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Catalytic kinetic resolution of amines represents a longstanding challenge in chemical

synthesis. Here, we described a kinetic resolution of secondary amines through oxygenation

to produce enantiopure hydroxylamines involving N–O bond formation. The economic and

practical titanium-catalyzed asymmetric oxygenation with environmentally benign hydrogen

peroxide as oxidant is applicable to a range of racemic indolines with multiple stereocenters

and diverse substituent patterns in high efficiency with efficient chemoselectivity and

enantio-discrimination. Late-stage asymmetric oxygenation of bioactive molecules that are

otherwise difficult to synthesize was also explored.
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Enantiopure cyclic secondary amines are key constituents of
natural products, pharmaceuticals, and agricultural
chemicals1. Catalytic kinetic resolution (KR) of racemic

amines represents a practical and robust approach to access
optically pure targets, especially in cases where the racemates are
readily available and the enantiopure materials are not2–8, though
the theoretical yield of the expected optically pure target can
never exceed a limit of 50%9–11. The current nonenzymatic KR of
secondary amines predominantly relies on asymmetric N-acyla-
tion strategy involving N–C bond formation, which typically
requires the use of stoichiometric pre-prepared acylating agents
involving lengthy reagent synthesis (Fig. 1a)12–18. Development
of a catalytic KR of secondary amines based on other elementary
reaction bearing an economy-oriented mind-set would be highly
desirable.

Oxygen atom transfer (OAT) reaction is ubiquitous in biological
systems, organic synthesis, and industrial processes19–23. Current
asymmetric OAT studies predominantly focused on oxygenation
of alkenes and sulfides involving C–O and S–O bond
formation24–34. We envisioned that asymmetric OAT to secondary
amines to produce enantiopure hydroxylamines involving N–O
bond formation would be an ideal template for KR design based on
economical and environmental factors (Fig. 1b). However, asym-
metric OAT to amines has remained a formidable challenge35,36.
To the best of our knowledge, asymmetric oxygenation of sec-
ondary amines to produce hydroxylamines through either enzy-
matic or non-enzymatic catalysis has never been established to
date, which might be ascribed to three key challenges. First, the
inherent high reactivity of amines results in easy nonselective
oxygenation without the intervention by a catalyst. Second, com-
petitive dehydrogenation of secondary amines to imines usually
accompanies the expected OAT process37–39. Third, chirality in
hydroxylamine products could be facilely destroyed through fur-
ther oxidation to nitrones40. On the other hand, aqueous hydrogen
peroxide is a desirable oxidant from the viewpoints of atom effi-
ciency (48%), easy-to-handle, and ecological benignity32,41. Given
the significance of optically pure indolines in modern pharma-
cology, we herein report a titanium-catalyzed KR of indolines
using H2O2 as the oxidant through N–O bond formation. Late-

stage asymmetric oxygenation of bioactive molecules that are
otherwise difficult to synthesize was also explored.

Results
Reaction condition optimization. Initially, asymmetric oxyge-
nation of racemic indoline 1a was selected as a reference reaction
using aqueous H2O2 as the oxo-transfer agent to search for a
suitable chiral catalyst (Table 1). Chiral monomeric (salen)tita-
nium(IV) C1 exhibited no oxidation catalysis reactivity (entry 1).
We then explored dimeric metallosalen complex as catalyst.
Delightedly, di-μ-oxo titanium(salen) C2 effected the expected
asymmetric oxygenation, though poor chiral recognition and
notable over-oxidation were observed (entry 2). The substituent
patterns on 1,2-ethanediamine proved to be crucial to catalytic
reactivity and asymmetric induction. Replacing the 1,2-cyclo-
hexanediamine moiety in C2 with 1,2-diphenylethylenediamine
one (C3) significantly reduced the oxidation catalytic reactivity
(entry 3). Di-μ-oxo titanium(salalen) C4 was prepared by redu-
cing one of the process (entry 4). Displacing the phenyl group on
salicylaldehydes with other two imine bonds of C2, was beneficial
for suppressing undesired over-oxidation substituents afforded
inferior results, which prompted us to introduce another chiral
element at C3 site of the basal salalen ligand to enhance the
enantio-differentiating ability of the catalyst. The “hybrid” tita-
nium(salalen) C5 bearing a (Ra)-binaphthyl unit on the imine
side was not an effective catalyst (entry 5). Promising chiral
recognition was observed when di-μ-oxo titanium(salalen) cata-
lyst C6 bearing two (Ra)-binaphthyl units on both amine and
imine sides were used (entry 6). The absolute configuration of
(R)-1a was assigned to be R by comparing the optical rotation
and HPLC analysis with reported data. See the Supplementary
Information for details. Reversing the absolute configuration of
1,2-cyclohexanediamine in catalyst C7 provided a mismatch
recognition (entry 7). Extensive optimization of the solvent
identified CHCl3 to be optimal (entries 8–10). The level of chiral
discrimination was further enhanced by lowering the loading of
titanium(salalen) C6 from 2.5 mol % to 1.0 mol %, though a
slightly prolonged time period was required (entry 11).

a) Asymmetric acylation strategy via N-C bond formation (Fu, Hou, Bode, Kozlowski)
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Fig. 1 Overview of KR of cyclic secondary amines. a Asymmetric acylation strategy via N–C bond formation. b Asymmetric oxygenation strategy via N–O
bond formation.
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Asymmetric oxygenation of indolines bearing one stereocenter.
The scope of di-μ-oxo titanium(salalen)-catalyzed asymmetric
oxygenation of racemic indolines was explored (Fig. 2)40. Sub-
strates 1a-1k bearing a wide range of electronically varied aryl
and heteroaryl groups at C2 position with different substituent
patterns proceeded with excellent chemoselectivity and chiral
recognition (Fig. 2a). Indolines 1l-1s bearing diverse C2-alkyl
substituents were suitable components with excellent selectivity
factors (Fig. 2b). Diverse functional groups including phenyl
motif (1o and 1p), silyl ether (1q), carboxylic acid ester (1r), and
terminal alkyne (1s) were tolerated as additional functional
handle. Spirocyclic 1r and 1s containing the variant of the
geminal disubstitution at C3-position were also tolerated (Fig. 2c).
Simple indoline 1t without C3-substituent was competent sub-
strate, though the oxidized hydroxylamine 2t was unstable and
underwent decomposition during purification probably due to the
existence of reactive benzylic C3–H bonds.

The substituent effects on the indoline arene were then
investigated (Fig. 3). A range of electron-withdrawing and

-donating substituents at either C4, C5, or C6 position of substrates
4a–4j were tolerated with high level of chiral discrimination (Fig. 3).
Bromo (4a–4c), chloro (4d), and fluoro (4e) substituents were
compatible with the oxidation system for further diversification.

Scope of indolines bearing two stereocenters. The success in
asymmetric oxygenation of racemic indolines bearing one ste-
reocenter prompted us to further investigate the tolerance of
substrates bearing two stereocenters (Fig. 4)42–47. Enantio-
differentiating oxygenation of trans-2,3-trisubstituted indoline
rac-6a bearing C3 quaternary chiral center proceeded smoothly,
providing (2R, 3S)-6a in 46% yield with 88% ee together with
hydroxylamine (2S, 3R)-7a in 45% yield with 93% ee (s= 81).
Cis-2,3-trisubstituted indoline rac-6b was also compatible with
the asymmetric oxygenation conditions (s= 46). Common
functional groups at the C3 quaternary center, like aryl (6c-6f)
and cyano (6f and 6g), were well tolerated with good selectivity
factors of 49–87. Cyclohexane-fused indolines, key structural
motifs in a number of Aspidosperma alkaloids, were competent

Table 1 Reaction condition optimizationa.

Entry Cat. t (h) Yield (%)b

1a/2a/3
ee (%)c

(R)-1a/(S)-2a
sd

1 C1 24 > 95/< 5/
< 5

n.d. n.d.

2 C2 12 44/23/27 35/30 2.5
3 C3 24 > 95/< 5/

< 5
n.a. n.a.

4 C4 1 48/32/13 43/45 3.9
5 C5 24 58/16/20 35/54 4.7
6 C6 8 49/35/10 74/76 16
7 C7 12 78/9/8 7/30 2
8e C6 12 67/17/9 37/90 28
9f C6 12 51/36/9 65/75 14
10g C6 4 47/43/5 94/89 60
11g,h C6 6 47/45/3 92/92 79

aReaction condition: rac-1a (0.1 mmol), 30% aqueous H2O2 (0.1 mmol), and catalyst (2.5 mol %) in CH2Cl2 (1.0 mL) at rt for indicated time period, unless otherwise noted. bYield of isolated product.
cDetermined by HPLC analysis on a chiral stationary phase. dSelectivity (s) values were calculated through the equation s= ln[(1 ‒ C)(1 ‒ ee1a)]/ln[(1 ‒ C)(1+ ee1a)], where C is the conversion; C= ee1a/
(ee1a+ ee2a). eEthyl acetate as solvent. fCH3CN as solvent. gCHCl3 as solvent. h1 mol % of C6 used.
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substrates, as demonstrated by effective enantio-differentiating
oxygenation of rac-6h and 6i48–50. Trans-2,3-disubstituted
indoline rac-6j participated in asymmetric oxygenation, and (2S,
3S)-6j was recovered in 42% yield with 84% ee. Due to the
existence of reactive benzylic C3–H bond, the oxidized hydro-
xylamine 7j was not stable under the oxidation conditions, and
was further oxidized to several unexpected compounds (see
the Supplementary Information for details)51.

Synthetic applications. The synthetic utilities of the method were
next examined (Fig. 5). The optically pure recovered indolines
and oxidized hydroxylamines can undergo interconversion with
the ee highly conserved. Hydroxylamine (S)-2a was reduced to
(S)-1a in the presence of Zn and AcOH (Fig. 5a). The absolute
configuration of (S)-2a was assigned to be S by HPLC analysis of
the reduction product (S)-1a. See the Supplementary Information
for details. Indoline (R)-1a was selectively oxidized to
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Fig. 2 Asymmetric oxygenation of racemic C2-substituted indolines. Conditions: rac-1 (0.1 mmol), 30% aqueous H2O2 (0.1 mmol), and C6 (1 mol %) in
CHCl3 (1.0mL) at rt for indicated time period. aReaction with 2.0 equiv of aqueous H2O2 at 0 °C.
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for indicated time period.
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Fig. 4 Scope of indolines bearing two stereocenters. Conditions: rac-6 (0.1 mmol), 30% aqueous H2O2 (0.1 mmol), and C6 (1 mol %) in CHCl3 (1.0mL) at
rt for indicated time period. aReaction with 2.0 equiv of aqueous H2O2 at 0 °C.
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hydroxylamine (R)-1a in 92% yield when the combination of
racemic titanium(salalen) C4 and aqueous H2O2 was employed
(Fig. 5b). Severe over-oxidation to nitrone was observed when
common oxidants such as 3-chloroperoxybenzoic acid (mCPBA),
NaWO4/H2O2, and methyltrioxorhenium (MTO)/H2O2, were
used. The reaction in a gram-scale proceeded without obvious

loss of enantioselectivity (Fig. 5c). The late-stage enantio-differ-
entiating oxygenation advanced intermediates of bioactive
molecules that would be otherwise difficult to access was further
explored. Trans-2,3-trisubstituted indoline 8 was identified as a
potent and selective inhibitor of the histone lysine demethylases
KDM2A/7A (Fig. 5d)52. Under the standard conditions, rac-9
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differentiating oxygenation intermediates of KDM2A/7A. e Late-stage enantio-differentiating oxygenation intermediates of GnRH antagonists.
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participated in the asymmetric oxygenation reaction, furnishing
(2R, 3R)-9 in 45% yield with 96% ee together with (2S, 3S)-10 in
47% yield with 91% ee (s= 85) (Fig. 5d). C2-Cyclopropane-sub-
stituted indoline 11 was discovered as a general pharmacophore
for gonadotropin-releasing hormone (GnRH) antagonists
(Fig. 5e)53. Asymmetric oxidation of rac-12 proved to be rela-
tively sluggish, and when 2.0 equiv of aqueous H2O2 was used,
(R)-12 was recovered in 49% yield with 83% ee (s= 23) together
with over-oxidized nitrone 13 in 45% yield (Fig. 5e).

Discussion
To get a preliminary understanding of the catalysis role of tita-
nium(salalen) C6 in asymmetric oxygenation of indolines, con-
version (%) of rac-1a was plotted against time (min) for reaction
under standard conditions and that with pre-mixed catalyst and
H2O2, respectively (Fig. 6A). For the standard reaction, conver-
sion followed a sigmoidal curve, and an induction period of about
30 min was observed. Such induction period was not observed in
the reaction using pre-mixed C6 and H2O2, suggesting that the
generation of the real active species for oxygenation reaction is a
slow process. Moreover, the latter reaction exhibited an apparent
steady-state regime, resulting in linear ln([SS]/[SS]0) vs. time
dependence (Fig. 6B).

Control experiments were performed to further understand the
identity of the generated species by mixing C6 with H2O2. The
relationship between the excesses of 2a and the catalyst C6 was
investigated, and a positive nonlinear relationship was observed,
suggesting the possible intervention of a dimeric complex
(Fig. 6C)54,55. ESI mass-spectrometry analysis of the mixture of di-
μ-oxo titanium(salalen) C6 and 30% aqueous H2O2 after 30min
showed the peak of 1797.6, which is equal to [MC6+O+H]+,
implying the formation of a μ-oxo-μ-peroxo species S (Fig. 7a)56.
However, a lower intensity of this peak was observed for mixing
C6 and H2O2 after 15min, implying that the formation of Smight
be a slow process. No reaction was observed when mixing one
equiv of S with rac-1a (Fig. 7b). However, the addition of aqueous
hydrogen peroxide rendered S catalytically active with comparable
results to C6 (Fig. 7c). These results clearly indicate that S is
neither the real active species nor a dead-end species but an active
intermediate. Crossover experiments involving two different cat-
alysts C4 and C6 were next performed. Mass spectra analysis of
equivalent C4 and C6 in the presence of 30% aqueous H2O2

showed the peak of 1445.5, which is equal to [MC4/2+MC6/2+
O+H]+, suggesting the generation of a crossover dimerization
peroxo complex (Fig. 7d). No such peak was detected during the
mass spectra analysis of the mixture of C4 and C6 in the absence
of H2O2 (Fig. 7e). These observations indicated that a disassembly

Fig. 6 Mechanistic studies. A Kinetic plots for the oxygenation of rac-1a with C6/H2O2. B ln([SS]/[SS]0) versus time dependences for the oxygenation of
(S)-1a. [SS]0= [(S)-1a]0= 0.05M, [SS]= [(S)-1a] ≈ [0.5 – C][rac-1a]0, [rac-1a]0= 0.1 M, conversion = C= (ee1a)/(ee1a+ ee2a). C Plot of the
enantiomeric excess of 2a versus the enantiomeric excess of C6 at 50% conversion. The dotted line symbolizes the linear correlation. D Hammett plot of
log(kX/kH) vs σ for the competitive oxidation of C5-substituted indolines by C6/H2O2.
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and reassembly process might occur after the formation of μ-oxo-
μ-peroxo species S. We envisioned that the real active species
involved in the catalytic cycle might be the disassembled mono-
meric peroxo Ti(salalen) complex57.

Asymmetric oxygenation of racemic indolines with various
kinds of C5-substituents (X) on indoline arene were performed
and the reaction rates were dependent on the electronic effects of
the substituents (see the Supplementary Information for
details)58,59. The Hammett plot (log(kX/kH) versus σ) for the
competitive oxidation of 1a and respective variants was exhibited
in Fig. 6D. The observed plot displayed linear correlation with a ρ
value of −1.347 (R2= 0.99). Good linearity suggests that the
oxidation proceeds through a single mechanism. The negative
value of ρ indicates a positive charge build-up on nitrogen in the
transition state60. The use of Hammett parameter σ+ gave a

relatively poorer correlation (R2= 0.97, see the Supplementary
Information for details). These data are consistent with a con-
certed mechanism, in which an electrophilic active oxygen species
might be directly attacked by a nucleophilic nitrogen61.

Based on the above studies and literature survey, a plausible
mechanistic pathway for asymmetric oxygenation of racemic
indolines was suggested (Fig. 8). Treating di-μ-oxo titanium(sal-
alen) C6 with hydrogen peroxide gave μ-oxo-μ-peroxo species S,
which is the incubation period for the oxygenation process. In the
presence of hydrogen peroxide, relatively stable S underwent a
disassembly process providing monomeric peroxo Ti(salalen)
complex 14, which was proposed to be the real active species
involved in the catalytic cycle62,63. The asymmetric nucleophilic
attack of the nitrogen of indoline rac-1a onto electrophilic oxygen
of chiral complex 14 through 15 generated complex 16. 16
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O O
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Fig. 7 Control experiments of titanium(salalen) catalyst with aqueous H2O2. a ESI-MS analysis of the mixture of C6 and H2O2. b The oxidation reactivity
of stoichiometric S without H2O2. c The oxidation catalysis reactivity of S with H2O2. d ESI-MS analysis of the mixture of C4, C6, and H2O2. e ESI-MS
analysis of the mixture of C4 and C6 without H2O2.
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reacted with hydrogen peroxide providing hydroxylamine 2a
together with 14 for the catalytic cycle. According to the absolute
configuration of recovered indolines, we envisioned that amine
(S)-1a was oxidized more preferentially than (R)-1a, and there-
fore unreacted (R)-1a was isolated with high enantioselectivity.

The stereochemical induction model was suggested in Fig. 9.
The structure of monomeric peroxo Ti(salalen) complex 14 is
proposed based on the crystal structure of di-μ-oxo titanium
(salalen) C664,63. The quadrant diagrams elaborate the origins of
the chiral recognition. The steric repulsion between two (R)-
binaphthyl unites and indoline 1a prevents the nucleophilic
attack of the nitrogen from the third and fourth quadrants. In
addition, locating the less sterically demanding phenyl moiety of
indoline skeleton in the first quadrant is preferred to avoid the
steric repulsion between the (R)-binaphthyl unite and the α-
substituent of 1a. The transition state TS2 for (R)-1a has obvious
steric repulsion between the α-phenyl substituent of indoline with
the cyclohexane moiety of salalen ligand. Such steric repulsion is
absent in the transition state TS1 for (S)-1a. Therefore, (S)-1a was
oxidized more preferentially than (R)-1a, and unreacted (R)-1a
was recovered with high enantioselectivity.

In summary, an oxidative KR of secondary amines based on
N–O bond formation is reported. The practical titanium(salalen)
catalyzed asymmetric oxygenation with environmentally benign

hydrogen peroxide as oxidant is applicable to a range of indolines
with multiple stereocenters and diverse substituent patterns in
high efficiency with efficient chemoselectivity and enantio-
discrimination. Late-stage asymmetric oxygenation of bioactive
molecules that are otherwise difficult to synthesize was further
explored. The KR of secondary amines based on N–O bond
formation described herein represents an advance in the field of
asymmetric oxidation.

Methods
General procedure. To a solution of racemic indoline (0.1 mmol, 1.0 eq) in CHCl3
(1.0 mL) was added 30% aqueous hydrogen peroxide (0.1 mmol, 10 μL, 1.0 eq) and
C6 (0.001 mmol, 1.8 mg, 1 mmol %) at room temperature. The reaction was vig-
orously stirred for 4–12 h. Then the mixture was diluted with CH2Cl2 (20 mL),
washed with water (10 mL), dried over MgSO4, filtered, and concentrated. The
residue was purified by silica gel chromatography (EtOAc/petroleum ether) to give
the desired product.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information files. Extra data are available from
the corresponding author upon request.
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