter [23], and non-local means (NLM) filter [24]. The NLM fil-
ter outperforms most other filters in both denoising and edge preserving, and thus has been
used extensively in magnetic resonance (MR) image denoising [25], [26] [27] [28]. While DW
images are often denoised on an image-wise basis, correlation between DW images should also
be exploited, as it contains spatial cues of the imaging data. Wiest et al. proposed a vector non-
local means (VNLM) filter based on the NLM filter for denoising DTI data [29]. It bundles all
DW images in a DTI dataset into a vector image and applies NLM to denoise it as one
whole entity.
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To identify the best denoising algorithm among the existing algorithms or to further tailor
them for treating a specific type of image, a method to assess their performance is required.
Both visual [23], [24], [29], [30] and quantitative [25], [29], [31], [32] comparisons can be used
for this purpose. In a visual comparison, a good denoising algorithm should have (1) mini-
mized image noise; (2) preserved image details; and (3) introduced no artifacts. Quantitative
comparisons often use noise-free images as ground truth, to which noise of a known distribu-
tion is added for simulating phantom data for testing purposes. In this way, a denoised image
can easily be compared quantitatively with the ground truth. Because DTI and DKI contain
high dimensional information in each voxel, ground truth based on the maps of diffusion-
derived parameters is often favorable for evaluating the performance of denoising algorithms
for diffusion imaging data. In previous studies of DTI denoising, DTI phantoms were con-
structed for denoising DTI data by evaluating the reliability of estimating DTI-derived parame-
ters [33] [34] [35]. However, to the best of our knowledge, no such phantom has been reported
for DKI denoising, although various DKI schemes were previously evaluated systematically
using a specifically designed simulation dataset of diffusion parameters [36].

To evaluate how denoising algorithms can affect the precision of DKI parameter estimation,
we developed a pipeline for constructing DKI phantoms and consequently created a DKI phan-
tom from real brain data. We used it to quantitatively evaluate NLM and two different VNLM
schemes. The first VNLM scheme combined DW images at the same b-value as a vector where-
as the second combined DW images along the same diffusion gradient direction as a vector.
We conducted evaluations using our phantom to check which VNLM performs the best.

Materials and Methods

Materials
This study was approved by the Institutional Ethics Committee of East China Normal University.
Four local volunteers were recruited to the study and informed written consents were obtained
from all these volunteers. A 12-channel head coil was used in data acquisition. DKI
data from the volunteers were collected on a 3T Siemens Trio system (maximum gradient
strength = 40 mT/m, maximum slew rate = 200 mT/m/ms). A bipolar single-shot EPI sequence
[37] was used for DW image acquisition to minimize the eddy current artifacts. Dataset 1, which
contained DKI data from one volunteer, was acquired using conventional acquisition parameters
for DKI data, with DW images at 6 b-values (0, 500, 1000, 1500, 2000, 2500 s/mm2) along 30
diffusion gradient directions, 35 slices, NEX = 2 (averaged in image domain), spatial resolu-
tion = 2 × 2 × 3 mm3, FOV = 256 × 256 mm2, acceleration factor of parallel imaging = 2 (GRAP-
PA). The other parameters were: TR / TE = 6000 ms / 112 ms, diffusion time Δ = 39.1 ms, and
diffusion gradient duration δ = 37.5 ms. The diffusion time Δ here is defined not exactly the
same as that in standard Stejskal–Tanner (monopolar) sequence because we used the bipolar sin-
gle-shot EPI sequence here, while Δ has been calculated according to the conventional expression
b = -(γGδ)2 (Δ – δ/3) [1]. The acquisition time was 30 min 32 sec. Thirty extra baseline images
(therefore a total of 32 baseline images) were collected for generating one baseline image of high
SNR. This dataset was later used for DKI phantom construction. Dataset 2 contained DKI data
from the other three volunteers that were acquired with slightly different parameters. DW images
were collected along 12 / 12 / 20 diffusion gradient directions, TR = 6100 / 12000 / 5300 ms,
TE = 114 ms, Δ = 40.1 ms, δ = 38.5 ms, 35 / 40 / 40 slices, and NEX = 1. The other parameters
were the same as those used for Dataset 1. In addition, we applied physical constraints to the par-
ticipants during the data acquisition, and screened the acquired data afterwards to prevent
motion-induced artifacts. All the raw data are available at http://pan.baidu.com/s/
1ntMD68x#path=%252F.
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DKI Phantom Construction
Because no noise-free DKI image is readily available as ground truth, we developed a pipeline
to construct a DKI phantom based on a real DKI dataset of the human brain (Fig. 1).

The process consists of 8 steps: (1) denoise each DW image (non-brain region was
removed through the BET tool of FSL (http://www.fmrib.ox.ac.uk/fsl/)) using a 3D UNLM fil-
ter (see next subsection) after eddy current correction and motion correction using ACID
Toolbox (http://www.diffusiontools.com); (2) average the DW images from repeated scans;
(3) estimate D and K value maps for each gradient direction using Eq. (2); (4) apply 3D Gauss-
ian filter to D maps using a Gaussian kernel of 2 mm full-width-at-half-maximum (FWHM),
and consequently obtain D’; (5) recalculate K’ with obtained D’ using Eq. (2); note that in step
4) and 5), we do not directly smooth K but recalculate K using a smoothed D as the noise in the
D map may significantly influence K estimation, especially for voxels with small D values [14];
(6) reconstruct diffusion tensors and kurtosis tensors using the D’ and K’maps of all gradient
directions, and the tensor data were then used to recalculate D and K maps, which are denoted
by D” and K” respectively; (7) use D”, K” and baseline image to calculate DW images with non-
zero b-values (again, using Eq. (2)) which forms our noise-free DKI phantom; (8) add noise to
the noise-free phantom, Rician noise can be added using Eq. (3):

In ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI þ n1;sÞ2 þ n2

2;s

q
ð3Þ

where n1,σ and n2,σ are both Gaussian distributed noise with standard deviation of σ. A fixed σ
is used for all DW images when noises are added. A discussion on noise adding can be found
in Section of Discussion and Conclusion.

Non-Local Means (NLM) Filter Family
NLM [24] is a spatial domain filter that replaces each pixel P(i) in the image with a weighted
average of every pixel P(j) in its “search region” O:

NLMðPðiÞÞ ¼ Z0

X
8j2O

oði; jÞPðjÞ ð4Þ

where Z0 is the normalization coefficient, defined as:

Z0 ¼ 1=
X
8j2O

oði; jÞ ð5Þ

Fig 1. The pipeline for constructing DKI phantoms.

doi:10.1371/journal.pone.0116986.g001
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The weight ω(i,j) assigned to P(j) is based on the weighted Euclidean distance d between the
neighborhoods of pixels i and j, named Rf(i) and Rf(j) respectively:

dði; jÞ ¼ GrkRf ðiÞ � Rf ðjÞk2; ði 6¼ jÞ ð6Þ

oði; jÞ ¼ expð�dði; jÞ=h2Þ; ði 6¼ jÞ ð7Þ
where h is a parameter that controls the degree of smoothing and is normally set proportionally
to the standard deviation of noise. Gρ is a Gaussian kernel of standard deviation ρ. In theory,
the search region O in Eq. (5) can cover the whole image (thus non-local). However, a limited
radius t is commonly adopted with regard to computational efficiency [25], [38]. When calcu-
lating the weight of the center pixel itself, the distance is simply set to the minimum distance
found in the search region.

Similar to other weighting average filters, larger weights are assigned to pixels with higher
similarity. NLM is unique in that it uses the distance between neighborhoods of pixels instead
of the distance between pixels themselves. Thus, it can make use of redundant information in
texture patterns in the image for robust denoising.

Manjόn and his colleagues proposed an unbiased non-local means (UNLM) filter [38] to cor-
rect the gray level bias introduced by Rician noise that is typical in MR images [15] [16], [17].
UNLM subtracts the bias from the NLM filtered image, which can be expressed as:

UNLMðPðiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNLMðPðiÞÞÞ2 � 2s2

r

q
ð8Þ

where σr denotes the standard deviation of Rician noise. In this work, all algorithms involved in
the comparison use bias subtraction as in UNLM.

Wiest et al. proposed the VNLM filter [29] to denoise the DTI dataset. As previously men-
tioned, DTI acquires DW images using at least six different diffusion directions. VNLM groups
these images into a vector image and denoises the vector image as a whole. Therefore, the dis-
tance in NLM is redefined as the distance dv between neighborhoods of two vectors:

dnði; jÞ ¼ Gr

XV
n¼1

���Rf ;nðiÞ � Rf ;nðjÞ
���
2

=V ; ði 6¼ jÞ ð9Þ

where v and V denote the index and total number of DW images, respectively.
We realize that when VNLM is applied to DKI dataset, there are two different ways to com-

bine DW images into vector images. One is to combine images of the same b-value but of dif-
ferent directions of diffusion gradient as a vector (VNLM-b), and the other is to combine
images of the same direction of diffusion gradient, but of different b-values (VNLM-d).

When applying NLM to MRI, Coupe et al. extended it to 3D [25], in which both the neigh-
borhood window and the search region become cubes centered at the pixel in concern. While
this makes better use of the redundant structure information in the 3D MRI data, parameters
of the 3D NLM filter should be carefully set for balancing the denoising effect and computa-
tional efficiency [39].

Experiments and Results
We adopted 3D NLM-based filters in the evaluation. Regarding the parameter setting, previous
work showed that no significant improvement can be achieved with a search region greater
than 11 × 11 = 121 pixels for a 2D NLM filter [38], and using a larger search region will signifi-
cantly increase computational time. Thus, we adopted a 5 × 5 × 5 search region (125 voxels in
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3D instead of 121 in 2D case), which is the same parameter used in previous work [39]. In addi-
tion, a 3 × 3 × 3 neighborhood window was employed in our work. A neighborhood window of
such a size is common in 3D NLM processing [25], [39], which is normally smaller than the
search region. The parameter ρ was set to commonly used value 1.0 [38]. The value of the pa-
rameter h for NLM, VNLM-b, and VNLM-d was set to 1.0σ, 0.8σ, and 1.2σ respectively accord-
ing to their optimal performance based on an exhaustive search. The search result of NLM
agrees with those in previous reports [25] [39] [40]. The standard deviation of noise σ in real
data was calculated from a background region of the image. Assuming that the signal in the
background region consists of only Rician noise, σ can be estimated from:

s¼
ffiffiffiffiffiffiffiffi
m=2

p
ð10Þ

where μ is the mean value of squared signal intensity in the background region. A discussion
on noise estimation can be found in Section of Discussion and Conclusion.

We used Mean Square Error (MSE), Bias and standard deviation (Std) for quantitative com-
parison of the denoising methods, which reflect precision and accuracy of the denoising meth-
ods by their definitions:

MSE ¼ 1

N

XN
i

ðIi � QiÞ2 ð11Þ

Bias ¼ 1

N

�����
XN

i

Ii � Qi

�����
1

ð12Þ

Std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i

ðIi �
1

M

XM
j

IjÞ2
vuut ð13Þ

where I and Q denote noise-free and denoised image respectively, and N is the number of vox-
els. The MSE, Bias and Std are calculated only in the brain region.

DKI Phantom Construction
We created a DKI phantom from Dataset 1 using the aforementioned process (Fig. 1). Com-
pared with the original images, the constructed phantom is visually cleaner. In the phantom,
noise is successfully suppressed, and anatomical structures are well preserved (Fig. 2).

Filter Comparison with DKI Phantom
We compared the three NLM-based denoising algorithms mentioned earlier, NLM, VNLM-b
and VNLM-d. First, five different levels of Rician noise (with standard deviations at 5, 10, 15,
20, 25) were added to DW images of the noise-free phantom. The resulting SNRs are different
for DW images with distinct b-values, which are approximately 60, 30, 20, 15, 12 for baseline
image (b = 0), or 12, 6, 4, 3, 2 for DW images with b = 2500 s/mm2. The noise-corrupted im-
ages were then denoised using the three filters, and results were evaluated both visually and
quantitatively using the phantom and real dataset. Quantitative comparisons can be performed
in multiple ways. For example, the denoised DW images can be compared with phantom DW
images by calculating the MSE between them. Parameter maps calculated from denoised DW
images can also be compared with those of the phantom. The latter approach allows a more
comprehensive assessment of the filters with respect to parameter evaluation and should be fa-
vored in cases like DKI, in which producing a reliable parameter map is often the target of
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denoising. In this study, MD and MKmaps, which were calculated by averaging D and K maps
respectively along all diffusion gradient directions, are used to evaluate the denoising results.
For robust statistical results, we repeated the above process that adds noise, denoises, and con-
ducts performance evaluation for 500 times.

The quantitative comparison of MD and MKmaps shows that VNLM-d filter achieves
lower MSE, Bias and Std than the original NLM and VNLM-b filters at almost all noise levels
(Fig. 3). Moreover, the MSE, Bias and Std values of MK produced by the VNLM-d filter in-
crease most slowly with the increase of noise level. When standard deviation of noise reaches
25, the MSE, Bias and Std values from the VNLM-d filter are only 40.6% (MSE), 10.9% (Bias)
and 60.6% (Std) respectively of those from the NLM filter.

Meanwhile, it is interesting that comparing with the other two filters, the VNLM-d filter
shows equivalent or even poorer performances concerning MSE and Std of the denoised DW
images, which is contrary to its good performance for MD and MKmaps as discussed above.

A similar conclusion can be drawn from visual comparison. For MK maps, results from
these three filters have different visual appearances. MK maps of NLM and VNLM-b filters
contain black holes, which represent incorrectly estimated voxels [36], [41]. The MK map from
VNLM-d filter is almost free of black holes and has a consistent visual appearance with the
phantomMKmap (see middle row of Fig. 4). Moreover, the DW image denoised by the
VNLM-d filter show clearer those finer structural details than do those denoised by NLM and
VNLM-b filters (see upper row of Fig. 4). The VNLM-d filter produces visually satisfying re-
sults even for low SNR DW images acquired with b = 2500 s/mm2.

Fig 2. Results of DKI phantom construction. Top row: original noisy DW images; middle row: DW images
of the constructed phantom; bottom row: DW images of the phantom, with synthetic Rician noise (σ = 10).
The phantom consists of 151 volumes of DW images, including one baseline and 5 nonzero b-values
(b = 500 ~ 2500 s/mm2) for each of 30 different diffusion gradient directions. Parameters of DW images are as
follows: (a) b = 1000 s/mm2, at 16th gradient direction, (b) b = 1000 s/mm2 at 1st gradient direction and
(c) b = 2000 s/mm2 at 1st gradient direction.

doi:10.1371/journal.pone.0116986.g002
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Fig 3. Quantitative comparison of NLM, VNLM-b and VNLM-d filters using the DKI phantom. Five levels of Rician noises with standard deviations of 5,
10, 15, 20, and 25 were added to the phantom DW images. The MSE, Bias and Std values of denoised DW images and MK and MD (DKI parameters) maps
were calculated and compared. Top row: MSE value, middle row: Bias value, and bottom row: Std value.

doi:10.1371/journal.pone.0116986.g003
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Denoising of Real dataset
To further validate the observation obtained from the phantom dataset, we also applied the
NLM, VNLM-b and VNLM-d algorithms to Dataset 2 and evaluated the results for their per-
formance. The parameters to these algorithms were set the same as described previously.

Visual comparison of the real dataset has revealed an impression similar to the information
shown from the simulation data (Figs. 5–7). While all filters can significantly reduce noise in

Fig 4. Visual comparison of denoising filters using the DKI phantom. Top row: DW images of
b = 2500 s/mm2; middle row: MKmaps; bottom row: MDmaps. Images from left to right are ground truth, noisy
image (with Rician noise of standard deviation = 10), and results from NLM, VNLM-b and VNLM-d filters.

doi:10.1371/journal.pone.0116986.g004

Fig 5. Comparison of denoising filters based on DW images (b = 2500 s/mm2) from real DKI dataset.
Dataset of three volunteers are shown from top to bottom. Images from left to right are the original acquired
images, and denoised results from NLM, VNLM-b, and VNLM-d filters.

doi:10.1371/journal.pone.0116986.g005
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the DW images and parameter maps, VNLM-d produces DW images with clearer brain struc-
ture and MKmap with fewer black holes for all three volunteers. In addition, we may see that
the MK map provides microstructural information in gray matter (Fig. 6), which is not visible
in MD (Fig. 7) or fractional anisotropy (FA) maps of diffusion tensor imaging model.

Fig 6. Comparison of denoising filters based on MKmaps. From visual observation, The MKmap from
VNLM-d filter is almost free of black holes. The narrow arrows show the regions that more black holes are
produced by NLM and VNLM-b filters. The black hole represents incorrectly estimated voxels. The bold arrow
shows the more structural details preserved by VNLM-d filter.

doi:10.1371/journal.pone.0116986.g006

Fig 7. Comparison of denoising filters based on MDmaps.

doi:10.1371/journal.pone.0116986.g007
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Discussion and Conclusion
In this work, we propose a processing pipeline for constructing DKI phantoms using datasets
of real human brains. The pipeline produces a high-SNR DKI phantom with clear image struc-
ture that can be used as ground truth for evaluation of DKI denoising methods. In addition,
the proposed pipeline can also be used to generate a DKI dataset with a customized combina-
tion of b-values and diffusion gradient directions, different from those used in acquisition. This
flexibility will be useful to evaluate the performance of various DKI acquisition schemes, such
as 3-b-value fast scheme and also non-uniform schemes with different gradient directions at
each b-value [42]. For these purposes, after the diffusion tensors and kurtosis tensors have
been calculated in step (6), we can first apply a customized gradient table to recalculate D and
K maps at the specified directions. DW images with desired b-values can then be calculated
with D, K maps and baseline images using Eq. (2).

We should pointed out that Rician noise was used in step (8), because magnitude of MR sig-
nal is intrinsically corrupted by Rician noise, which is a model frequently adopted in MRI
denoising and parameter estimation studies [15], [16], [17]. Nevertheless, the potential use of
our DKI phantom is not limited to removal of Rician noise, as discussed above.

Furthermore, we quantitatively evaluated three NLM-based denoising algorithms using the
constructed phantom. The simulation based on our phantom indicates that VNLM-d outper-
forms NLM, and the VNLM-b algorithms, generating more reliable MK and MDmaps, with
the lowest MSE, Bias and Std values for most of the noise levels. Visual comparison of these fil-
ters using a real dataset (Figs. 5–7) produces results consistent with this conclusion. While
compared with the other methods, VNLM-d algorithm produces DW images with equal or
higher MSE and Std (Fig. 3). This can be explained by the fact that VNLM-d tends to smooth
more conservatively the structure in gray matter regions of the DW images. This lowers the
level of image denoising but preserves more fine structures (Figs. 4, 5) which are helpful in the
following parameter evaluation process. Thus, it yields less black hole effects and preserves
structure better in MK maps (Fig. 6).

We think the good performance of VNLM-d filter can be attributed to the reason that the
DKI parameter is calculated from diffusion decay curve, which means similar shape of the
decay curves generate similar DKI parameters. VNLM-d filter treats DW images of different b-
values at one direction as a unit in similarity calculation, thus voxels with similar decay curves,
which means similar DKI parameters, tend to contribute more in the weighted average process.
This efficiently exploits the similarity of DKI parameters.

The structural preserving ability of VNLM-d filter may be attributed to the higher level of
structural similarities between DW images, because VNLM is effective only when images with
similar structures are grouped together, which have similar weights for averaging. We found
DW images along the same direction but at different b-values (Fig. 8, column b and c) generally
demonstrate higher similarities than do the DW images acquired at the same b-value but along
different directions (Fig. 8, column a and b). Although the voxel intensities of DW images at
the same b-values fall in a similar value range and are therefore more consistent with one an-
other, it is the similarity between structures that leads to the superior performance of VNLM.

To further improve this work, several considerations can be taken into account. Firstly, DW
images are often acquired with partial Fourier techniques, which can produce correlation be-
tween noises in neighboring pixels. This may present a new challenge to the denoising algo-
rithms because many algorithms make an assumption of non-correlated noise. Despite of this,
NLM filter has already been successfully applied to denoising DW images [17] [39]. This is un-
derstandable since when NLM calculates the weighted average to denoise a pixel, it considers
the similarity between the neighborhood window of this pixel and those of the contributing
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pixels. The correlation between noises in neighboring pixels does not necessarily lead to similar
neighborhood of these pixels, thus NLM filters are more robust to process correlated noise. Re-
cently, NLM filter has also been improved to address correlated noise[43], and it is also sug-
gested that denoising filter be used before partial Fourier reconstruction is carried out to avoid
correlated noise [44]. Incorporating these results into our work may produce better results.

Secondly, in the procedures of adding and estimating noise, we assumed that the levels, spa-
tial and statistical distributions of noise are all the same for all DW images at different b-values
and along different diffusion gradient directions, which has been a commonly adopted hypoth-
esis in previous studies [31] [34] [39]. However, this assumption may become invalid in certain
cases. For example, the eddy current and off-resonance effects in a DWI sequence may poten-
tially affect the noise, and these effects may substantially vary with b-value and diffusion gradi-
ent direction. In addition, the spatial and statistical distribution of noise can also be affected by
the use of multi-element surface coils and parallel imaging [45]. For example, the noise distri-
bution of parallel imaging is associated with a geometry factor (g-factor), which depends on
coil geometry, phase-encoding direction and its acceleration factor [45] [46]. Thus, to more ac-
curately evaluating the effects of simulating and estimating the noise in DW images, we must
do a more careful simulation and inspect the influences that may be imposed by these factors.
Limited by the length of this paper, and considering that this paper’s focus on reporting the
general framework of providing a DKI phantom system, we decided not to pursue it in this
study but to include it in our next step work.

Thirdly, motion artifacts, eddy current and geometrical distortion are major challenges in
preprocessing of diffusion imaging data. Navigator based methods [47] [48] can be used to

Fig 8. Comparison of structural similarities between DW images based on DKI phantom. From left to
right, DW images acquired with (a) b = 1000 s/mm2, at 16th gradient direction, (b) b = 1000 s/mm2 at 1st

gradient direction and (c) b = 2000 s/mm2 at 1st gradient direction. The top and middle rows show the DW
images and their corresponding magnified local regions, respectively; the bottom row shows NLM weight of a
center voxel calculated in its surrounding search region. The solid line squares represent neighborhood
windows of the center voxel, and the dashed line squares represent respective search regions. (b) and (c) are
DW images acquired at the same gradient direction. Although their intensity and contrast is quite different,
they have a greater structure similarity. The arrows indicate regions where (b) and (c) show similar structures,
but (a) does not.

doi:10.1371/journal.pone.0116986.g008
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minimize motion artifacts prospectively. Multi-shot EPI [49] or fast spin echo sequences [50]
can also be used to reduce geometry distortion due to susceptibility changes at tissue interfaces.
Thus these methods should be considered in our further work to improve the quality of DKI
estimation. In our constructed phantom data, signal dropout can be found in medial frontal
and bilateral gray matter (Fig. 4). We think this can be attributed to individual variations that
this particular individual happened to introduce some motion between the averages of data,
and consequently motion artifacts. Retrospective Motion correction may not completely elimi-
nated these artifacts.
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