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In utero air pollution exposure has been associated with adverse birth outcomes, yet
effects of air pollutants on regulatory mechanisms in fetal growth and critical windows of
vulnerability during pregnancy are not well understood. There is evidence that epigenetic
alterationsmay contribute to these effects. DNAmethylation (DNAm) based age estimators
have been developed and studied extensively with health outcomes in recent years.
Growing literature suggests environmental factors, such as air pollution and smoking, can
influence epigenetic aging. However, little is known about the effect of prenatal air pollution
exposure on epigenetic aging. In this study, we leveraged existing data on prenatal air
pollution exposure and cord blood DNAm from 332 mother-child pairs in the Early Autism
Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies-Learning
Early Signs (MARBLES), two pregnancy cohorts enrolling women who had a previous child
diagnosed with autism spectrum disorder, to assess the relationship of prenatal exposure
to air pollution and epigenetic aging at birth. DNAm age was computed using existing
epigenetic clock algorithms for cord blood tissue—Knight and Bohlin. Epigenetic age
acceleration was defined as the residual of regressing chronological gestational age on
DNAm age, accounting for cell type proportions. Multivariable linear regressionmodels and
distributed lag models (DLMs), adjusting for child sex, maternal race/ethnicity, study sites,
year of birth, maternal education, were completed. In the single-pollutant analysis, we
observed exposure to PM2.5, PM10, and O3 during preconception period and pregnancy
period were associated with decelerated epigenetic aging at birth. For example, pregnancy
average PM10 exposure (per 10 unit increase) was associated with epigenetic age
deceleration at birth (weeks) for both Knight and Bohlin clocks (β = −0.62, 95% CI:
−1.17, −0.06; β = −0.32, 95% CI: −0.63, −0.01, respectively). Weekly DLMs revealed that
increasing PM2.5 during the first trimester and second trimester were associated with
decelerated epigenetic aging and that increasing PM10 during the preconception period
was associated with decelerated epigenetic aging, using the Bohlin clock estimate.
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Prenatal ambient air pollution exposure, particularly in early and mid-pregnancy, was
associated with decelerated epigenetic aging at birth.

Keywords: air pollution, epigenetic aging, epigenetics, prenatal exposure, DNA methylation, biologic age, ambient
air pollution

INTRODUCTION

In utero exposure to air pollution is an established risk factor for
low birth weight, intrauterine growth restriction, and preterm
birth (Stieb et al., 2012; Lamichhane et al., 2015; Li et al., 2017).
Growing evidence suggests that prenatal and early life exposure to
air pollution can have profound impacts on health outcomes
across the life span, yet the underlying biological mechanisms
driving such associations are not well understood.
Epidemiological and clinical studies have linked prenatal air
pollution exposure to epigenetic alterations, inflammation, and
oxidative stress (Janssen et al., 2013; Breton et al., 2016;
Grevendonk et al., 2016; Saenen et al., 2016; Gruzieva et al.,
2017; Breton et al., 2019). As postulated by the Developmental
Origins of Health and Disease (DOHaD) hypothesis (Barker,
2007), these alterations due to air pollution during fetal
programming can have long-lasting effects on biological
function, which in turn can influence susceptibility to diseases
in later life.

DNA methylation (DNAm), the most studied epigenetic
mechanism with a crucial role in maintaining genomic
stability and regulation of gene function, has been observed to
be altered in association with environmental exposures
(Baccarelli and Bollati, 2009; Martin and Fry, 2018).
Epigenome-wide association studies (EWAS) have investigated
both short-term and long-term exposure to ambient and traffic-
related air pollutants in children and adult populations (Isaevska
et al., 2021; Wu et al., 2021). Studies have reported the effects of
prenatal exposure to air pollutants on DNAm changes at the
global, region-specific, and site-specific level (Breton et al., 2016;
Gruzieva et al., 2017; Neven et al., 2018; Gruzieva et al., 2019;
Ladd-Acosta et al., 2019).

More recently, DNAm based or epigenetic age estimates have
emerged as a promising biomarker of biological aging across
tissues and ethnicities (Horvath, 2013; Horvath et al., 2016;
Horvath and Raj, 2018), as compared to other molecular
biomarkers including telomere length or age estimation based
on the transcriptome. The difference between an individual’s
chronologic age and predicted epigenetic age captures the age
discordance of the individual. Epigenetic age acceleration, having
an estimated epigenetic age that exceeds actual chronological age,
has been studied in association with health outcomes and age-
related conditions (Marioni et al., 2015; Chen et al., 2016; Perna
et al., 2016; Levine et al., 2018). Emerging evidence suggests that
epigenetic age acceleration or deceleration can be moderated by
lifestyle and environmental factors such as cigarette smoking,
socioeconomic status, body mass index, and air pollution
(Horvath et al., 2014; Quach et al., 2017; Simpkin et al., 2017;
Lu et al., 2019; Ward-Caviness et al., 2020; de Prado-Bert et al.,
2021). A recent study by de Pardo-Bert et al. investigated the

association between more than 100 exposures and epigenetic age
acceleration during childhood using an exposome-wide
approach; but no significant associations were observed
between prenatal air pollution and epigenetic aging in
childhood (de Prado-Bert et al., 2021). Epigenetic clocks for
gestational age at birth (Bohlin et al., 2016; Knight et al., 2016;
Lee et al., 2019), estimated using cord blood and placenta DNAm
data, were developed to reflect the fetal developmental age and to
capture the fetal programming progress. Recent studies have
shown that epigenetic age acceleration or deceleration at birth
is associated with maternal lifestyle, pregnancy complications,
and psychosocial factors (Girchenko et al., 2017; Suarez et al.,
2018; McKenna et al., 2021; Workalemahu et al., 2021).
Investigation of prenatal environment and fetal aging process
is still in its infancy, while most of studies have focused on other
types of molecular biomarkers of aging. To our knowledge, no
studies have evaluated the effect of prenatal air pollution exposure
on epigenetic age acceleration at birth.

The purposes of this study were 1) to test the associations
between prenatal exposure to ambient air pollution during the
preconception and pregnancy periods and epigenetic age
acceleration/deceleration at birth using cord blood DNAm,
and 2) to identify critical windows of air pollution exposure
related to epigenetic age acceleration/deceleration.

METHODS

Study Populations
This analysis draws on two pregnancy cohorts with increased
likelihood of autism spectrum disorder (ASD) and other
neurodevelopmental outcomes based on prospectively
following pregnant mothers, and children from that
pregnancy, who have had a previous child with ASD given the
high sibling recurrence risk for these conditions. The Early
Autism Risk Longitudinal Investigation (EARLI) (Newschaffer
et al., 2012) was implemented at four major metropolitan
locations across the U.S. (Philadelphia, Baltimore, San
Francisco Bay Area, and Sacramento), representing three
distinct US regions (Southeast Pennsylvania, Northeast
Maryland, and Northern California). Recruitment methods
varied by location to capitalize on unique resources at each
study site. Enrolled mothers were seen at regular intervals
during pregnancy (approximately once a trimester) and at
birth to complete interviews that cover a wide range of
exposure, medical, and demographic domains, as well as to
collect biologic and environmental samples, including cord
blood and placenta at birth.

The Markers of Autism Risk in Babies, Learning Early Signs
(MARBLES) study uses a similar study design but recruits

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9294162

Song et al. Air Pollution and Epigenetic Aging

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Northern California mothers, pregnant or planning a pregnancy,
who have a child with ASD recorded as receiving services through
the California Department of Developmental Services. MARBLES
requires that the mother or father has at least one biological child
with ASD, the mother is at least 18 years old, that the mother
speaks, reads, and understands English at a sufficient level to
complete the protocol and that the younger sibling will be taught
to speak English, and that the mother lives within 2.5 h of the
Davis/Sacramento region at the time of enrollment. As described
in detail elsewhere (Hertz-Picciotto et al., 2018), demographic,
diet, lifestyle, environmental, and medical information were
prospectively collected through telephone-assisted interviews
and mailed questionnaires throughout pregnancy and the
postnatal period. The institutional review boards (IRB) at
organizations in each study site approved the EARLI and the
MARBLES studies.

Air Pollution Exposure Assignments
For both EARLI and MARBLES studies, air pollution exposure
assignments were based on maternal residences recorded
prospectively 3 months prior to conception and throughout
pregnancy for both studies. All residential locations for each
mother and child were standardized and geo-coded using the
TeleAtlas US_Geo_2 database and software (Tele Atlas, Inc.,
Boston, CA, www.geocoded.com). Air quality assignments for
particulate matter less than 2.5 and 10 microns in diameter
(PM10, PM2.5), ozone (O3), and Nitrogen Dioxide (NO2), were
derived from the US EPA’s Air Quality System (AQS) data (www.
epa.gov/ttn/airs/airsaqs). The weekly air quality data from
monitoring stations located within 50 km of each residence
were made available for spatial interpolation of ambient
concentrations. The spatial interpolations were based on
inverse distance-squared weighting (IDW2) of data from up to
four closest stations located within 50 km of each participant
residence; however, if one or more stations were located within
5 km of a residence then only data from the stations within 5 km
were used for the interpolation. Based on estimates of gestational
age from medical record review and dates of reported residence
we calculated weekly pregnancy exposures. Exposure periods
were calculated based on the gestational age of the infant at
birth and were divided into preconception (3 months before
pregnancy), first trimester (day 1 to day 90 of pregnancy),
second trimester (day 91 to day 180 of pregnancy), third
trimester (day 181 of pregnancy to birth), and pregnancy
(conception to birth).

DNA Methylation Measurements and
Quality Control
In both studies, umbilical cord blood biosamples were collected
shortly after delivery using standardized protocol across all sites.
The biosamples were shipped on the same day to the central labs
for storage at −80°C. Genomic DNA was extracted using a Qiagen
DNAMidi Kit (Qiagen Inc., Valencia, CA) and quantified using a
NanoDrop spectrophotometer (ThermoFisher Scientific). DNA
methylation was measured using the Illumina Infinium
HumanMethylation450 BeadChip (EARLI) and Illumina

Infinium HumanMethylationEPIC BeadChip (MARBLES)
(Illumina, San Diego, CA). For each sample, 1 μg of genomic
DNA was bisulfite treated using the EZ-96 DNA Methylation kit
(Zymo Irvine, CA), as per the manufacturer’s instructions.

In both studies, several sample- and probe-level quality
control measures were applied, as described previously
(Bakulski et al., 2021; Dou et al., 2022). Samples were
excluded if they were duplicates, had low overall array
intensity, or a discrepancy between reported sex and
empirically predicted sex. Cross-reactive probes as well as
probes that measured DNA methylation at known SNP
positions and outside of CpG sites were removed. Probes with
detection p-values > 0.01 in 10% of samples for EARLI and probes
with detection p-values>0.01 in 5% of samples for MARBLES
were removed from the analyses. DNAm data were then
normalized using a modified beta-mixture quantile (BMIQ)
function (Horvath, 2013; Teschendorff et al., 2013) for the
EARLI and the MARBLES studies separately. While the
original BMIQ is a within-sample normalization method to
address probe type bias by modifying the type II distribution
to match that of type I probes (Teschendorff et al., 2013), Horvath
modified this BMIQ procedure for a different purpose: the
distribution of each given array is related to that of a “gold
standard” array (defined here as the mean across all the training
datasets) (Horvath, 2013). Thus, Horvath’s modification of the
BMIQ method could be interpreted as a form of between sample
normalization. Lastly, proportions of cell types, including B cells,
CD4+ T cells, CD8+ T cells, monocytes, granulocytes, nucleated
red blood cells, and natural killer cells, were empirically estimated
using the estimateCellCounts function of the minfi R package
(Houseman et al., 2012; Aryee et al., 2014). A total of 140 cord
blood DNAm samples from EARLI and 192 cord blood DNAm
samples from MARBLES that passed the QC procedures were
included in this analysis.

Epigenetic Age Estimation
Epigenetic age at birth was calculated using two existing
epigenetic clock algorithms for cord blood DNAm
samples—Knight and Bohlin (Bohlin et al., 2016; Knight et al.,
2016). Both the Knight method and the Bohlin method used an
elastic net approach with 10-fold cross-validation in the training
set. The Knight method is based on 148 CpG sites, while the
Bohlin method prediction uses 96 sites. The Knight clock and
Bohlin clock were performed using R statistical software with
code supplied from Knight et al. and GAprediction R package
(Bohlin et al., 2016; Knight et al., 2016). For both EARLI and
MARBLES data, a number of required CpGs for clock
computation were missing due to QC filters (n = 7 for EARLI
and n = 9 for MARBLES) and imputed using simple random
sampling imputation. Epigenetic age acceleration is defined as the
residual from a linear regression of epigenetic age on gestational
age, adjusting for cell-type proportions.

Covariate Information
Maternal, paternal, and child characteristics, including
maternal age (years), race (White, Black, Asian, Other),
ethnicity (Non-Hispanic, Hispanic), maternal education (high
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school, college, graduate school or higher), annual family income
(less than $50,000, $50,001-$100,000, more than $100,0001),
maternal pre-pregnancy body mass index (BMI, underweight,
normal weight, overweight, obese), and child’s sex (male, female)
were obtained primarily through maternal-report questionnaires
at enrollment. In MARBLES, if covariate information such as
maternal education andmaternal BMI were not available through
maternal reported questionnaires, medical records and delivery
data were used for those covariates. Annual family income
information was not available in the MARBLES study. Labor
and delivery information, including gestational age, birth weight,
and parity, were extracted from medical records by abstractors or
physicians at each site.

Statistical Analyses
Data from the EARLI and the MARBLES studies were pooled
together for statistical analyses. Descriptive analyses were
conducted to examine maternal, paternal, and child
characteristics by study. Continuous covariates (gestational
age, maternal age, birthweight, air pollution levels, cell
composition) were described using mean and standard
deviation and categorical covariates (maternal race, maternal
ethnicity, maternal education, maternal pre-pregnancy BMI,
child’s sex) were described using sample number and
frequency. Spearman correlation coefficients between
chronological age, estimated epigenetic age, and epigenetic age
acceleration/deceleration across Knight and Bohlin clocks were
calculated. Distribution of the prenatal air pollutants were
examined by region and by birth year using two-tailed t-tests.
Pearson correlations were used to evaluate the pairwise
relationships between prenatal air pollution exposures over
time. For each pollutant and each clock, separate multivariable
linear regression models were completed to evaluate the
association between prenatal exposure to ambient air pollution
(continuous variable) and epigenetic age acceleration
(continuous variable) at birth for each study adjusted for
potential confounders. In addition, models mutually adjusted
for different exposure periods were assessed to account for
correlated time periods of exposures for each pollutant.
Vulnerable windows of exposure were further investigated
using weekly distributed lag models (DLMs), which accounted
for both current and past values of the exposure. Natural cubic
spline DLMs with 4 degrees of freedom (R package dlnm) were
used to fit all weekly air pollution estimates from preconception
period to birth (week 1–52) into one model. In sensitivity
analyses, polynomial DLMs and natural spline DLMs with
various degrees of freedom were also considered and
compared using the Akaike information criteria (AIC). All
models were adjusted for potential confounders, including
region of the participants at recruitment (East Coast, West
Coast), child’s sex, maternal race/ethnicity, maternal
education, and year of birth. Potential confounders were
selected based on prior knowledge and retained in the
adjusted model if a 15% change in coefficient estimate was
observed. Results are presented as β estimates (weeks) with
95% confidence intervals (CI) per a 10 unit increase in each
exposure. A positive β coefficient indicates accelerated epigenetic

aging or faster epigenetic aging as compared to gestational age
whereas a negative β coefficient indicates decelerated
epigenetic aging or slower epigenetic aging as compared to
gestational age. A two-sided p-value less than 0.05 was
considered statistically significant. All statistical analyses
were performed using R 3.6 software. Data are available
through the National Institute of Mental Health Data
Archive (NDA) under the collections for the EARLI study
(1600) and for the MARBLES study (1946).

RESULTS

The characteristics of the full population by study are presented
in Table 1. Overall, mothers were predominantly White (71.6%),
non-Hispanic (80.7%), and on average 34 years old at time of
birth. Similar characteristics were observed in the EARLI and
MARBLES study populations. The mean (SD) gestational age at
birth for EARLI and MARBLES were 39.3 (1.3) weeks and 39.0
(1.3) weeks, respectively. Average (SD) exposure levels during
pregnancy period for the entire study population were 11.1 (3.0)
ppb for NO2, 25.7 (4.3) ppb for O3, 9.8 (2.0) μg/m

3 for PM2.5, and
18.8 (3.8) μg/m3 for PM10 (Table 1, Supplementary Figure S1).
We observed significantly higher levels of prenatal exposure to
NO2 during pregnancy among those residing on the East Coast
compared to those from the West Coast (p < 0.01,
Supplementary Figure S2). Significant differences for the
other pollutants during pregnancy by region were also
observed (p < 0.05 for all) (Supplementary Figure S2).
Pearson correlations between PM10, PM2.5, and NO2 were low
tomoderate (r range from −0.06–0.57). Preconception average O3

was inversely correlated with NO2 and PM2.5 (r = − 0.56 and
−0.37, respectively) (Supplementary Figure S3).

DNAm estimates of epigenetic age, using the Knight and
Bohlin clock algorithms for cord blood samples, showed
significant high overall correlations with chronologic
gestational age (Supplementary Figure S4, correlation = 0.42
and 0.52, respectively, p < 0.001). After residualization, epigenetic
age acceleration was not associated with chronological gestational
age (all p > 0.05).

As shown in Table 2, average O3 exposure during the
preconception period was associated with epigenetic age
deceleration at birth (per 10-unit increment, β = −0.35, 95%
CI: −0.63, −0.07) and average O3 exposure during the pregnancy
period was marginally associated with epigenetic age deceleration
at birth (per 10-unit increment, β = −0.48, 95% CI: −0.96, 0.01)
using the Knight clock. The Bohlin clock estimates showed a
similar direction and attenuated magnitude of effect estimates but
did not reach statistical significance. Effect estimates for PM2.5

during pregnancy and associations for both clocks suggest
decelerated epigenetic aging as well, though only associations
with the Bohlin clock reached statistical significance (Table 2).
Marginally significant associations were observed between
preconception average PM10 and decelerated epigenetic aging
at birth. Pregnancy average PM10 was associated with decreased
epigenetic age for both Knight and Bohlin clocks (per 10-unit
increment, β = −0.62, 95% CI: −1.17, −0.06; β = −0.32, 95%
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CI: −0.63, −0.01, respectively) (Table 2). We did not observe
any significant associations between exposure to NO2 during
preconception and pregnancy period and epigenetic aging
at birth.

Mutual adjustment for both preconception and pregnancy
periods to account for correlation between the periods
resulted in higher variance of estimates, but it revealed a
stronger negative association of O3 with epigenetic aging by
Knight clock for the pregnancy period (per 10-unit increment,
β = −0.58, 95% CI: −1.10, −0.06) (Table 2). Associations
between PM2.5 and PM10 and epigenetic aging for both
exposure periods were in general attenuated in the
mutually adjusted models (Table 2).

We also tested for the trimester-specific exposures and
epigenetic aging associations (Table 3) in individual models
and models mutually adjusted for all 3 trimester exposure
periods. Trimester-specific exposures to NO2 and O3 were not
significantly associated with epigenetic age acceleration/
deceleration at birth for both Knight and Bohlin clock.
Exposure to PM2.5 during first trimester was associated with
epigenetic age deceleration at birth (β = −0.35, 95% CI: −0.69,
−0.01) using the Bohlin clock. In addition, we observed epigenetic
age deceleration with increases in PM10 during first trimester and
second trimester (β = −0.44, 95% CI: −0.81, −0.08; β = −0.65, 95%
CI: −0.50, −0.38, respectively) using the Knight clock (Table 3).
Results were similar when mutually adjusting for all 3 trimester

TABLE 1 | Descriptive statistics for our analytic sample from the Early Autism Risk Longitudinal Investigation (EARLI) and the Markers of Autism Risk in Babies, Learning Early
Signs (MARBLES) studies.

Characteristic Overall (n = 332) EARLI (n = 140) MARBLES (n = 192)

Gestational Age (weeks), mean (SD) 39.1 (1.3) 39.3 (1.3) 39.0 (1.3)
Birthweight (g), mean (SD) 3469.0 (482.0) 3467.0 (512.7) 3471.0 (459.9)
Male 192 (57.8) 76 (54.3) 116 (60.4)
Maternal age (years), mean (SD) 33.5 (4.8) 33.5 (4.7) 33.5 (4.9)

Maternal race
White 235 (71.6) 87 (64.0) 148 (77.1)
Black 23 (7.0) 16 (11.8) 7 (3.6)
Asian 44 (13.4) 18 (13.2) 26 (13.5)
Other 26 (8.0) 15 (11.0) 11 (5.8)

Maternal ethnicity
Non-Hispanic 268 (80.7) 120 (85.7) 148 (77.1)
Hispanic 64 (19.3) 20 (14.3) 44 (22.9)

Maternal education
High school 33 (10.0) 15 (10.9) 18 (9.4)
College 226 (68.7) 89 (64.5) 137 (71.7)
Graduate school or higher 70 (21.3) 34 (24.6) 36 (18.9)

Maternal pre-pregnancy BMI
Underweight 5 (1.5) 2 (1.5) 3 (1.6)
Normal weight 129 (39.5) 50 (37.0) 79 (41.1)
Overweight 99 (30.3) 40 (29.6) 59 (30.7)
Obese 94 (28.7) 43 (31.9) 51 (26.6)

Year of birth
2006–2009 63 (19.0) 6 (4.3) 57 (29.7)
2010–2012 188 (56.6) 133 (95.0) 55 (28.6)
2013–2015 81 (24.4) 1 (0.7) 80 (41.7)

Region
East 71 (21.4) 71 (50.7) 0 (0)
West 261 (78.6) 69 (49.3) 192 (100.0)

Cell composition, mean (SD)
B cell 10.3 (3.7) 11.0 (3.9) 9.6 (3.5)
CD4+ T cell 18.9 (7.8) 19.4 (8.3) 18.5 (7.3)
CD8+ T cell 12.1 (4.1) 13.3 (4.2) 11.0 (3.8)
Granulocyte 44.1 (11.7) 42.8 (12.5) 45.2 (10.8)
Monocyte 8.8 (2.7) 8.4 (2.5) 9.3 (2.8)
Natural killer cell 0.5 (1.2) 0.5 (1.1) 0.5 (1.3)
Nucleated red blood cells 9.5 (5.3) 10.0 (5.3) 8.9 (5.2)

Prenatal exposure levels, mean (SD)
NO2 (ppb) 11.1 (3.0) 12.2 (3.3) 10.2 (2.5)
O3 (ppb) 25.7 (4.3) 26.0 (4.1) 25.5 (4.4)
PM2.5 (μg/m3) 9.8 (2.0) 9.8 (1.7) 9.9 (2.2)
PM10 (μg/m3) 18.8 (3.8) 17.7 (3.0) 19.6 (4.2)
Epigenetic age by Knight (weeks), mean (SD) 37.4 (1.8) 38.0 (2.0) 37.0 (1.6)
Epigenetic age by Bohlin (weeks), mean (SD) 39.1 (1.1) 39.2 (1.1) 39.0 (1.1)

Missing data: birthweight: n = 1 (EARLI); maternal age: n = 1 (MARBLES); maternal race: n = 4 (EARLI); maternal education: n = 2 (EARLI), n = 1 (MARBLES); maternal BMI: n = 5 (EARLI).
Values are number and frequency, unless otherwise stated.
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exposure periods with higher variance of estimates; we did
observe a negative association between O3 during trimester 1
and epigenetic aging in the mutually adjusted models.

Results of DLMs for PM2.5 and PM10 are shown in Figure 1
and are shown for other pollutants in Supplementary Figures S5,
S6. Exposure to PM2.5 during weeks 12–29 of the entire
preconception and pregnancy period was significantly
associated with epigenetic age deceleration using the Bohlin
clock estimates. PM10 exposure was significantly associated
with epigenetic age deceleration between weeks 6–11 of
preconception period and weeks 13–24 of pregnancy period

(weeks 26–37 of the entire preconception and pregnancy
period) using the Knight clock (p < 0.05 for all). The strongest
association between PM2.5 and epigenetic age deceleration was
observed for exposure at week 6 of pregnancy (week 19 of entire
preconception and pregnancy period) (β, −0.03, 95% CI: −0.05,
−0.02), and the strongest association between PM10 and
epigenetic age deceleration was observed for exposure at week
4 of preconception (β = −0.05, 95% CI: −0.10, −0.09). DLMs did
not show any statistically significant association between NO2

and epigenetic aging at birth in both clock estimates. Exposure to
O3 during week 6 to week 13 of preconception was associated

TABLE 2 | Association of pregnancy average ambient air pollution and epigenetic aging at birth in the EARLI and MARBLES cohorts.

N Individual Models Mutually Adjusted Models

Pollutant Knight Clock Bohlin Clock Knight Clock Bohlin Clock
β (95% CI) β (95% CI) β (95% CI) β (95% CI)

Preconception
NO2 315 0.05 (−0.50, 0.59) −0.05 (−0.35, 0.26) 0.006 (−0.56, 0.57) −0.15 (−0.46, 0.17)
O3 313 −0.35 (−0.63, −0.07) −0.03 (−0.19, 0.13) −0.34 (−0.62, −0.05) 0.009 (−0.15, 0.17)
PM2.5 316 0.29 (−0.30, 0.88) −0.15 (−0.48, 0.18) 0.22 (−0.40, 0.84) −0.25 (−0.59, 0.09)
PM10 316 −0.38 (−0.78, 0.01) −0.24 (−0.46, −0.01) −0.26 (−0.68, 0.16) −0.16 (−0.39, 0.08)

Pregnancy
NO2 308 −0.16 (−0.97, 0.65) 0.11 (−0.34, 0.56) −0.22 (−1.07, 0.63) 0.19 (−0.28, 0.67)
O3 304 −0.48 (−0.96, 0.01) −0.14 (−0.42, 0.14) −0.58 (−1.10, −0.06) −0.21 (−0.50, 0.09)
PM2.5 309 −0.28 (−1.32, 0.76) −0.67 (−1.24, −0.09) −0.27 (−1.34, 0.80) −0.66 (−1.25, −0.07)
PM10 309 −0.62 (−1.17, −0.06) −0.32 (−0.63, −0.01) −0.59 (−1.17, 0.001) −0.26 (−0.59, 0.07)

The individual models were separate models for each air pollutant of each exposure period. The mutually adjusted models were one model for each air pollutant with mutually adjusted for
both pregnancy and preconception period. All models were adjusted for child sex, maternal race/ethnicity, maternal education, year of birth, and region of the participant at recruitment. N
represents the sample size of the air pollution estimates for each exposure period. The β coefficient represents the difference in epigenetic age acceleration in gestational weeks for a 10-
unit difference in the pollutant. Epigenetic age acceleration was defined as the residual of epigenetic age estimated by Knight clock or Bohlin clock on gestational age at birth adjusted for
cell heterogeneity.

TABLE 3 | Association of trimester-specific and preconception average ambient air pollution and epigenetic aging at birth.

Individual Models Mutually Adjusted Models

Pollutant N Knight Clock Bohlin Clock Knight Clock Bohlin Clock
β (95%CI) β (95%CI) β (95%CI) β (95%CI)

Trimester 1
NO2 316 0.09 (−0.42, 0.60) −0.06 (−0.35, 0.23) 0.13 (−0.49, 0.75) −0.07 (−0.42, 0.27)
O3 315 −0.25 (−0.51, 0.02) 0.02 (−0.13, 0.18) −0.39 (−0.72, −0.05) 0.05 (−0.14, 0.24)
PM2.5 317 −0.05 (−0.65, 0.55) −0.35 (−0.69, −0.01) −0.01 (−0.63, 0.61) −0.29 (−0.64, 0.05)
PM10 316 −0.44 (−0.81, −0.08) −0.15 (−0.36, 0.05) −0.14 (−0.59, 0.30) 0.05 (−0.20, 0.30)

Trimester 2
NO2 318 −0.25 (−0.79, 0.29) 0.10 (−0.20, 0.40) −0.14 (−0.80, 0.51) 0.14 (−0.22, 0.51)
O3 316 −0.12 (−0.40, 0.15) −0.10 (−0.25, 0.05) −0.10 (−0.38, 0.19) −0.12 (−0.28, 0.04)
PM2.5 319 −0.17 (−0.75, 0.40) −0.13 (−0.45, 0.18) −0.24 (−0.82, 0.34) −0.17 (−0.49, 0.15)
PM10 318 −0.65 (−1.04, −0.25) −0.27 (−0.49, -0.05) −0.67 (−1.17, −0.17) −0.25 (−0.53, 0.03)

Trimester 3
NO2 315 −0.16 (−0.64, 0.31) 0.04 (−0.23, 0.31) −0.13 (−0.71, 0.44) −0.02 (−0.34, 0.30)
O3 315 −0.03 (−0.29, 0.22) −0.015 (−0.16, 0.13) −0.18 (−0.50, 0.13) 0.06 (−0.12, 0.23)
PM2.5 316 −0.28 (−0.83, 0.27) −0.18 (−0.49, 0.13) −0.41 (−0.97, 0.16) −0.28 (−0.59, 0.03)
PM10 315 −0.06 (−0.50, 0.38) −0.18 (−0.43, 0.06) 0.09 (−0.39, 0.58) −0.11 (−0.38, 0.17)

The individual models were separate models for each air pollutant of each exposure period. The mutually adjusted models were one model for each air pollutant with mutually adjusted for
trimester 1, trimester 2, and trimester 3 period. N represents the sample size of the individual models for each exposure period. The β coefficient represents the difference in epigenetic age
acceleration for a 10-unit difference in the pollutant. Epigenetic age acceleration was defined as the residual of epigenetic age estimated by Knight clock or Bohlin clock on gestational age
at birth adjusted for cell heterogeneity.
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with epigenetic age deceleration using the Knight clock
(Supplementary Figure S6); similar associations were not
observed using the Bohlin clock.

DISCUSSION

In this study, we observed that exposure to PM2.5 during
pregnancy was associated with decelerated epigenetic aging
and that exposure to PM10 during the preconception period,
second trimester, and the overall pregnancy period were
associated with decelerated epigenetic aging. Exposure to O3

during the preconception period, first trimester, and the
pregnancy average was also associated with epigenetic age
deceleration. Nitrogen dioxide was not significantly associated
with epigenetic aging at birth. The DLMs revealed that an inverse
association between PM2.5 and epigenetic age deceleration during
weeks 12–29 of the preconception and pregnancy periods. In

contrast, PM10 exposure throughout preconception and during
weeks 13–24 of pregnancy period was associated with decelerated
epigenetic age at birth.

The effects of prenatal air pollution on preterm birth and low
birth weight are well documented (Stieb et al., 2012; Lamichhane
et al., 2015). However, few studies have examined the biological
aging process in tissues relevant to fetal programming. Most of
those studies have focused on the molecular biomarkers of
biological aging such as telomere length in response to
prenatal air pollution (Martens et al., 2017; Isaevska et al.,
2021). Martens et al., reported that higher levels of PM2.5

during second trimester were associated with shorter telomere
lengths in cord blood and placenta in the ENVIRONAGE birth
cohort (Martens et al., 2017). Our study observed epigenetic age
deceleration at birth related to exposure to PM during pregnancy.
We also identified that early to mid-pregnancy is a critical
window for the association between PM and epigenetic aging,
which is consistent with Martens et al. To our knowledge, this is

FIGURE 1 | Distributed lag model results for PM2.5 and PM10. The β coefficients and 95% confidence intervals from distributed lag models (DLMs) are shown for
associations between (A) PM2.5 or PM10 and epigenetic age acceleration estimated by Knight et al. (B) PM2.5 or PM10 and epigenetic age acceleration estimated by
Bohlin et al. at each week of preconception (week 1–13) and pregnancy (week 14–52). All models were adjusted for child sex, maternal race/ethnicity, maternal
education, year of birth, and region of the participant at recruitment. The β coefficient represents the difference in epigenetic age acceleration for a 10-unit difference
in the pollutant. Epigenetic age acceleration was defined as the residual of epigenetic age estimated by Knight clock or Bohlin clock on gestational age at birth adjusted
for cell heterogeneity.
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the first study to investigate such an association using the
epigenetic age estimators from cord blood DNAm. Our
findings contribute to the growing body of evidence that
prenatal environmental stress may influence the fetal
programming at molecular level captured by epigenetic aging,
which may be a biomarker of fetal maturity through pregnancy.
Understanding the fetal aging process and mechanism which
influence this process requires additional investigation.

A recent review of epidemiological studies and animal models
indicate that exposures occurring both prior to conception and at
the time of conception can shape fetal growth and thereby
influence eventual pregnancy and birth outcomes (Fleming
et al., 2018). For example, there is evidence that supports a
potential role for preconception exposure air pollution
(3 months prior to conception) in association with
neurodevelopment and respiratory health in children (Kuiper
et al., 2020; McGuinn et al., 2020). In the current study, we
identified that exposure to PM10 during the 6–11 weeks prior to
conception was significantly inversely associated with epigenetic
aging at birth. Exposure to PM during preconception has been
linked to gestational diabetes mellitus, inflammation during
pregnancy, and fetal growth (Robledo et al., 2015; Nachman
et al., 2016; Najafi et al., 2020), suggesting that preconception
exposures may affect the growth and development of the placenta
and the fetus. Findings from a Chinese study using weekly DLMs
showed that exposure to PM2.5 during the 1–9 weeks prior to
conception was associated with fetal undergrowth (Chen et al.,
2022). Taken together, the evidence from literature and the
observed association in our study demonstrates the
preconception period as an emerging exposure period of
interest for future research on the developing fetus and
subsequent health outcomes.

A recent exposome-wide association study highlighted the
association between early life environmental exposures and
epigenetic age acceleration or deceleration in children utilizing
the Horvath Skin and Blood clock (de Prado-Bert et al., 2021).
Several cohort studies in adult populations have reported
exposure to ambient PM associated with epigenetic aging
using the Horvath, Hannum and Levine epigenetic clocks
(Nwanaji-Enwerem et al., 2016; Ward-Caviness et al., 2016;
White et al., 2019; Ward-Caviness et al., 2020). The utility of
epigenetic clocks as a promising molecular biomarker to
investigate the biological aging and its relationship to
environmental exposures and adverse health outcomes is
growing; however, the investigation of the epigenetic clocks
during the early life is underrepresented. Epigenetic clocks in
tissues relevant to early life exposures and epigenetic clocks
enriched for clinical and biological factors have since been
developed to accurately capture the biological processes not
represented by Horvath, Hannum and Levine clocks. Our
study evaluates the effects of air pollution on epigenetic clocks
developed specifically using cord blood DNAm at birth. Estimates
from the single-pollutant model analyses showed similar
direction of effect for both Knight and Bohlin clocks for most

exposure periods. However, results from the DLMs were
inconsistent for the two clocks when examined in relation to
the same air pollutant. The lack of correspondence across the two
clocks in the DLMs may indicate the differences between the
clocks potentially capturing unique fetal maturity process during
specific gestational period as evidenced by their imperfect
correlations with each other and gestational age.

To the best of our knowledge, this is the first study to evaluate
whether preconception and prenatal exposure to air pollution is
associated with epigenetic aging at birth assessed using cord
blood DNAm. Strengths of our work include use of
prospectively collected data, large number of newborns from
two birth cohorts with comparable cord blood DNAm and
prenatal air pollution exposure estimates, and consideration of
weekly air pollution exposure. We implemented models mutually
adjusted for other exposure periods and the DLMs to account for
correlations across different exposure periods and allow for
investigation of critical exposure window of interest. Several
limitations should be noted. Although we have weekly exposure
prior to conception and through delivery with broad range of air
pollution exposure and spatial variation across multiple regions of
U.S, we did not explore indoor air pollution exposure or account
for variations in exposure outside the home. In addition, our study
should be interpretedwith cautionwhile using the epigenetic clocks
for future studies. For example, the Knight clock is developed using
gestational age estimated by last menstrual period in six cohorts
including preterm infants, while the Bohlin clock only draws
samples from a single termed infant cohort that estimated
gestational age based on fetal ultrasound. In this study, we did
not explore epigenetic clocks that incorporate clinical and lifestyle
factors, such as plasma proteins and cigarette smoking, or extrinsic
epigenetic age acceleration/deceleration, which is dependent on cell
composition. Investigation of epigenetic aging along with those
biologically relevant markers at various time points of pregnancy
may provide additional insights on the fetal activity throughout the
entire pregnancy.

In summary, exposures to O3, PM2.5, and PM10 during
preconception and pregnancy were associated with epigenetic
age deceleration at birth. Findings of the current study contribute
to the growing literature that suggests epigenetic aging is
responsive to environmental factors and supports the use of
epigenetic clocks as potential mediators of adverse health
outcomes in related to environmental exposures.
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Supplementary Figure S1 | Box and whisker plots of ambient air pollutants. Box
and whisker plots showing the distribution of (A) NO2 (B) O3 (C) PM2.5 (D) PM10 for
preconception, trimester 1, trimester 2, trimester 3, and pregnancy. The boxes

represent the interquartile ranges for air pollutants. The horizontal black line dividing
the box represents the median.

Supplementary Figure S2 | Box and whisker plots of ambient air pollutants by
region. Box and whisker plots showing the distribution of (A) NO2 (B) O3 (C) PM2.5

(D) PM10 for preconception, trimester 1, trimester 2, trimester 3, and pregnancy by
region. The boxes represent the interquartile ranges for air pollutants. The horizontal
black line dividing the box represents the median. Two-tailed t-tests were used to
compare the differences of each pollutant by region with the following symbols
indicating p-value (ns: p > 0.05, p: p <= 0.05, : ppp <= 0.01, ppp: p <= 0.001, pppp: p <=
0.0001).

Supplementary Figure S3 | Correlation between air pollutants. Darker shades
represent stronger correlations. Blue shades indicate positive correlations, while red
shades indicate negative correlations, as outlined in corresponding key.
Abbreviations: NO2, Nitrogen Dioxide; NOx, Nitrogen Oxides; O3, Ozone;
PM2.5, Particulate Matter < 2.5 μm; PM10, Particulate Matter < 10 μm.

Supplementary Figure S4 | Correlations between epigenetic age and gestational
age at birth. Scatter plots showing the correlation of (A) epigenetic age estimated by
Knight et al. (B) epigenetic age estimated by Bohlin et al. with the smooth line and
95% confidence interval. The correlation coefficient represents the spearman
coefficient.

Supplementary Figure S5 | Distributed lag models results for NO2. β coefficients
and 95% confidence intervals from distributed lag models (DLMs) are shown for
associations between (A) NO2 and epigenetic age acceleration estimated by Knight
et al. (B) NO2 and epigenetic age acceleration estimated by Bohlin et al. at each
week of preconception and pregnancy. All models were adjusted for child sex,
maternal race/ethnicity, maternal education, year of birth, and region of the
participant at recruitment. The β coefficient represents the difference in
epigenetic age acceleration for a 10-unit difference in the pollutant. Epigenetic
age acceleration was defined as the residual of epigenetic age estimated by Knight
clock or Bohlin clock on gestational age at birth adjusted for cell heterogeneity.

Supplementary Figure S6 |Distributed lagmodels results for O3. β coefficients and
95% confidence intervals from distributed lag models (DLMs) are shown for
associations between (A) O3 and epigenetic age acceleration estimated by
Knight et al. (B) O3 and epigenetic age acceleration estimated by Bohlin et al. at
each week of preconception and pregnancy. All models were adjusted for child sex,
maternal race/ethnicity, maternal education, year of birth, and region of the
participant at recruitment. The β coefficient represents the difference in
epigenetic age acceleration for a 10-unit difference in the pollutant. Epigenetic
age acceleration was defined as the residual of epigenetic age estimated by Knight
clock or Bohlin clock on gestational age at birth adjusted for cell heterogeneity.
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