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Abstract: We report the synthesis of hybrid thin films based on polymethyl methacrylate) (PMMA)
and polystyrene (PS) doped with 1%, 3%, 5%, and 7% of cerium dioxide nanoparticles (CeO2 NPs).
The As-prepared thin films of (PMMA-PS) incorporated with CeO2 NPs are deposited on a glass
substrate. The transmittance T% (λ) and reflectance R% (λ) of PMMA-PS/CeO2 NPs thin films
are measured at room temperature in the spectral range (250–700) nm. High transmittance of 87%
is observed in the low-energy regions. However, transmittance decreases sharply to a vanishing
value in the high-energy region. In addition, as the CeO2 NPs concentration is increased, a red
shift of the absorption edge is clearly observed suggesting a considerable decrease in the band
gap energy of PMMA-PS/CeO2 NPs thin film. The optical constants (n and k) and related key
optical and optoelectronic parameters of PMMA-PS/Ce NPs thin films are reported and interpreted.
Furthermore, Tauc and Urbach models are employed to elucidate optical behavior and calculate the
band gaps of the as-synthesized nanocomposite thin films. The optical band gap energy of PMMA-PS
thin film is found to be 4.03 eV. Optical band gap engineering is found to be possible upon introducing
CeO2 NPs into PMMA-PS polymeric thin films as demonstrated clearly by the continuous decrease
of optical band gap upon increasing CeO2 content. Fourier-transform infrared spectroscopy (FTIR)
analysis is conducted to identify the major vibrational modes of the nanocomposite. The peak at
541.42 cm−1 is assigned to Ce–O and indicates the incorporation of CeO2 NPs into the copolymers
matrices. There were drastic changes to the width and intensity of the vibrational bands of PMMA-PS
upon addition of CeO2 NPs. To examine the chemical and thermal stability, thermogravimetric (TGA)
thermograms are measured. We found that (PMMA-PVA)/CeO2 NPs nanocomposite thin films are
thermally stable below 110 ◦C. Therefore, they could be key candidate materials for a wide range of
scaled multifunctional smart optical and optoelectronic devices.

Keywords: hybrid thin films; optical properties; CeO2 nanoparticles; polystyrene (PS); polymethyl
methacrylate (PMMA); chemical properties; thermal properties

1. Introduction

Nanocomposites based on blending polymers with inorganic nanoparticles have
attracted much attention owing to their projected extraordinary thermal, optical, electrical
and antibacterial properties [1–4]. The motivation for using inorganic materials stems
from their high thermal stability, good electrical properties and high refractive index
n [5,6]. However, previous studies indicate several drawbacks and insufficient capability
of inorganic nanoparticles to serve a variety of modern device applications [7]. Of these
disadvantages, there are the deficiency of elasticity, high cost and their high densities. As a
result, several researchers were motivated to search for nanocomposite materials based
on blending inorganic nanoparticles with organic materials to improve their properties
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and obtain nanocomposites with better features. Owing to the outstanding properties of
organic materials such as good flexibility, lower weight compared to inorganic materials,
as well as the easiness of preparation, low processing cost, good influence resistance [8–10],
recyclability and being environmentally friendly, they serve as excellent candidates for
inorganic-organic nanocomposites [11,12].

High transparency and high refractive index are two essential optical parameters
that are highly demanded for the manufacturing of smart multi-functional optoelectronics
devices [9]. Careful design of such nanocomposites could yield materials that can be
employed in sophisticated sensors [13,14], optical crystals [15], micro-lenses for imaging
and medical applications [16,17] and ultra-fast data transmission [10]. Polymers with high
refractive indices are key candidate materials for smart-scaled multi-functional materi-
als. For instance, poly(thiophene) exhibits a refractive index of 2.12 at a wavelength of
632 nm [16,18–20]. However, they are difficult to prepare. Despite the high absorption
coefficient and apart from the difficulty of preparing, it absorbs light in the visible light
region and has high optical dispersion [15]. In light of the above issues, overcoming these
limitations and developing organic materials with better properties becomes of utmost
importance.

The main challenge is to explore the possibility of preparing polymers thin films with
specific properties for specific applications. Polymethyl methacrylate (PMMA) polymer
has an excellent optical, electrical, mechanical, and thermal characteristic. The exceptional
properties of PMMA such as, high transparency, environmental stability, low cost, easy
preparation and shaping at low temperature make it an excellent candidate for fabricating
thin films [21–23]. However, its application is limited at higher temperatures owing to its
relatively poor thermal stability [24]. To overcome this problem, elaborated technological
techniques are applied to improve different characteristics of PMMA polymer [24–26].
Polystyrene (PS) is one of the most common thermoplastic polymers. It is colorless and
transparent in the visible region. PS has a good formability, a good rigidity, electric and
thermal insulation, easy processing and long-term stability [27–29]. The outstanding prop-
erties of polystyrene such as its low cost and high refractive index of 1.59 at a wavelength
of 632 nm make it an excellent choice for several optical applications [8].

Controlling the properties of materials is like sculpturing uniquely on scrolls. The
properties of the films can be tuned in several ways, such as changing the film thick-
ness [30–34] or by developing hybrid films of the metal oxide polymer [8,35]. In addition,
the properties of the polymers can be improved by introducing nanoparticles into the
polymer matrix. This is an approach that opens the door to many applications in vari-
ous fields. The merging of nanoparticles into the polymer matrix improves their optical,
mechanical, thermal and electronic properties [8,36,37]. Due to the simple synthesis and
low cost of preparation, the merging of inorganic building blocks in the organic matrix is
an effective way to improve the properties while maintaining high transparency [38,39].
Amongst nanoparticles, cerium oxide nanoparticles (CeO2 NPs) have attracted much at-
tention for their high stability, surface chemistry, and biocompatibility [40–42]. CeO2 NPs
are transparent in the visible region and have a refractive index of 2.2 at a wavelength of
632 nm [8,43]. Pure CeO2 exhibits a wide indirect optical band gap and energy-wide band
gap that operates effectively in the ultraviolet (UV) region and thus it could be an excellent
choice for different optical and electronic applications [44,45].

Optics are playing a crucial role in many of our day-to-day applications. The refractive
index is one of the most significant parameters in photonics. An increase in the efficiency of
the photonic devices, like LEDs, modern solar systems, can be performed by engineering
the refractive index mismatch of materials used in the optical devices. The novelty of
this work is underlined by refractive index modulation using polymer nanocomposites
treated with inorganic fillers. Other related optical parameters of the fabricated optical
devices can be tuned accordingly. By careful choice of synthetic methods and manipulating
the distinctive physics of the polymeric nanocomposites in such materials, novel-scaled
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functional polymer–inorganic nanocomposites can be designed and manufactured for new
and interesting optoelectronic applications.

2. Experimental Details and Techniques

Polystyrene (PS) with a molecular weight 104.1 g/mol, polymethyl methacrylate
(PMMA) with a molecular weight 3617 g/mol, and Ceria NPs with molecular weight
172 g/mol were purchased from Sigma Aldrich (St. Louis, MO, USA). Polystyrene (PS)
solution was prepared in a conical flask by dissolving 2 g of PS in 200 mL of tetrahydrofuran
(THF) Sol(A) and then placed on a stirrer for 1 h. Polymethyl methacrylate (PMMA)
solution was prepared by dissolving 2 g of PMMA in 200 mL THF Sol(B) under continuous
stirring for 1 h. Immediately after that, Sol (A) was added to Sol (B) under continuous
stirring to synthesize 1:1 co-polymeric matrix. The polymeric mixture is expected to
exhibit extraordinary physical, thermal and optical properties. Cerium oxide nanoparticles
purchased from (Sigma Aldrich, St. Louis, MO, USA) of size (25–50) nm were added to
as-prepared copolymers matrix with different concentration ratios (1%, 3%, 5% and 7%).
To ensure that CeO2 nanoparticles were incorporated homogenously into the PMMA-PS
matrix, the solution was alternatively mixed on a magnetic stirrer and a sonication rod. The
substrates were cleaned and rinsed using ethanol and distilled water. The PMMA-PS/CeO2
nanocomposite thin films were synthesized by dip-coating technique. The two layers were
dried at 70 ◦C for 30 min for each layer. The effect of introducing CeO2 nanoparticles on
the optical properties was performed using UV-Vis spectrophotometer (U-3900H) (Hitachi,
Fukuoka, Japan) with a total internal integrating sphere. Particularly, transmittance T%
(λ) and reflectance R% (λ) of PMMA-PS/CeO2NPs thin films at room temperature in
(250–700) nm spectral range are measured and interpreted. Electron Scanning Microscope
(SEM) (Quanta FEG 450) (FELMI-ZFE, Graz, Austria) is utilized to investigate the surface
morphology of as-prepared thin films. Thermogravimetric analysis (TGA) technique is
used to study thermal stability of as-synthesized doped polymeric thin films. To identify
the major vibration modes and types of different bonding networks of the PMMA-PS/CeO2
nanocomposites, Fourier transform infrared spectroscopy (FTIR) (Bruker Vertex 80 and
Hyperion 2000 microscope) (Bruker Optics, Karlsruhe, Germany) analysis is conducted.

3. Result and Discussion
3.1. Optical Properties of PMMA-PS/Ce NPs Thin Film
3.1.1. Transmittance and Reflectance

UV-Vis spectrophotometer was used to explore and investigate the optical proper-
ties of PMMA-PS thin films doped with various Ce NPs concentrations. Figure 1 shows
the transmittance of PMMA-PS/Ce NPs thin films. Analysis and interpretation of trans-
mittance data can be partitioned into two spectral regions. Namely, low energy region
(700 ≥ λ ≥ 350) nm in which all samples exhibit a high transparency of about 87%. The
high energy region (250 ≤ λ ≤ 350) nm is where transmittance starts to decay to a vanish-
ing value. This region contains the absorption edge [46] that is red-shifted upon increasing
the concentration of Ce NPs in the polymeric matrix suggesting a significant reduction
of optical band gap energy of (PMMA-PS)/CeO2 nanocomposite thin films [47]. The in-
corporation of CeO2 NPs into polymeric matrix leads to a compression of the host matrix.
Compressive strain introduced into PMMA-PS matrix can cause a red shift as a result of
the changes of a built-in electric field. The polarization should be affected by doping and
causes a red shift.

Figure 2 shows the reflectance of (PMMA-PS)/CeO2 nanocomposite thin films. It
can be clearly observed that reflectance of PMMA-PS, PMMA-PS/1%, 3%, 5%, and 7%
CeO2NPs thin film exhibit values of (7.6–10.1%), (9.2–9.8%), (9.3–10.2%), (8.7–10.4%), (9–
11.5%), respectively.
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Figure 2. The reflectance of (PMMA-PS)/CeO2 nanocomposite thin films with various CeO2 NPs
concentrations.

3.1.2. Extinction Coefficient and Refractive Index

The extinction coefficient k for all samples was calculated using the formula k = αλ/4π
where α is the absorption coefficient defined by α = (1/d) ln(1/T) where d is the thickness
of thin films estimated to be 250 nm [48,49]. The use of inorganic ceria nanoparticles into
the polymer matrix can provide high-performance novel materials that find applications
in many industrial fields. With this respect, frequently considered features are optical
properties such as light absorption.

Figure 3 shows the extinction coefficient k calculated in the spectral range (250–700) nm
as a function of incident wavelength. For the spectral range 700 ≥ λ ≥ 350 nm, k exhibits
a vanishing value for all investigated thin film samples; this means that thin films allow
electromagnetic waves to pass through without any decay or damping for photons with
wavelengths λ ≥ 350 nm. In the high frequency regions, 250 ≤ λ ≤ 350 nm, k increases and
attains a maximum value at 290 nm. This can be attributed to extremely high absorption of
the energetic EM waves in this region. Figure 3 indicates that such energetic EM waves
having energies very close to the optical band gap energy of the nanocomposite thin
film are largely absorbed. Exceptionally, (PMMA-PS)/CeO2 3% nanocomposite thin films
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exhibit the highest extinction coefficient indicating that energetic EM waves are completely
absorbed in this case.
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Refractive index (n) is generally associated with the electronic polarization of ions
and local field inside optical materials. Compared to inorganic solids, optical applications
of polymers are often limited due to the relatively narrow range of the refractive index.
Thus, the introduction of inorganic nanoparticles into a polymer matrix can result in poly-
meric nanocomposites with extreme refractive index, which finds potential applications
in lenses, optical filters, reflectors, optical waveguides, optical adhesives, solar cells, or
antireflection films. To elucidate a deeper insight into optical properties, refractive index
(N) is essentially composed of real part (n) and imaginary part (k); (N = n + ik) where
n = ((1 + R )/(1 − R) +

√
4R(1 − R2)− k2 [50]. Figure 4 shows that n of PMMA-PS

exhibits values ranging between 1.76 and 2.13. Introducing 1% of CeO2 NPs into poly-
meric matrix leads to a slight increase of n (1.86–2.15). As the CeO2 NPs concentrations
is increased to 3%, 5%, and 7%, n continuously increases to (1.88–2.15), (1.83–2.18) and
(1.85–2.26). Consequently, (PMMA-PS)/CeO2 nanocomposite thin films could be potential
candidates as excellent reflective material [51].
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3.1.3. Band Gap Energy Eg

Optical band gap energy Eg of as-prepared doped thin films is investigated using

Tauc plot model. According to this model, (αhv) = B
(
hv − Eg

)(1/2) , where B is a constant
related to the type of the thin film. Figure 5 shows the relationship between the energy
of incident photons (E = hv) and (αhv)2. The optical band gap energy Eg of (PMMA-
PS)/CeO2 nanocomposite thin films with various CeO2 NPs concentrations is obtained by
extrapolating the liner part of Tauc plot to the interception of the incident photon energy
(hv). The obtained optical band gap energy of PMMA-PS is calculated to be Eg = 4.03 eV
consistent with previously reported values [52,53]. As the CeO2 NPs concentrations is
increased to 1%, 3%, 5%, and 7%, optical band gap decreases to 3.97 eV, 3.76 eV, 3.63 eV, and
3.6 eV respectively. Thus, band gap engineering could be achieved effectively by inserting
a specific concentration of CeO2 NPs in the polymeric thin films.
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Refractive index dispersion is one of the most crucial parameters. Moreover, calcu-
lating dispersion energies is essential to obtain a deeper insight into the applications of
(PMMA-PS)/CeO2 nanocomposite thin films for optical devices [51]. Therefore, refractive
index and dispersion energies must be studied carefully to specify the potential application
of the material [54].

Figure 6 shows optical band gap energy Eg plotted versus CeO2 NPs concentration
(%). It can be noticed that Eg decreases exponentially with ceria NPs concentration.

Wemple DiDomenico Model

Wemple DiDomenico model (WDD) is a classical single effective-oscillator model.
This model can be utilized to calculate key optical dispersion parameters such as effective
single oscillator energy Eo and dispersion energy Ed for certain optical materials. The Eo
parameter provides essential information about the band structure of the polymeric thin
film, while Ed is associated with the mean potency of interband photosensitive transitions
and the structural fluctuations [55]. Furthermore, WDD model can be employed to estimate
other optical parameters such as the zero frequency-refractive index (n0), zero-frequency
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dielectric constant ε0, and the spectral moments M−1 and M−3. The relationships of
different parameters can be expressed as,(

n2 − 1
)

=
Ed E0

E2
0 − hv2

(1)
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Equation (1) can be rewritten as,

(
n2 − 1

)−1
=

E0

Ed
− hv2

E0Ed
(2)

The energy of incident photon (hv) can be plotted against
(
n2 − 1

)−1 to obtain the
values of dispersion parameters from the slope of the obtained straight line (EdEo)−1 and
the interception with the vertical axis (E0/Ed). Figure 7a,b display

(
n2 − 1

)−1 versus (hv)2

and
(
n2 − 1

)−1 versus (λ)−2 of (PMMA-PS)/CeO2 nanocomposite thin films incorporated
with various concentrations of CeO2 NPs. The values of the two important dispersion
parameters Ed and Eo obtained from the two plots are listed in Table 1. Careful inspection
of the values of Ed and Eo parameters of PMMA-PS are found to be 6.893 eV and 4.063 eV,
respectively. The corresponding attained values of (PMMA-PS)/CeO2 1% are 14.484 eV
and 6.333 eV, indicating a significant increase as only a small concentration of CeO2 NPs
are incorporated into polymeric films.

By rewriting Equation (2) and setting hv = 0 [56], the ε0 and (n0) are related by
the formula,

ε0 = n2
0 = 1 +

Ed
E0

(3)

The obtained values of ε0 are presented in Table 1. The calculated values of n0 are
consistent with the theoretical and the experimental values of the normal refractive index.
The estimated values of ε0 and n0 of PMMA-PS are found to be 2.696 and 1.642, respectively.
Introducing CeO2 NPs into PMMA-PS boost the values of ε0 and n0 for all investigated
thin film samples. In addition, the interplay between Ed, Eo and the optical oscillator
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strength (f ) of the optical transition between the initial state and the final state can be
expressed as f = Ed Eo [57,58]. The obtained values of f are displayed in Table 1. Moreover,
the effective single oscillator moments M−1 and M−3 can be correlated with dispersion
parameters [59–61].

E2
0 =

M−1

M−3
(4)

E2
d =

M3
−3

M−1
(5)
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Table 1. Some optical parameters for PMMA-PS and PMMA-PS incorporation with CeO2 NPs.

Parameter P-P P-P/1% CeO2 NPs P-P/3% CeO2 NPs P-P/5% CeO2 NPs P-P/7% CeO2 NPs

Dispersion energy Ed (eV) 6.893 14.484 12.268 7.832 9.288
Effective single oscillator

E0 (eV) 4.063 6.333 5.433 4.065 4.542

Zero-frequency refractive
index n0

1.642 1.812 1.804 1.710 1.744

Zero-frequency dielectric
constant ε0

2.696 3.286 3.257 2.926 3.044

Optical oscillator strength
f (eV)2 28.011 91.743 66.666 31.847 42.194

Optical moments M−1 1.696 2.286 2.257 1.926 2.044
Optical moments M−3

(eV−2) 0.102 0.056 0.076 0.116 0.099

Oscillator length strength
S0 × 10−5 1.804 5.728 4.139 2.119 2.523

Average oscillator
wavelength λ0

306.200 199.389 232.683 302.325 282.096

Urbach energy EU (meV) 182.495 186.216 187.360 194.476 207.675

As demonstrated by Table 1, the values of optical moments M−1 and M−3 of PMMA-
PS are obtained to be 1.696 and 0.102 (eV−2), respectively; while for (PMMA-PS)/1% CeO2
NPs, the value of M−1 increases to 2.286 and the value of M−3 decreases to 0.056 eV−2.
This behavior could be explained in terms of the significant decrease in the polarization of
(PMMA-PS)/CeO2 NPs nanocomposite thin films [62].
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Sellmeier Oscillator Parameters

From another perspective, we employ Sellmeier oscillator model to elucidate the
dispersion in thin films in terms of the average oscillator wavelength (λ0) and on the
oscillator length strength (S0). Refractive index and the squared wavelength at higher
wavelength are related to λ0 and S0 by the formula,

n2 − 1 =
(S0λ0)

1 − (λ0/λ2)
(6)

By plotting
(
n2 − 1

)−1 versus λ−2, we calculate S0 from the slope of the resulting
straight line (1/S0). The values of (λ0) can be obtained from the intercept with the vertical
axis

(
1/λ2

0S0
)

as can be clearly seen from Figure 7b. It clearly shows that the refractive
index at higher wavelength adopts Sellmeier’s dispersion relation. The calculated values
of S0 and λ0 are tabulated in Table 1. It reveals that S0 and λ0 of PMMA-PS are found to be
306.200 × 10−5 and 306.200 nm, respectively. For PMMA-PS/CeO2 NPs nanocomposites
S0 decreases and λ0 increases. These tendencies hold up to 5% of CeO2 NPs incorporated
into polymeric films.

Urbach Energy

To obtain a deeper insight into optical properties of thin films, order of crystallinity for
PMMA-PS/CeO2 nanocomposite thin films is investigated by calculating Urbach energy
EU. The absorption coefficient is related to EU via α = α0 exp(hv/EU), where α0 is a
constant. By plotting ln(α) versus incident photon energy (hv), EU can be determined by
extrapolating the straight line below the absorption band edge. The estimated values of
EU of PMMA-PS/CeO2 nanocomposite samples are presented in Table 1. For unloaded
PMMA-PS thin film, EU is found to be 182.495 meV. It is observed that value of EU of
PMMA-PS/7% CeO2 has increased to 207.675 meV suggesting a significant disorder and
surface interactions in the polymeric thin films loaded with ceria nanoparticles.

3.2. FTIR Analysis

Fourier Transform Infrared Spectroscopy (FTIR) is employed to explore and identify
the vibrational bands of the loaded PMMA-PS thin films. Figure 8 shows the FTIR spectra
of PMMA-PS and PMMA-PS doped by CeO2 NPs. The vibrational bands observed in
the FTIR spectrum are typical of those of PMMA and PS polymers. The vibrational
bands associated with bending of C–H bonds are registered in the 1000–700 cm−1 spectral
range. The vibrational bands located in the 1000–1300 cm−1 range are assigned to C–O
stretching. The vibrational bands recorded in between 1300–1400 cm−1 are assigned to
–CH3 bending, while a band at 1449 cm−1 could be ascribed to the –CH2 bending. Band
at 1484 cm−1 could be ascribed to the C=C bonds. The bands appearing between 1600–
1800 cm−1 are associated with C=O bonds. Bands identified between 2800–3200 cm−1 are
allocated to the C–H stretching. The six IR bands located in the 1000–1300 cm−1 spectral
range are associated with C–O vibrational modes. As the dipole moment changes due
to the vibrations of atoms, two IR bands are associated with symmetric stretch, two with
asymmetric stretch and two with the C–O bending. The wide spectral range identifies
the locations of different IR bands in the nanocomposite thin films. Finally, the peak
appearing at 541.42 cm−1 in the nanocomposites is clearly associated with Ce–O suggesting
homogenous incorporation of CeO2 NPs into the co-polymer’s matrices. Furthermore,
significant changes observed in width and intensity of the vibrational bands of PMMA-PS
upon addition of CeO2 NPs indicate the strong influence of ceria NPs on the spectroscopy
of the blended polymer. Table 2 presents the peak positions of all major vibrational bands
of PMMA-PS doped by CeO2 NPs. The two main factors that influence the intensity of an
IR absorption band are the intermolecular bonding between PMMA-PS matrix and Ce NPs
as well as the change in dipole moment that occurs during a vibration.



Polymers 2021, 13, 1158 10 of 16

Polymers 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

associated with bending of C–H bonds are registered in the 1000–700 cm−1 spectral range. 
The vibrational bands located in the 1000–1300 cm–1 range are assigned to C–O stretching. 
The vibrational bands recorded in between 1300–1400 cm–1 are assigned to –CH3 bending, 
while a band at 1449 cm–1 could be ascribed to the –CH2 bending. Band at 1484 cm–1 could 
be ascribed to the C=C bonds. The bands appearing between 1600–1800 cm–1 are associated 
with C=O bonds. Bands identified between 2800–3200 cm–1 are allocated to the C–H 
stretching. The six IR bands located in the 1000–1300 cm–1 spectral range are associated 
with C–O vibrational modes. As the dipole moment changes due to the vibrations of at-
oms, two IR bands are associated with symmetric stretch, two with asymmetric stretch 
and two with the C–O bending. The wide spectral range identifies the locations of differ-
ent IR bands in the nanocomposite thin films. Finally, the peak appearing at 541.42 cm–1 
in the nanocomposites is clearly associated with Ce–O suggesting homogenous incorpo-
ration of CeO2 NPs into the co-polymer’s matrices. Furthermore, significant changes ob-
served in width and intensity of the vibrational bands of PMMA-PS upon addition of CeO2 
NPs indicate the strong influence of ceria NPs on the spectroscopy of the blended poly-
mer. Table 2 presents the peak positions of all major vibrational bands of PMMA-PS 
doped by CeO2 NPs. The two main factors that influence the intensity of an IR absorption 
band are the intermolecular bonding between PMMA-PS matrix and Ce NPs as well as 
the change in dipole moment that occurs during a vibration. 

 
Figure 8. The FTIR spectra of PMMA-PS, and PMMA-PS doped by CeO2 NPs. 

  

Figure 8. The FTIR spectra of PMMA-PS, and PMMA-PS doped by CeO2 NPs.

3.3. Thermogravimetric Analysis (TGA)

To elucidate thermal stability of doped polymeric thin films investigated in this
study, thermogravimetric analysis (TGA) (weight loss %) with respect to temperature and
derivative thermogravimetric analysis (DTG) are measured for PMMA-PS, and PMMA-PS
incorporated CeO2 NPs. A weight loss and differential thermogravimetry curve (first
derivative of the weight with respect to temperature) of PMMA-PS and PMMA-PS incorpo-
rated CeO2 NPs are shown in Figure 9. Two main regions of weight loss and first derivative
weight loss are observed. The first is identified in the 100–200 ◦C range. In this region,
the estimated weight loss is estimated to be 3–12% that could be attributed to adsorbed
water. In the second region, mainly observed between 300 ◦C and 400 ◦C, the weight
loss decreases from 90% to 20%. Such a large weight loss is clear indication of thermal
decomposition suggesting that doped polymeric thin films exhibit low chemical stability
at high temperature. Furthermore, a maximum rate of weight loss is observed at 330 ◦C,
for PMMA-PS thin films. This maximum rate shifts slightly towards a high temperature
region as the concentration of CeO2 NPs inserted into PMMA-PS matrix is increased.

Figures 10 and 11 show the FTIR spectra of PMMA-PS and PMMA-PS/5%CeO2 for
thin film samples processed at different annealing temperatures. For thin film samples
annealed at temperatures 200–400 ◦C, absorbance of both PMMA-PS and PMMA-PS/CeO2
exhibits a sharp shrink away. This could be attributed to the elimination of C–H bending
of PMMA-PS, and C–H bending and C–O stretching of PMMA-PS/5% CeO2.
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3.4. Surface Morphology of PMMA-PS/CeO2 Thin Films

The ability to control the orientation of block copolymer thin film features relative to
the surface is key to the material’s usefulness for patterning. For example, a surface appears
as meandering fingerprint line/space patterns for CeO2 to be homogenously inserted and
distributed. For PMMA-PS, several well-established and effective surface pre-treatments for
dictating the domain orientations of self-assembled patterns are essentially possible. Even
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with appropriate surface pre-treatments, self-assembly of PMMA-PS patterns are relatively
sensitive to the concentration of CeO2 NPs. Exciting recent advances in block copolymer-
based patterning have used self-assembly to achieve alignment and registration of features
by directing meandering self-assembled fingerprint patterns. Surface morphology of
(PMMA-PS)/CeO2 NPs at 20 µm magnification are presented in Figure 12. Figure 12a
shows that undoped PMMA-PS thin films exhibit an organized texture. Figure 12b–d
show a small effect of the CeO2 NPs immersed into thin film matrix on the surface of
doped PMMA-PS nanocomposite thin films. Furthermore, we examine SEM micrographs
to investigate the morphology and dispersion of CeO2 NPs on the surface of PMMA-PS
films. Good dispersion of CeO2 NPs on the surface of the PMMA-PS thin films is revealed.
This provides a substantial evidence of the validity of our synthesis process of obtaining
CeO2 NPs. SEM images indicate that measured size of CeO2 NPs is in 25–50 nm.
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(d) PMMA-PS/CeO2 7%.
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Table 2. The peak positions of all vibrational bands of PMMA-PS, and PMMA-PS doped with
CeO2 NPs.

Vibrational
Band PMMA-PS

PMMA-
PS/CeO2

1%

PMMA-
PS/CeO2

3%

PMMA-
PS/CeO2

5%

PMMA-
PS/CeO2

7%

Ce–O – 541.42 541.42 541.42 541.42

C–H bending

704.03 706.03 693.74 697.86 697.86
753.44 7.45.20 753.44 751.38 753.44
841.96 844.02 844.02 844.02 841.96
965.47 963.41 963.41 963.41 963.41

C–O
stretching

1035.46 1037.52 1037.52 1037.52 1035.46
1068.40 1068.40 1066.34 1068.40 1070.46
1148.68 1148.68 1148.68 1148.68 1150.47
1187.79 1191.91 1191.91 1191.91 1191.91
1251.61 1243.38 1243.38 1245.44 1245.44
1280.43 1274.26 1274.26 1276.32 1276.32

–CH3
bending

1371.01 1366.89 1366.89 1366.89 1368.95
1389.54 1385.42 1387.48 1385.42 1385.42

–CH2
bending 1449.24 1451.29 1447.18 1449.24 1451.29

C=C 1484.23 1486.29 1486.29 1490.41 1492.47

C=O
1601.57 1599.51 1603.63 1603.63 1601.57
1725.03 1725.08 1725.08 1725.08 1725.08

C–H
stretching 2800–3200 2800–3200 2800–3200 2800–3200 2800–3200

4. Conclusions

In summary, (PMMA-PS)/CeO2 nanocomposite thin films doped with different con-
centrations of CeO2-NPs (0 to 7%) are synthesized and deposited on glass substrates via
dip-coating technique. As-grown thin films are investigated to elucidate the spectral be-
havior of key optical parameters such as transmittance, reflectance, absorption coefficient,
refractive index, and extinction coefficient. Furthermore, a combination of classical models
such as Tauc, Wemple DiDomenicol, and Sellmeier oscillator models are employed to cal-
culate the optical band gap energy, dispersion parameters, and optoelectronic parameters
of the loaded (PMMA-PS) thin films. Un-doped PMMA-PS exhibits a high transparency
of about 87%. The transmittance decreases dramatically to a vanishing value in the high
energy region (250 ≤ λ ≤ 350) nm. Reflectance is found to increase as the concentra-
tion of ceria NPs loads increases. Furthermore, refractive index n of PMMA-PS exhibits
values ranging between 1.76 and 2.13. Interestingly, introducing 7% of CeO2 NPs into
polymeric matrix leads to a slight increase of n to 1.85–2.26. Therefore, PMMA-PS/CeO2
nanocomposite could be used for high reflective coatings and candidates for strong optical
confinement applications. The optical band gap obtained of PMMA-PS copolymers thin
films is ≈4.03 indicating that it is an insulating dielectric material. Introducing CeO2
nanoparticles into the copolymers matrix decreases the optical band gap and thus it is
possible to engineer the optical properties of this novel material. To elucidate a deeper
understanding of the vibrational modes of PMMA-PS/CeO2 nanocomposite thin films, we
carry out FTIR measurements. We identify and interpret all vibrational bands associated
with formation, rotation, and twisting of different bonds involved in the investigated
polymerized thin film. Evidently, major changes are observed in width and intensity of
the vibrational bands of PMMA-PS upon merging of CeO2 NPs in copolymers matrix. In
addition, TGA and DTG studies demonstrate that introducing higher concentrations of
CeO2 NPs into PMMA-PS nanocomposite enhances thermal stability significantly. Surface
morphology of PMMA-PS/CeO2 NPs at 20 µm magnification shows that PMMA-PS ex-
hibit an amorphous nature with a smooth surface. The SEM images show homogenous
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dispersion of CeO2 NPs on the surface of the PMMA-PS thin films. Having obtained an
interesting result on exploiting and understanding the physical mechanisms behind tuning
the optical parameters of the polymer-inorganic filler nanocomposites, we are motivated to
investigate the effect of changing the types of inorganic fillers, as well as their compositional
content on tuning optical parameters of different polymer nanocomposites. Such future
investigations are predicted to yield organic-inorganic systems of prime importance for
the fabrication of state-of-art optoelectronic multifunctional devices. Furthermore, we are
planning to introduce transition metal oxides into different polymeric matrices to examine
the possibility of inducing strong magnetic properties to fabricate onto magnetic devices.

Our detailed and comprehensive investigations of the optical, morphological, lattice
dynamical, and thermal properties of PMMA-PS/CeO2 NPs nanocomposite thin films
reveal that they could be utilized in manufacturing realistic-scaled smart multifunctional
devices.
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