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An Automatic Classification Method 
on Chronic Venous Insufficiency 
Images
Qiang Shi1, Weiya Chen1, Ye Pan2, Shan Yin1, Yan Fu3, Jiacai Mei2 & Zhidong Xue1

Chronic venous insufficiency (CVI) affect a large population, and it cannot heal without doctors’ 
interventions. However, many patients do not get the medical advisory service in time. At the same 
time, the doctors also need an assistant tool to classify the patients according to the severity level of 
CVI. We propose an automatic classification method, named CVI-classifier to help doctors and patients. 
In this approach, first, low-level image features are mapped into middle-level semantic features by a 
concept classifier, and a multi-scale semantic model is constructed to form the image representation 
with rich semantics. Second, a scene classifier is trained using an optimized feature subset calculated by 
the high-order dependency based feature selection approach, and is used to estimate CVI’s severity. At 
last, classification accuracy, kappa coefficient, F1-score are used to evaluate classification performance. 
Experiments on the CVI images from 217 patients’ medical records demonstrated superior performance 
and efficiency for CVI-classifier, with classification accuracy up to 90.92%, kappa coefficient of 0.8735 
and F1score of 0.9006. This method also outperformed doctors’ diagnosis (doctors rely solely on 
images to make judgments) with accuracy, kappa and F1-score improved by 9.11%, 0.1250 and 0.0955 
respectively.

Chronic venous insufficiency (CVI) affect 15–25% of the general population and occur significant financial bur-
dens on the healthcare system, costing up to a billion dollars each year in the United States1, and often occur in 
the lower limbs. Clinical manifestations of lower limbs CVI include superficial femoral vein dilatation or varicose 
veins, leg weakness, heavy, tenderness, edema, skin nutritional changes, venous ulcers2. In addition, CVI can 
involve the superficial vein, traffic vein, and deep vein or even the entire lower limb venous system. This disease 
can be caused by primary or secondary factors, and venous reflux or proximal obstruction is the main hemody-
namic change3. Due to the diversity of clinical manifestations and the complexity of pathophysiological changes, 
correct diagnosis is the foundation to provide accurate treatment4.

The commonly used classification system of CVI includes the CEAP (Clinic, Etiologic, Anatomic and 
Pathophysiological) system and VCSS (Venous Clinical Severity Score) scoring system5,6. The levels in clinical 
manifestations in CEAP system range from C0 (symptoms, no signs) to C6 (active ulcers). The CEAP system 
has been accepted widely and been applied in clinical diagnosis, and effectiveness evaluations. However, the 
CEAP classification is descriptive, and does not register objective complaints and is not a severity score7. Thus, 
Rutherford improved the CEAP system and proposed the VCSS system which includes 10 scoring items (pain, 
edema, venous claudication, pigmentation, scleroderma, ulcers, ulcers diameter, duration of disease, recurrence 
and quantity)8 with each item ranging from 0 to 3. The higher the total score, the more serious the CVI’s severity. 
However, VCSS is more comprehensive and more responsive to venous disease. These classification systems are 
designed to offer doctors indicative information when they make decisions. However, the application of these 
scoring systems is depend on doctors’ experience and subjective judgement. Furthermore, these scoring systems 
require professional knowledge, which is difficult for patients to apply self-evaluation.

We propose an automatic classification approach based on optical images to evaluate CVI’s severity, named 
CVI-classifier. In CVI-classifier, a multi-scale semantic model9 is used to explore the middle semantic infor-
mation contained in low-level features such as texture, shape, color and spatial relationship. A scene classifier 
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based on middle-level semantic features is adopted to estimate CVI’s severity as high-level semantics. In order 
to improve classification accuracy, feature selection method based on high-order dependency is introduced to 
obtain the optimal feature subset. This automatic classification approach provide patients with an easy access to 
online medical services and doctors can work out appropriate treatment from large amount of similar medical 
records.

Related Work
With the rapid development of modern medical imaging technology, automatic medical image classification has 
become more and more important for diseases diagnosis, medical references and surgical planning10–12. Medical 
image classification approaches have already been used for cancer detection13, stroke identification14, Alzheimer’s 
disease15, etc., however, no classification approach for CVI images exists at present. Moreover, traditional medical 
image classification methods are mostly based on low-level image features, such as color, texture and shape16. 
These low-level features cannot reflect certain hidden information in the medical images, creating the “semantic 
gap” problem between low-level features and high-level information, which is one of the biggest challenges for 
medical image classification17.

To reduce the semantic gap, Bag of Visual Word (BoVW) model18,19 is introduced to form middle-level fea-
tures for describing high-level semantics. A typical procedure of BoVW model is illustrated as follows:

	 1.	 an image is sampled efficiently with various local interest point detectors20 or dense regions21, and is de-
scribed by local descriptors22;

	 2.	 A codebook consisting of several codewords is learned with clustering techniques, such as K-means and 
spectral clustering, to quantize the local features into discrete values;

	 3.	 The visual histogram achieved by calculating the occurring frequency of each visual word is used to repre-
sent the medical image.

BoVW has been used in medical image classification tasks and achieved inspiring performance. However, 
there are still some design choices to make in different steps of BoVW model, including the choice of local feature 
descriptor, dictionary learning and middle-level semantic image representation.

The delicate design of local features depicting different aspects of visual appearance is the basis for the success 
of BoVW models in medical image classification. Due to its invariance to translation, illumination, and scale, 
SIFT and its improved versions, such as SURF, become the most popular local descriptor23,24. Considering the 
dimension of SIFT-based local features is high, affine moment invariants that can produce small-sized compact 
feature vectors with minimum information redundancy are proposed25. The above descriptors are computed 
based on the local region around some key points, however, most medical images have little meaningful key 
points and structures in the lesions, so patch-based BoVW models are proposed to medical image classification 
tasks26. In these approaches, medical images are partitioned into multiple blocks and local descriptors are calcu-
lated according to block intensity. All these types of features have been proven to be very powerful descriptors to 
detect and describe local features in images. However, the single local descriptor may perform poorly when the 
image contains complex background due to the fact that a portion of extracted features may come from the noisy 
background. In practice, a combination of multiple local features27 often yields better performance on image 
representation.

Dictionary learning is another a critical component of BoVW, and can be divided into unsupervised and 
supervised approaches28–30. Unsupervised clustering techniques, such as the K-means, K-median clustering, 
mean-shift clustering, hierarchical K-means, agglomerative clustering31–34, are usually used for constructing the 
visual dictionary. In these approaches, the feature vectors are clustered and the centroids of the clusters are used 
to form the codebook. One of the common features of these unsupervised methods is that they only optimize 
an objective function fitting to the data but ignoring their class information. Therefore, this reduces the dis-
criminative power of the resulting visual dictionaries. To create more discriminative visual words, supervised 
dictionary learning techniques that optimize the dictionary for a specific classification problem are proposed, and 
are proved to outperform corresponding unsupervised methods35. In recent work, Saghafi36 proposed a concept 
space to illustrate the semantic relations between the visual codewords. They apply generative models such as 
latent semantic analysis (LSA) and probabilistic latent semantic analysis (pLSA) to discover the latent semantic 
relations between the initial codewords. N. Passalis37 generalized and formulated the BoVW model as a neural 
network, which is composed of a Radial Basis Function (RBF) layer and an accumulation layer. Moreover, the 
proposed model can be trained in the supervised fashion when it is followed by a multilayer perceptron (MLP) 
as classification layer. B. Fernando38 introduced the Gaussian mixture model for codebook generation that not 
only generalizes the K-means algorithm by allowing soft assignments, but also exploits supervised information 
to improve the discriminative power of the clusters. R. Ji39 proposed a task-dependent codebook compression 
framework to reduce dimension of BOVW, based on the supervise labels coming from the classification task. 
Although supervised learning has been introduced to codebook generation, local labels are still ignored, which 
impedes its overall performance.

After learning the visual words, all the encoded local features will be pooled to form an image-level feature 
vector. However, a global histogram only reflects the holistic distribution of codewords, the information about the 
spatial layout is lost, which could be important cues for image classification. To take advantage of spatial infor-
mation, Lazebnik et al.40 proposed a spatial pyramid matching (SPM) framework by partitioning the image into 
increasingly fine sub-regions and computing histograms of local features found inside each sub-region, which 
has become a widely used strategy to incorporate spatial information. To further improve the SPM method, 
Zhou et al.41 incorporated a multiresolution representation into the traditional BoVW model by constructing 
multiple resolution images and represented each resolution image by features extracted from the sub-regions of 
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two modalities of horizontal and vertical partitions. Although the above methods fully consider the spatial char-
acteristics of the image, they do not include local semantic that can effectively eliminate the ambiguity of the local 
features. In order to further exploit local concepts of images, Y. Tanaka42 proposed a multi-level resolution seman-
tic modeling method for automatic scene recognition, which constructs global image representation with concept 
probabilities of local regions in each level resolution, and combine semantic representations of multi-level reso-
lution for scene recognition. Although these variants of the original BoVW model have a good descriptive ability 
to depict spatial layout and semantic information of images, they are designed mainly for natural image scene 
classification, and seldom have they been applied in the field of medical image classification.

To this end, considering local lesions of CVI images have meaningful semantics and several sizes, this paper 
proposes a framework for discovering multi-level local semantics to improve the performance of automatic CVI 
image classification. Differences from traditional BoVW models include: 1) Various features of local region 
are combined to better exploit discriminative appearances. 2) Supervised learning approach directly based on 
local-regions’ labels is used to generate visual vocabulary. 3) The final representation of global image is modeled 
by the combination of middle-level semantics that are calculated by counting frequencies of local concepts at each 
level resolution.

Results
In our experiments, all 221 images come from 217 patients’ medical records that were collected by three profes-
sional doctors of vascular surgery of Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University. 
Among the 217 patients, four of them are provided with two images taken from different perspectives. Therefore, 
the number of images is not equal to the number of patients. These leg images in medical records are taken 
by these professional doctors. In order to ensure the accurate recording of the patient’s situation, some photo-
graphing conditions are required, including sufficient lighting, simple background, and full coverage of leg area. 
Since these images vary in size and have different backgrounds and lightness, they are resized to the same size 
(250 × 700) according to the ratio of leg’s length and width, and are preprocessed including background reduction 
and lightness normalization.

In order to train and evaluate concept classifier, the preprocessed images are divided into patches with size 
15 × 15, 25 × 25 and 50 × 50 respectively, and these patches are annotated as described in method section. 
Furthermore, the ground truth labels for global images come from the medical records that are not only deter-
mined by the image data, but also other evidence, e.g. color ultrasonography of deep venous at lower extremities, 
venography of lower extremity etc. The labels of these images are classified ‘mild’, ‘moderate’ and ‘severe’ catego-
ries according to the following treatments for patients. The patients in mild situation do not need to handle, or 
wear elastic stockings, the ones in moderate situation need simple surgery, and the ones in severe situation need 
a complex, systematic treatment plan. The abovementioned dataset includes 59 images labeled as mild situa-
tion, 97 images denoted as moderate class, and 65 images belonging to severe situation. The image dataset and 
relevance labels can be downloaded from http://isyslab.info/CVI/CVI-img-datasets.zip and https://github.com/
shiqiangdqq/CVI-classifier/tree/master/CVI-imgdatasets.

Classification accuracy, Kappa coefficient and F1-score are used to evaluate the corresponding classifiers. 
Suppose M to be a confusion matrix, r is the number of rows, and xii is the value of row i and column i, xi+ means 
the sum value of the row i, and x+i means the summary value of column i, N is the number of total samples, then, 
the classification accuracy (Eq. 1) and Kappa coefficient (Eq. 2) are calculated as follows:
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Since the problem in this paper is multi-class classification, we use the average F1-score to evaluate classifier’s 
performance43. Suppose C = {C1, C2, ..., C|M|} is the category set, and |M| is the category number. For a 
binary-classification by treating Cj as positive class and the other categories as negative class, the precision 

=
+

Pj
TP

TP FP
 and recall =

+
Rj

TP
TP FN

 are calculated respectively where TP, FP, FN denote true positive, false posi-
tive and false negative, and then, the F1-score =

+
F j P R

P R1
2 j j

j j
 is computed. In addition, for the evaluating whole 

performance of all classes, the average F1-score (Eq. 3) is calculated as follows:

=
∑

=
∑ += =F

F

M

P R P R

M

(2 /( ))

(3)
avg j

M j
j
M

j j j j
1

1 1 1

In this paper, all the experiments were conducted on MATLAB 2017b environment running on a computer 
with Intel Core i7 3.4 GHz processor and 32 GB memory.

The Performance of Concept Classifiers.  In order to train and test concept classifier, 2/3 samples of the 
annotated patches which were labeled by three professional doctors are randomly selected for training, and the 
remaining 1/3 samples are used for testing. In addition, the above process is repeated 20 times, and the averages 
of the classification accuracy, kappa coefficient and F1-score are used to evaluate the classification performance 
of concept classifier. After prior comparisons of multiple kernel functions (Gaussian kernel functions with dif-
ferent parameters and different-order polynomial kernel functions) and two multi-class classification strategies 
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(one-vs-one and one-vs-all), we chose a quadratic polynomial kernel as the SVM classifier kernel function, and 
adopted one-vs-one strategy to achieve multi-classes classification. For the comparison, the CC_all which means 
the concept classifier is trained using all region features in each divided scale, and the CC_selected which means 
the concept classifier is trained based on the optimized subset which is selected from all region features by the 
approach proposed in the method section. The accuracy averages and kappa averages of 20 repeated trains and 
tests are shown in Figs 1 and 2, respectively.

From the results, we can find as follows. 1) For each scale, the classification accuracy and Kappa coefficient of 
CC_selected are higher than the ones of CC_all, since the selected feature subset does not contain redundant and 
noisy features, the classification accuracy and generalization of the concept classifier trained with these features 
are improved. 2) For each concept, the highest classification accuracy of varicose veins is at divided scale 15 × 15, 
the best accuracy of reticular vein or telangiectasia is at divided scale 25 × 25, the accuracies of vein ulcers and 
pigmentation at divided scale 25 × 25 and 50 × 50 are much better than the ones at divided scale 15 × 15. These 
results can prove that the proper size of the image patch is important for classifying specific CVI’s category. 3) 
The accuracy of normal skin at all scales are more than 90%, because the visual characteristics of normal skin are 
different from others. Therefore, CVI-classifier uses multiple concept classifier based on optimized features to 
yield the middle-level semantics.

The Performance of Scene Classifier.  In our experiments, we choose the concept classifier with best 
accuracy in the above 20 repeated trainings to classify all image patches for image representation. Since our 
dataset is small, we want to use as many samples as possible to explore meaningful patterns in scene classifier 
training. In order to guarantee the scene classifier’s generalization, after classifying the patches of all images using 
the selected concept classifier, we use 2/3 samples of our image dataset as training set and the remaining 1/3 
samples as testing set. Considering that the 2/3 patch samples are distributed in all images and the proportion of 
these samples is very small, the samples for training concept classifier is not as the same as for training scene clas-
sifier. The above scene classifier training is repeated 20 times, and the averages of accuracy, kappa and F1-score 
are utilized to evaluate the performance of scene classifier. After prior comparisons of multiple kernel functions 
(Gaussian kernel functions with different parameters and different-order polynomial kernel functions) and two 
multi-class classification strategies (one-vs-one and one-vs-all), we chose a linear kernel as the SVM classifier ker-
nel function, and adopt one-vs-one strategy to achieve multi-classes classification. As the category of image patch 
is related to its position, we count the concept occurrence frequency in the upper and lower part of the CVI image 
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Figure 1.  Performance comparisons of the two concept classifiers at different divided scale. (a) Accuracy 
comparisons of concept classifiers based on all features and ones based on selected features at each divided 
scale; (b) kappa coefficient comparisons of concept classifiers based on all features and ones based on selected 
features. (c) F1-score comparisons of concept classifiers based on all features and ones based on selected features 
at each divided scale.
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Figure 2.  The comparison of concepts accuracies at each divided scale. 1 - normal skin, 2 - reticular vein or 
telangiectasia, 3 - varicose veins, 4 - pigmentation or edema and 5 - vein ulcers.



www.nature.com/scientificreports/

5Scientific REPOrts |         (2018) 8:17952  | DOI:10.1038/s41598-018-36284-5

respectively as represented in Methods section. Finally, the global image representation is achieved by combining 
the region-wise image representation of each divided scale. The dimension of the new image representation is 45, 
including the COVs from whole image at all scales (3 × 5 = 15), and the COVs from the lower and upper image at 
all scales (3 × 10 = 30). Because of the training strategy mentioned above, the feature selection process is carried 
out for each repeated experiment. The comparison of the average accuracy and kappa coefficient of 20 times is 
displayed in Table 1. The confusion matrixes of 20 times are shown in Tables 2 and 3. The average number of 
selected features is 32, which is smaller than the dimension of original feature sets.

From the above results, we can conclude as follows. 1) the average accuracy is 90.92%, the average kappa 
coefficient is 0.8735, and the average F1-score is 0.9006 for determining the severity of CVI using the optimized 
feature subset. 2) For mild, moderate and severe category, the classification accuracy is increased by 1.91%, 2.90%, 
and 1.80% respectively when scene classifier uses optimized features. 3) The average number of selected features 
for 20 experiments is 32, which is smaller than the dimension of all features. Since the redundant and noisy fea-
tures are removed, the optimized feature subset leads to the better performance. In CVI-classifier, the classifica-
tion performance is improved by feature selection approach.

In order to verify the efficiency of CVI-classifier, we used the trained concept classifier and scene classifier to 
classify the 50 randomly selected images. The average times of image representation calculating, scene classifica-
tion at each divided scale are counted. The times of achieving middle-level image representations are 5.4493 sec-
onds for 15 × 15 scale, 5.6567 seconds for 25 × 25 scale, and 5.0736 seconds for 50 × 50 scale. Moreover, the 
average time of classifying images is 0.0081 seconds. In addition, we use MATLAB Parallel Computing Toolbox44 
to achieve multi-scale middle-level image representation. This parallel computation needs 5.802 seconds. That 
means if we use parallel computing to extract multi-scale image representation features on the server, the total 
computation time will be reduced by almost 2/3, which can satisfy the needs of mobile devices.

The Comparison with Other Method.  In this subsection, CVI-classifier is compared with the semantic 
modeling proposed in45 and the K-means clustering based multi-resolution bag-of-features model in41 to prove 
its better performance.

The semantic modeling in45 uses the grid with a fix size to divide image, while in CVI-classifier, the grids with 
several sizes are used to divide image. According to the basic idea of the semantic modeling, in Table 4, the scene 

Accuracy Kappa F1-core
Number of 
Features

Full Features 88.82% 0.8446 0.8773 45

Selected Features 90.92% 0.8735 0.9006 32

Table 1.  The Performance of Scene Classifier Based on Selected Features From Combined COVs.

Classification in %

mild moderate severe

true class

mild 92.14 7.38 0.48

moderate 8.16 81.84 10.00

severe 1.66 7.78 90.56

Table 2.  Confution Matrix Based On All Semantic Features For Scene Classifier.

Classification in %

mild moderate severe

true class

mild 94.05 5.24 0.71

moderate 6.58 84.74 8.68

severe 1.25 6.39 92.36

Table 3.  Confution Matrix Based On Optimized Features For Scene Classifier.

Symbol Accuracy Kappa F1-score

15*15 84.93% 0.7890 0.8288

25*25 83.88% 0.7747 0.8216

50*50 87.04% 0.8172 0.8542

Combined 90.92% 0.8735 0.9006

Table 4.  The Comparisons Of Classification Performance At Each divided Scale and The Combination Of All 
Divided Scales.
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classification results at each divided scale and the combination of all divided scales are reported. For fair compar-
ison, the same feature selection approach is adopted in all experiments.

From the above results, we can conclude as follows. 1) the classification results at each divided scale are differ-
ent, because the middle-level semantic features depend on the divided scale. 2)Although the best accuracy and 
kappa coefficient are 87.04% and 0.8172 at single divided scale, these results are lower than the ones based on the 
combination of all divided scales, since the combined middle-level features are more distinguishable, and can 
provide meaningful and useful information for scene classification.

In comparison with the method proposed by L. Zhou et al.41, we replace the concept classifier with K-means 
clustering method in CVI-classifier to generate the visual codebook. The numbers of cluster center are 5, 10, 
50, 100, 200, 300, 500 and 1000 respectively, and the classification result is shown in Fig. 3. The best result of 
the K-means based method is achieved with the cluster number of 500, and the accuracy, kappa and F1-score 
are 75.68%, 0.6376 and 0.7039 respectively. While the SVM-based method achieved 90.92%, 0.8735 and 0.9006 
respectively, and they are 15.24%, 0.2359 and 0.1967 higher than the best result from K-means-based method. 
The reason for this is that these local semantic annotations produced by supervised learning methods are more 
distinguishable for deciding the severity of CVI than the ones based on unsupervised learning approaches such 
as K-means clustering.

The Comparison with Doctors’ Judgments.  In order to validate our method, the results are compared 
with the judgements of a group consisting of 20 doctors who have prior knowledge about CVI (but not the images 
in our dataset). They have long been engaged in microcirculation clinical surgeons and belong to the group of 
varicose vein, Chinese Society of microcirculation. These 20 doctors made their choices only based on optical 
images, not including evidences from other diagnostic methods such as color ultrasonography of deep venous 
at lower extremities and venography of lower extremity. In the process of evaluation, there is no communication 
between the other 20 doctors and the 3 doctors who participated in image annotation, there is also no commu-
nication among 20 doctors In our experiments, the CVI images are randomly sorted, and each doctor provides 
the diagnostic results for CVI images independently. The average classification accuracy of the human group is 
calculated to evaluate their performance. The single category and overall classification accuracy of each approach 
are shown in Table 5. In addition, as shown in Fig. 4, we plot the ROC curve and compute its AUC (Area Under 
Curve) for each category for comparing the performances of 20 doctors and CVI-Classifier.

The accuracies of CVI-classifier and doctors are 90.92% and 81.81% respectively. Since CVI-classifier is based 
on quantitative indicators computed from objective image, the accuracies of CVI-classifier for mild, moderate 
and severe category are 94.05%, 84.74% and 92.36% respectively, which are 9.81%, 6.06% and 10.22% higher 
than the conclusions drawn by doctors. The classification performance of doctors is less than 100%, and these 
diagnoses are disagreement with actual ground truth labels, as these 20 doctors, which have different personal 
experiments and prior knowledge, only utilized optical images for diagnosis. However, compared with 20 doctors’ 
performance, CVI-classifier achieved a higher classification results due to the elimination of some subjective 
factors. To further analyze the performance of the classifier, we also compared the average of F1-score and the 
AUC for each class. The average F1-score of CVI-classifier is 0.9006, and is improved by 0.0955 compared with 20 
doctors. For each categories, the AUCs are 0.9488 for mild, 0.8882 for moderate and 0.9436 for severe. Compared 
with 20 doctors, the AUCs are improved by 0.0588 for mild, 0.0757 for moderate and 0.0608 for severe respec-
tively. These indicators show that CVI’s classification performance is superior.

To further illustrate the impact of physician subjective factors on classification, we present the confusion 
matrix of 20 doctors’ classification and some examples of misclassified images in Table 6. From this Table, we can 
see that 12.20% mild images are classified as moderate class, 14.92% moderate images are predicted as mild class, 
and 14.86% severe images are annotated as moderate class. Because each doctor have different comprehensions 
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Figure 3.  The comparisons of classification performance of CVI-classifier and the K-means based approach 
(k = 5, 10, 50, 100, 300, 500, 1000).

mild moderate severe overall F1-score_avg kappa

doctors 84.24% 78.68% 82.14% 81.81% 0.8051 0.7485

CVI-classifier 94.05% 84.74% 92.36% 90.92% 0.9006 0.8735

Table 5.  The Comparisons Of Classification Performance At Each divided Scale and The Combination Of All 
Divided Scales.
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for ‘reticular vein or telangiectasia’ and ‘varicose veins’, these two classes are misclassified by several doctors. For 
example in Fig. 5, the mild image in column one is classified as moderate class by 7 doctors, and the moderate 
image in column three is annotated as mild class by 9 doctors. Since changed colors, closed and active ulcers 
included in skin changes are often affected by conditions when the images are taken, doctors may not notice small 
ulcers or distinguish the changed color from the darker skin. For instance, the serious images in column 5 and 6 
are annotated as heavy class by 7 and 6 doctors, respectively. To further analyze these conflicts, we used Cohen’s 
kappa coefficients to calculate the inter-rater reliability between each doctor and the ground truth46. In addition, 
we also used the same approach to calculate the inter-rater reliability between the ground truth and the classifi-
cation results of CVI-classifier. The average, maximum and minimum value of Cohen’s kappa coefficients for 20 
doctors are 0.7232, 0.9151 and 0.3385 respectively. While the Cohen’s kappa coefficients between the ground truth 
and the classification results of CVI-classifier is 0.8580. Although this value is lower than doctors’ maximum, it is 
higher than doctors’ average. This comparison indicates that the performance of the classifier is within the vari-
ability of manual experts. Therefore, in order to reduce the above conflicts, CVI-classifier use computational and 
quantitative ways to find out the difference between several classes.

Discussion
In this study, we proposed an automatic classification approach for classifying CVI images to provide information 
on CVI’s severity. This automatic classification approach is based on multi-scale sematic modeling, in which the 
low-level image region features at several divided scales are mapped to middle-level semantic features which are 
used to predict CVI’s severity. In order to improve the classification performance, the high-order dependency 

Figure 4.  he ROC curves for all categories by doctors and CVI classifier.

Classification in %

mild moderate severe

true class

mild 84.24 12.20 3.56

moderate 14.92 78.68 6.40

severe 3.00 14.86 82.14

precision: 81.01 66.30 93.75

Table 6.  Confution Matrix Of 20 Doctors’ Classifiction Result For CVI Dataset.
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based feature selection approach is introduced in training the concept and scene classifiers. Experimental results 
show that CVI-classifier outperforms other methods, such as single semantic modeling, K-means clustering 
based multi-resolution bag of features model, and even doctors’ judgments (solely based on images), in terms of 
accuracy, kappa coefficient, F1-score, etc.

The advantages of CVI-classifier are objective and low-cost. It is not like the Villalta47 scoring system that rely 
on doctors’ assessments for various symptoms. CVI-classifier make decisions only based on objective informa-
tion. Compared with professional equipment such as ultrasonography, taking photos by mobile phone, pad and 
camera is low-cost. Furthermore, the requirements for taking photos including simple background, uniform 
illumination, and covering entire leg are easy to satisfy. In addition, CVI-classifier can automatically adjust the 
brightness and shallow of the photos. This is important for large-scale patients to use it.

CVI classifier is useful for patients and doctors. Patients with basic medical knowledge can get the medical 
advisory service from compute system. This can help patients to seek medical care in time. For doctors, the 
backend server automatically recommends the patients to doctors according to the severity though analyzing the 
uploading images by the patients in the big data era.

In the future, we will accelerate our approach using GPU-based parallel algorithm and introduce deep fea-
tures to the framework of CVI-classifier. We will also construct a large-scale CVI image database, and mine more 
information from images such as 3D information to achieved better classification. In addition, considering the 
importance of subjective assessment we will develop a fusion system that will combine objective and subjective 
aspects for CVI classification.

Methods
The basic idea of CVI-classifier is that a concept classifier is used to map local image features to middle-level 
semantic information48, and the annotation of global image as high-level semantic information is determined 
by scene classifier which is trained based on the meaningful middle semantic features. Considering the lesion 
size is an important basis for classification, multi-scale semantic modeling42 is introduced to extract meaningful 
middle-level semantic features which can describe image patches with different sizes properly. The flowchart of 
CVI-classifier is shown in Fig. 6. First, the pre-processing step including background remove and image nor-
malization is utilized to eliminate the influence of background and lighting on the classification results. Image 
background is removed manually, and image normalization is achieved by gray world algorithm49. In future, since 
our follow-up work is applied to mobile devices, we can use leg contours as mask to cut images when capturing 
leg images. This process can remove image background easily. Second, the CVI images are divided into patches by 
multi-scale grids. Third, for each divided scale, the concept classifier is used to map the region features of image 
patch to the middle-level semantic features. Next, the image representation based on the concept occurrence fre-
quency is calculated on each scale, and the image representations of all scales are concatenated as the multi-scale 
semantic model for final image representation. At last, scene classifier based on these multi-scale semantic fea-
tures50 is adopted to classify the CVI’s severity which includes mild, moderate and severe classes. In addition, 
in order to improve the classification performance, the concept classifier and scene classifier are trained using 
optimized features achieved by high-order relevance based feature selection approach51.

This study was approved by the ethics boards of Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao 
Tong University,and all experiments and methods were performed in accordance with the relevant guidelines and 
regulations of Chinese Society of Microcirculation. In addition, informed consent for participation was obtained 
from all participants or their relatives.

Semantic Modeling for CVI Image.  There may be more than one category of CVI in one lower limb 
image. In order to model this co-occurrence relationship, a semantic modeling approach based on local image 
patch is proposed45. This method contains three stages: concept selection, local region classification and global 
image representation. First, the concepts for semantic modeling are selected and notated in the image. The con-
cepts that we use include normal skin, reticular vein or telangiectasia, varicose veins, pigmentation or edema, 
and venous ulcers, which are labeled from 1 to 5 respectively. Second, in order to be independent on the largely 
varying quality of an automatic segmentation, lower limb image is divided into regular grids. Then, the concept 
classifier based on support vector machine (SVM) is trained using the patch features and notated concepts. At 

labeled mild moderate severe

mild 13 14 9 6 1 1

moderate 7 6 10 13 7 6

severe 0 0 1 1 12 13

image

Figure 5.  The number of doctors for predicting each severity category on some images.
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last, the concept-occurrence vector (COV) which is a normalized histogram of the concept occurrences in the 
image is computed as image representation. The flowchart of the semantic modeling process is shown in Fig. 7.

Medicals have found that 1) edema, skin changes or venous ulcers usually occur in ankle region, but may 
extend to leg and foot, 2) Spider veins often are found on thighs, 3) Varicose veins can be found on foot, the calf, 
the thigh or on the entire leg52. That’s to say, except the normal skin and varicose veins which may be found on 
the entire leg, other concepts can be divided into lower and upper groups according to the occurrence location. 
Therefore, in order to improve the discrimination, we divide the images in two and introduce region-wise image 
representation to reflect this phenomenon. An example for computing region-wise image representation is shown 
in Fig. 8. In this example, firstly, the CVI image is divided into upper and lower parts from the middle of image, 
which means that these two parts have same patches. Secondly, the concept distributions represented by concept 
occurrence frequency are calculated in upper and lower halves respectively. Thirdly, the COVs from upper half, 
lower half and whole region are concatenated as the fusion feature to represent original image. Since the concept 
distributions in upper half, lower half and whole region are various, the combined feature can reflect the image’s 
characteristics and is useful for classification.

Compared with Bag-of-Features methods21, our semantic model uses supervised learning algorithm for con-
structing the word dictionary. The advantages of semantic modeling are as follows: 1) by introducing the notated 
labels, the gap between the image understanding and the image representation is narrowed; 2) the dimension of 
the image representation vectors based on semantic modeling is lower than the one from the Bag-of-Features 
methods; 3) local information are collected in the COVs as the global representation.
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Figure 6.  The flowchart of CVI-classifier. The concept classifier is trained to map low-level image region 
features to middle level semantic features, and the scene classifier is trained based on semantic features to 
achieve high-level interpretations of the image content.
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Image Representation by Multi-Scale Semantic Modeling.  Multiple lesions with different sizes and 
different CVI categories may appear simultaneously in a CVI image. To get a proper description of region features 
in the image, the image should be divided into grids with appropriate grid size, otherwise, the extracted region 
features of image patches cannot represent the concepts whose sizes are significant different. Therefore, in order 
to extract distinguishable and proper region features which can reflect the characteristics of various concepts, the 
multi-scale semantic modeling for lower limb image is proposed. We believe that this model will lead to more 
accurate concept classification that can improve the image representation.

The basic idea of multi-scale semantic modeling for image representation is to concatenate the region-wise 
COVs at each divided scale. As shown in Fig. 9, this approach includes four steps: image divided by multi-scale 
grids, image patch features extracted and concept annotated manually, feature selection and concept classifier 
training, and the region-wise COVs computing and their combination for global image representation. In the 
first step, considering the importance of the proper size of the image patch for classifying specific CVI’s category, 
multiple grids with several sizes are used to divide the lower limb image. Based on the lesion size of different cat-
egories in CVI, 15 × 15, 25 × 25, and 50 × 50 grids are chosen for dividing.

In the second step, various types of region features are extracted to improve the representation of image 
patches. The kinds of region features include LBP (Local Binary Patterns)53, EHD (edge histogram descriptor)54, 
GLCM (gray-level co-occurrence matrix)55, the variance and mean of dense SIFT56 in the image block, the mean 
value of gradient57, the variance, median, and mean value of each channel in RGB and YCbCr color spaces58, and 
the contextual features of neighbor blocks59. In addition, due to the significant correlation between the lower 
limb CVI’s category and its position, the patch index is used as the patch feature. Compared with automatic 
feature extraction, the training sample concept is annotated manually. This annotated step consists of select-
ing concepts and professional annotation. The concepts of these training samples are defined in the subsection 
Semantic Modeling for CVI Image. In order to ensure the accuracy of labeling patch samples, these multi-scale 
image patches are labeled by three medical professionals of vascular surgery of Shanghai Sixth People’s Hospital 
affiliated to Shanghai Jiao Tong University. If the patch labels from three doctors are inconsistent, we adopt voting 
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Figure 8.  An example of computing the region-wise image representation. The image representation vector 
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Figure 9.  Image representation using multi-scale semantic modeling. The region-wise representation is 
computed at each divided scale, and the final image representation is denoted by the combination of region-wise 
representation at all divided scales.
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to make decisions. If two doctors’ opinions are the same, patch label is annotated based on their suggestions. For 
one patch, if the results of the three doctors are different from each other, we assign the label of its nearest patch.

In the third step, the concept classifier is trained to classify the patches of new samples. Considering the noisy 
features which reduce the relevance between the category and the features, and the redundant features which limit 
the generalization of the classifier, the optimized subsets of the region features are selected using a high-order 
relevance-based feature selection approach to improve prediction accuracy. Then, a multi-class SVM60 is trained 
to form the concept classifier.

In the final step, the global image representation is computed. Because of the correlation between CVI’s sever-
ity and its position, region-wise VOC is introduced for global image representation. The final image representa-
tion based on multiple scale semantic model is the combination of region-wise image representation at each 
divided scale. The combined image representation contains meaningful semantic information which is provided 
by the supervised labels from professional doctors. Moreover, these combined features involve local, global, and 

Figure 10.  The flowchart of the feature selection approach. The feature importance is evaluated using the 
combination of the class-conditional redundancy term, unconditional redundancy term, relevancy term and 
second-order interaction.
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multi-scale information which are introduced by image patches, the concept-occurrence frequency, and the mul-
tiple divided scales. Therefore, these combined features are more efficient and representative.

Feature Selection and Scene Classifier.  At each divided scale, the grid size does not match all CVI’s 
concepts. Therefore, some features in the combined features may be efficient, while others may be redundant. 
Moreover, due to the classification errors in classifying the image patches using the concept classifier automati-
cally, some features among these combined features may contain noises, and cannot provided sufficient discrim-
inative information. In order to remove these redundant and noisy features which reduce the classifier’s accuracy 
and generalization ability, we propose a high-order dependency based feature selection approach, which can take 
into account the relevancy and redundancy among several variables and the relevancy between the variables and 
the specific classification task.

This feature selection method (shown in Fig. 10) has three stages: entropy computing, feature importance 
evaluating and search strategy. First, joint entropy, conditional entropy and marginal entropy are computed based 
on joint, conditional, and marginal probabilities respectively. Since estimating these probabilities is very difficult, 
the fuzzy membership as alternative and the Luca–Termini entropy are used to calculate the joint fuzzy entropy, 
conditional fuzzy entropy and marginal fuzzy entropy61. Second, the feature significance is measured by the novel 
criterion based on the high-order dependencies which consider class-conditional redundancy term, uncondi-
tional redundancy term, relevancy term and second-order interaction51. Third, the forward search strategy is 
adopted to find an optimized feature subset62.

Then, the scene classifier is trained to determine the severity of CVI. Taking into account doctor’s treatments 
for CVI of different severity (for example, a mild patient does not need to handle or wear elastic stockings, a 
moderate patient needs simple surgery, and a severe patient needs complicated surgery), the mild, moderate and 
severe situations are used to label the global image. In this paper, mild class means that non-symptom or reticular 
vein or telangiectasia, moderate class denotes varicose vein, and severe class contains edema, eczema and venous 
ulcer. After obtaining an optimized feature subset for more efficient image representation, a multi-class SVM60 is 
trained for scene classification.

Data Availability
The image dataset and relevance labels can be downloaded from http://isyslab.info/CVI/CVI-img-datasets.zip 
and https://github.com/shiqiangdqq/CVI-classifier/tree/master/CVI-imgdatasets.
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