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Abstract
Background Obesity is associated with physiological changes that can affect drug pharmacokinetics. Obese individuals are 
underrepresented in clinical trials, leading to a lack of evidence-based dosing recommendations for many drugs. Physiologi-
cally based pharmacokinetic (PBPK) modelling can overcome this limitation but necessitates a detailed description of the 
population characteristics under investigation.
Objective The purpose of this study was to develop and verify a repository of the current anatomical, physiological, and 
biological data of obese individuals, including population variability, to inform a PBPK framework.
Methods A systematic literature search was performed to collate anatomical, physiological, and biological parameters for 
obese individuals. Multiple regression analyses were used to derive mathematical equations describing the continuous effect 
of body mass index (BMI) within the range 18.5–60 kg/m2 on system parameters.
Results In total, 209 studies were included in the database. The literature reported mostly BMI-related changes in organ 
weight, whereas data on blood flow and biological parameters (i.e. enzyme abundance) were sparse, and hence physiologi-
cally plausible assumptions were made when needed. The developed obese population was implemented in  Matlab® and 
the predicted system parameters obtained from 1000 virtual individuals were in agreement with observed data from an 
independent validation obese population. Our analysis indicates that a threefold increase in BMI, from 20 to 60 kg/m2, leads 
to an increase in cardiac output (50%), liver weight (100%), kidney weight (60%), both the kidney and liver absolute blood 
flows (50%), and in total adipose blood flow (160%).
Conclusion The developed repository provides an updated description of a population with a BMI from 18.5 to 60 kg/m2 
using continuous physiological changes and their variability for each system parameter. It is a tool that can be implemented 
in PBPK models to simulate drug pharmacokinetics in obese individuals.
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Key Points 

This repository provides an extensive collection of 
anatomical, physiological, and biological parameters of 
a White obese population up to a body mass index of 
60 kg/m2.

The equations and population variability derived for each 
parameter can be used to inform a physiologically based 
pharmacokinetic framework.

This repository can be used in future work to fill gaps in 
pharmacological research questions related to obesity, 
such as drug pharmacokinetics and drug–drug interac-
tions.

1 Introduction

Obesity is a disease characterized by an abnormal or exces-
sive fat accumulation and commonly defined by a body mass 
index (BMI) ≥ 30 kg/m2 [1]. In 2016, almost 40% of the 
adult world population was overweight (i.e. BMI 25–29.9 
kg/m2) and 13% were obese, with the latest publications 
showing that these percentages are continuously rising [1]. 
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Worldwide obesity is an important healthcare problem that 
has been associated with numerous comorbidities (i.e. car-
diovascular diseases, type 2 diabetes mellitus, respiratory 
dysfunction, cancer, non-alcoholic liver disease) and an 
increased risk of mortality [2, 3].

Obesity is also linked to anatomical, physiological and 
biological remodelling, which can lead to changes in drug 
pharmacokinetics. For instance, a greater volume of distri-
bution is related to increased adipose tissue and lean mass; 
different metabolism is linked to greater hepatic blood flow, 
increased liver weight, and alteration of enzyme abundance; 
and higher excretion is connected to a greater glomerular 
filtration rate (GFR) and renal blood flow [4]. Obese sub-
jects are underrepresented in clinical studies, leading to a 
lack of information supporting dose selection in this special 
population. Thus, to ensure safe and efficacious treatments, 
it is important to evaluate the effect of physiological changes 
related to obesity on pharmacokinetics. Physiologically 
based pharmacokinetic (PBPK) modelling makes use of 
prior knowledge on system and drug parameters to simulate 
virtual clinical trials, which can fill the existing knowledge 
gaps and provide a better understanding of drug disposition 
in obese subjects.

A comprehensive description of the system parameters 
of the population of interest is necessary to inform a PBPK 
model. More often, all these anatomical, physiological and 
biological parameters are gathered from literature into vast 
repositories [5, 6], and for obese subjects, only one has 
been previously published [7]. This database gives a good 
description of the most important system parameters; how-
ever, it does not report continuous physiological changes and 
their corresponding variability. Furthermore, recent findings 
on key parameters are missing. Hence, the objective of this 
study was to develop and verify a comprehensive database 
of White obese individuals, including population variability 
on system parameters and continuous functions describing 
physiological parameters of interest for a BMI up to 60 kg/
m2.

2  Methods

2.1  Data Source

A systematic literature search was performed using both the 
PubMed and Google Scholar databases without any restric-
tions on language or date of publication. Anatomical, physi-
ological and biological parameters of interest were searched 
combining three keywords: the first related to obesity (e.g., 
‘obese’, ‘obesity’, ‘BMI’, ‘overweight’), the second was 
specific to the organ or parameter (e.g., ‘kidney’, ‘renal’, 
‘albumin’), and the last specifed the type of parameter 
(e.g., ‘weight’, ‘volume’, ‘blood flow’, ‘hemodynamics’). 

The studies issued from the literature search were screened 
and included in the final analysis if they met the following 
inclusion criteria: (1) adult individuals aged between 20 and 
50 years; (2) predominantly White; (3) BMI > 18.5 kg/m2; 
and (4) concurrent comorbidity had to be mild or deemed 
unlikely to affect the parameter of interest. The reference 
list of the identified articles was further screened to find 
additional references.

2.2  Data Extraction

Data were generally taken from tables or the Results sec-
tion of articles. In addition, GetData Graph  Digitizer® was 
used to extract numerical values that were reported graphi-
cally. Organ weights were kindly provided from previously 
published works, by Dr. Michaud, Department of Foren-
sic Medicine, University of Geneva, Switzerland [8]; Dr. 
Ahn, Department of Applied Mathematics and Statistics, 
Stony Brook University, US [9]; Dr.Brodsky, Department of 
Pathology, Ohio State University, US [10]; and Dr. Fritsch, 
Department of Pathology and Laboratory Medicine, Univer-
sity of Wisconsin-Madison, US [11]. Furthermore, cardiac 
output data were kindly provided by Dr. Dini, Cardiovascu-
lar and Thoracic Department, University of Pisa, Italy [12], 
while GFR data were kindly provided by Dr. Chew-Harris, 
Department of Medicine, University of Otago, New Zea-
land [13] and Dr. Navis, Department of Internal Medicine, 
Division of Nephrology, University Medical Center Gronin-
gen, The Netherlands [14, 15]. Organ data were sometimes 
expressed as volumes, in which case they were transformed 
into organ weight based on their relative density [16]. For 
each study, mean and standard deviation (SD) were col-
lected; if the measure of dispersion was reported as median, 
minimum, and maximum, then the value was converted fol-
lowing the approach of Hozo et al., however if the inter-
quartile range was given then the method reported by Wan 
et al. was applied [17, 18]. Data collected were subsequently 
divided into a development and verification dataset. A study 
was included in the development dataset when the most 
important anthropometric parameters (sex, age, height, and 
weight) as well as the parameter of interest were published, 
otherwise the study was added to the verification dataset. In 
the case of several rich-data studies, these were randomly 
separated between the development and verification datasets.

When covariates were missing, these were estimated 
using our derived equations, as done by Williams and Leg-
gett [19]; primary covariates, such as anthropometric vari-
ables, were derived only for the verification dataset, while 
secondary covariates, such as cardiac output or adipose tis-
sue weight, were also derived for the development dataset. 
The body surface area (BSA) was calculated according to 
the Ashby–Thompson equation (not using the mostly com-
monly used DuBois and DuBois equation) because it was 
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developed using a new technology (three-dimensional pho-
tonic scanner), a richer dataset (268 vs. 9 individuals) and 
wider BMI range (17.8–77.8 vs. 15.3–41.5 kg/m2), and the 
authors found it improved the BSA prediction in individuals 
with a BMI ≥ 40 [20].

2.3  Data Analysis

Mathematical functions were derived for each parameter of 
interest by the mean of weighted linear regression. Linear, 
polynomial and exponential functions were tested to find the 
equation that best described the parameter trend. Generally, 
the regression was performed using sex, age, weight, height, 
BMI, and BSA as covariates; however, additional covari-
ates were tested if an effect on the parameter of interest was 
described in the literature (e.g., relationship between blood 
volume and adipose tissue weight). Covariates were consid-
ered significant when their p value was lower than 0.01. To 
select the best fitted function, we used visual and numeric 
diagnostics (R2 and Akaike’s information criterion) together 
with physiological plausibility. The developed equations 
were implemented in a  Matlab® script and were used to gen-
erate the virtual population parameter values [21]. The first 
validation consisted of visually comparing the prediction of 
1000 males and females with a BMI ranging from 18.5 to 
60 kg/m2 against the independent verification dataset, while 
the second validation consisted of verifying that the sum of 
organ weights and blood flows did not exceed body weight 
and cardiac output. The observed parameters’ variability, 
expressed as coefficient of variance (CV), was initially esti-
mated as the sum of the covariates’ variability; however, if 
the CV was not fully captured, an additional random vari-
ability with normal distribution was added. The latter was 
calculated as the observed CV minus the predicted CV, 
except for the gonads and the pancreas, where the CV was 
derived from the work of Giwercman et al. [22] and de la 
Grandmaison et al. [23], respectively. For some parameters, 
the data were heteroscedastic, however since the increased 
variability at a higher BMI was overall well-predicted by the 
variability of the dependent variables, a fixed CV was used 
rather than a CV depending on BMI (Figs. 1, 2, 3, 4, 5, 6).     

3  Results

Overall, 346 articles were screened, of which 209 met the 
inclusion criteria and were included in the analysis. Stud-
ies were excluded from the analysis if the patients’ age and 
BMI were outside the accepted range, if the most important 
anthropometric data such as weight or BMI were missing, 
and if the patients had comorbidities impacting the parame-
ter of interest. Information regarding organ weights, obtained 

from autopsies or magnetic resonance imaging (MRI), were 
generally available in the literature, while measurements of 
regional blood flow and biological parameters, which require 
more sophisticated methodologies, were limited. Most of 
the collected parameters were measured in individuals with 
a BMI up to 60 kg/m2 (as shown in Figs. 1, 2, 3, 4, 5, 6), 
leaving a knowledge gap for higher BMI values. Table 1 lists 
the derived equations for each organ and the corresponding 
population variability expressed as CV.

3.1  Body Composition

Body composition data were obtained from the National 
Health and Nutrition Examination Survey (NHANES) data-
base [24]. Values collected from 1999 to 2018, using dual 
energy X-ray absorptiometry (DEXA), were analysed and a 
total of 3620 data points were selected and randomly divided 
into development and verification datasets. Following the 
approach of Kyle et al. [25], the fat mass and fat-free mass 
were normalized by the square of body height and converted 
into fat mass index (FMI) and fat-free mass index (FFMI). 
It was found that, for the same BMI, FFMI was higher in 
males compared with females, and vice versa for FMI, con-
sistent with previous data showing sex differences in body 
composition (Fig. 1a, b) [26]. Further details regarding the 
changes in total body water (TBW) and tissue composition 
are given in Sect. 3.13.

3.2  Adipose Tissue

3.2.1  Adipose Tissue Weight

The adipose tissue weight was derived from the FMI, which 
was calculated as the difference between BMI and FFMI. 
The accuracy of the prediction was verified against data 
from the NHANES database [24]. The adipose tissue weight 
was found to increase linearly with BMI, with women having 
higher adipose tissue weight compared with men with the 
same BMI. The difference in adipose tissue weight between 
the two sexes halved from 6 to 3.2 kg when changing from 
a BMI of 20 kg/m2 to a BMI of 60 kg/m2 (Fig. 2a). Overall, 
the percentage of adipose tissue doubled from 20% in indi-
viduals with a BMI of 20 kg/m2 to 45.5% in individuals with 
a BMI of 60 kg/m2.

3.2.2  Adipose Tissue Blood Flow

Only a few studies measured the adipose tissue blood flow 
in obese individuals. The methods used by the authors to 
quantify the blood flow were 133Xe, 85Kr or 15O-labelled 
water. Eight of the studies, reporting on data from a total of 
173 subjects, were used as the development dataset [27–34], 
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while the remaining six studies, including a total of 139 
individuals, composed the verification dataset [35–41]. The 
data analysis found that the absolute adipose tissue blood 
flow (expressed as mL/min/100 g) was lower in obese com-
pared with lean individuals, confirming a lower perfusion of 
the adipose tissue. However, the total adipose tissue blood 
flow was found to be 160% higher in obese individuals with 
a BMI of 60 kg/m2 compared with lean individuals with a 
BMI of 20 kg/m2, explained by the greater adipose tissue 
mass (Fig. 2b).

3.3  Liver

3.3.1  Liver Weight

The main organ responsible for drug metabolism is the liver, 
and accurately predicting its weight is critical for in vitro-
in vivo extrapolation. The data from a total of 1937 sub-
jects were collected and used as the development dataset 
[9, 10, 23, 42–47]. The goodness of the equation, derived 
from the regression, was compared against the verification 
dataset composed of 164 data points [11, 48, 49]. In males 

Fig. 1  Fat-free mass index (a) 
and fat mass index (b) relative 
to BMI. The blue, red and black 
lines represent the predicted 
mean of virtual male individu-
als, virtual female individuals 
and from all virtual subjects, 
respectively. The area within the 
two dashed lines represents the 
99% normal range. Asterisks 
represent observed data from 
the development and circles rep-
resent observed data from the 
independent verification dataset. 
Male and female data points are 
represented in light blue and 
pink, respectively. BMI body 
mass index
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Fig. 2  Adipose tissue weight (a) 
and adipose tissue blood flow 
(b) relative to BMI. The blue, 
red and black lines represent 
the predicted mean of virtual 
male individuals, virtual female 
individuals and from all virtual 
subjects, respectively. The area 
within the two dashed lines rep-
resents the 99% normal range. 
Asterisks represent observed 
data from the development and 
circles represent observed data 
from the independent verifica-
tion dataset. Male, female and 
mixed-sex data points are rep-
resented in light blue, pink and 
black, respectively. Datapoints 
with multiple individuals are 
represented as mean ± SD. BMI 
body mass index, SD standard 
deviation
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and females with a BMI of 20 kg/m2, the liver weight was 
1.7 kg and 1.4 kg, respectively, and increased to a weight of 
3.6 kg and 3.0 kg, respectively, in individuals with a BMI 
of 60 kg/m2 (Fig. 3a). It is known from the literature that 
there is a strong association between obesity and steatosis, 
with percentages in the severely obese ranging from 85 to 

98% [50, 51]. Furthermore, additional studies showed that 
the liver fat content can be as much as 40% of the total liver 
weight [52, 53]. Thus, it is important to emphasize that a 
higher liver mass does not coincide with higher metabolic 
active liver parenchyma.

Fig. 3  Liver weight (a) and 
liver blood flow (b) relative to 
BMI. The blue, red and black 
lines represent the predicted 
mean of virtual male individu-
als, virtual female individuals 
and from all virtual subjects, 
respectively. The area within 
the two dashed lines repre-
sents the 99% normal range. 
Asterisks represent observed 
data from the development and 
circles represent observed data 
from the independent verifica-
tion dataset. Male, female and 
mixed-sex data points are rep-
resented in light blue, pink and 
black, respectively. Datapoints 
with multiple individuals are 
represented as mean ± SD. BMI 
body mass index, SD standard 
deviation
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Fig. 4.  Kidney weight (a), kidney blood flow (b), and GFR (c) rel-
ative to BMI. The blue, red and black lines represent the predicted 
mean of virtual male individuals, virtual female individuals and from 
all virtual subjects, respectively. The area within the two dashed lines 
represents the 99% normal range. Asterisks represent observed data 
from the development and circles represent observed data from the 

independent verification dataset. Male, female and mixed-sex data 
points are represented in light blue, pink and black, respectively. 
Datapoints with multiple individuals are represented as mean ± SD. 
BMI body mass index, GFR glomerular filtration rate, SD standard 
deviation
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Fig. 5.  Blood weight versus body weight (a), α1-acid glycoprotein 
(b), and albumin (c) relative to BMI. The blue, red and black lines 
represent the predicted mean of virtual male individuals, virtual 
female individuals and from all virtual subjects, respectively. The 
area within the two dashed lines represents the 99% normal range. 
Asterisks represent observed data from the development and circles 

represent observed data from the independent verification dataset. 
Male, female and mixed-sex data points are represented in light blue, 
pink and black, respectively. Datapoints with multiple individuals are 
represented as mean ± SD. BMI body mass index, SD standard devia-
tion
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Fig. 6  Heart weight (a), heart blood flow (b), and cardiac output (c) 
relative to BMI. The blue, red and black lines represent the predicted 
mean of virtual male individuals, virtual female individuals and from 
all virtual subjects, respectively. The area within the two dashed lines 
represent the 99% normal range. Asterisks represent observed data 

from the development and circles represent observed data from the 
independent verification dataset. Male, female and mixed-sex data 
points are represented in light blue, pink and black, respectively. 
Datapoints with multiple individuals are represented as mean ± SD. 
BMI body mass index, SD standard deviation
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Table 1  Descriptive equations and population variability for anatomical, physiological, and biological parameters necessary to inform a physi-
ologically based pharmacokinetic model 

Parameter Unit Descriptive equation CV (%)

BMI kg/m2 Random uniform distribution

FFMI kg/m2 30.86 − 3.09 × Sex − 0.13 × Body height + 0.14 × Body weight 8.58
FMI kg/m2 FFMI − BMI

Body height cm −0.0039 × Age2 + 0.238 × Age − 12.5 × Sex + 176 3.8

Body weight kg BMI × (Body height∕100)2

Lungs weight kg −2.16 + 0.02 × Body height 18.38
Adipose weight kg FMI × (Body height∕100)2

Lean body weight kg Body weight − Adipose weight

Bone weight kg −9.5 + 0.1 × Body height + 0.03 × Body weight − 0.023 × Adipose weight precentage 5.78
Brain weight kg e(−0.00075×Age+0.0078×Body height−0.97) 9

Gonads weight kg 0.039 − 0.028 × Sex 17.78
Heart weight kg 0.037 + 0.0012 × Age + 0.0049 × Lean body weight 9.32
Kidneys weight kg −0.11 − 0.48 × Sex + 0.003 × Age + 0.18 × BSA 13.15
Muscle weight kg 1.4 − 1.53 × Sex − 0.051 × Age + 0.5 × Lean body weight 2.96
Skin weight kg BSA × (2.07 − 0.11 × Sex) × 1.05 13.37
Thymus weight kg 0.0027 + 0.0002 × Body weight 32.64
Stomach weight kg 0.257 22.5
SIL cm 136.86−8.09×Sex+0.87×Age+2.93×Body height+0.29×Body weight−91.2

1.09

17.7

Jejunum weight kg SIL×0.4×�×2.43×0.15×1.04

1000

Ileum weight kg SIL×0.6×�×1.92×0.15×1.04

1000

Duodenum weight kg (Jejunum weight + Ileum weight) ×
0.042

0.958

LIL cm 0.52 × Body height + 18.5 11.26
Large intestine weight kg LIL×�×4×0.25×1.04

1000

Gut weight kg Stomach weight + Jejunum weight + Ileum weight + Duodenum weight + Large intestine weight

Spleen weight kg e(−3.46−0.017×Sex+0.93×BSA) 36.71

Pancreas weight kg 0.089 − 0.02 × Sex + 0.0023 × BMI 23.27
Liver weight kg 0.36 + 0.023 × Lean body weight + 0.01 × Adipose weight 17.49
Blood weight kg 2.58 + 0.057 × Body weight − 0.061 × Adipose weight percentage 9.08
HR Beats/min Truncated normal distribution, mu = 80, sigma = 13.2, min = 60, max = 100

EDV mL/beat 43.13 + 12.96 × Blood weight 8.05
EF – 0.65 − 0.0018 × BMI

CO L/min HR × EDV × EF∕1000

Adipose blood flow % of CO exp(2.50−0.043×BMI+0.033×Adipose weight)

Bone blood flow % of CO 5

Brain blood flow % of CO BMI < 25 = 12 and BMI ≥ 25 = 12 − 0.13 × (BMI − 25)

Gonads blood flow % of CO −0.03 × Sex + 0.05

Heart blood flow % of CO 3.41 + 0.29 × Sex + 0.11 × BMI

Kidneys blood flow % of CO 20.57 − 1.76 × Sex

Muscle blood flow % of CO e(3.01−0.22×Sex−0.012×BMI)

Skin blood flow % of CO 5.68 − 0.034 × BMI

Thymus blood flow % of CO 1.5

Gut blood flow % of CO (18.52 + 3.04 × Sex) − (0.20 + 0.06 × Sex) × BMI + (0.0009 + 0.0004 × Sex) × BMI2

Spleen blood flow % of CO 3

Pancreas blood flow % of CO 5.18 − 0.95 × BSA

Liver blood flow % of CO 25.53 + 1.30 × Sex

Albumin g/L 47.58 − 0.16 × BMI 7.2
AAG g/L 0.48 + 0.012 × BMI 25.39
Haematocrit – 0.45 − 0.04 × Sex 6.8
GFR mL/min 13.02 − 0.51 × Age + 0.93 × Adipose weight percentage + 93.56 × Kidneys blood flow 0
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3.3.2  Liver Blood Flow

The literature search yielded 11 studies examining liver 
blood flow in a total of 336 individuals (Fig. 3b) [33, 54–63]. 
The analysis showed that the liver blood flow relative to car-
diac output remains constant across BMI values, but when 
expressed as an absolute value, it increases up to 50% in an 
obese individual with a BMI of 60 kg/m2 in comparison with 
an individual with a BMI of 20 kg/m2.

3.3.3  In vitro‑in vivo Extrapolation Factors

In vitro-in vivo extrapolation factors are critical physiologi-
cal parameters that are used in PBPK modelling to scale 
in vitro data to human. Microsomal proteins per gram liver 
(MPPGL), hepatocytes per gram liver (HPGL), or homogen-
ate proteins per gram liver (HomPPGL) are essential hepatic 
scaling factors needed to extrapolate human clearance. 
Unfortunately, no information on how obesity affects these 
scaling factors is available in literature. It is known that BMI 
is strongly correlated with fatty liver infiltration, a medical 
condition called steatosis that can vary from simple non-
alcoholic fatty liver disease (NAFLD) without inflammation 
to non-alcoholic steatohepatitis (NASH) with active hepatic 
inflammation [64–67]. Considering that in obese subjects 
a substantial part of the liver is only accumulated fat and 
therefore not all the liver volume is metabolically active, 
using MPPGL, HPGL and HomPPGL values derived from 
biopsies of healthy-weight individuals could result in an 
overprediction of clearance. Sinha et al. proposed scaling 
in vitro clearance values using only the volume of metabolic 
active liver, also called lean liver volume (LLV) [68, 69]. 
We applied the same approach and calculated the LLV by 
subtracting from the predicted liver volume the fat fraction, 
which was derived from the correlation plot between liver 
volume and fat content reported in the study by Hedderich 
et al. [52].

3.3.4  Hepatic Enzyme and Transporter Activity

Only a few studies describing the cytochrome P450 (CYP) 
enzyme abundance and activity in obese subjects were avail-
able in the literature. Two studies looked at the impact of 
obesity on CYP3A4 expression and found that both BMI 
and liver fat content have a negative impact on enzyme abun-
dance, leading to lower levels in both liver and intestine [70, 
71]. Krogstad et al. investigated the ex vivo activities of 

several CYP enzymes using biopsies obtained from patients 
with a wide range of body weights. The authors found that 
only hepatic CYP3A activity was significantly negatively 
correlated to body weight, while CYP2B6, CYP2C8, 
CYP2D6, CYP2C9, CYP2C19 and CYP1A2 activities were 
not [72]. The decrease in CYP3A4 abundance was obtained 
from the slope of the correlation plot between BMI and 
CYP3A4 expression published by Ulvestad et al. [70].

Clinical studies showed that clearance of CYP2E1 sub-
strates is higher in the obese, however it is unclear which 
parameter is driving this pharmacokinetic change as activity 
or expression data are lacking [73, 74].

Some uridine 5′-diphosphate-glucuronosyltranferases 
(UGT) substrates, such as acetaminophen, oxazepam and 
lorazepam, have been studied in vivo and the results of the 
clinical trials show a higher clearance in obese compared 
with non-obese individuals [75]. These findings are in agree-
ment with ex vivo UGT expression values in mouse [76], 
however in vitro data showing a positive correlation between 
body weight and UGT protein abundance in humans are 
missing.

One study examined the effect of obesity on human 
hepatic uptake transporters. Organic anion transporting pol-
ypeptides (OATP) 1B1, OATP1B3 and OATP2B1, as well 
as the sodium-dependent uptake transporter, were studied 
in a cohort of individuals with different body weights and 
only the abundance of OATP1B1 was found to decrease with 
body weight, while the others remained unchanged [77].

3.4  Kidney

3.4.1  Kidney Weight

The kidney weight equation was derived using data from 
1451 subjects collected from six studies [9, 10, 45, 47, 78, 
79], and validated against an additional dataset of 168 sub-
jects (Fig. 4a) [11, 48, 49]. Overall, kidney weight increased 
in both sexes by 17.5% per every 10 BMI bands, up to a BMI 
of 35 kg/m2, after which the increase was about 8%.

3.4.2  Kidney Blood Flow

Obesity does alter renal function. While organ weight 
increases across BMI values, the number of glomeruli does 
not, leading to greater glomerular size and planar surface 
area. These structural changes occur together with haemody-
namic alterations such as higher plasma blood flow and GFR 

Table 1  (continued)
Blood flows are relative to cardiac output. Virtual individuals with a BMI ranging from 18.5 to 60 kg/m2 can be generated
AAG  α1-acid glycoprotein, BMI body mass index, BSA body surface area, CO cardiac output, CV coefficient of variation, EDV end diastolic 
volume, EF ejection fraction, FFMI fat-free mass index, FMI fat mass index, GFR glomerular filtration rate, HR heart rate, LIL large intestine 
length, Sex 0 = male, 1 = female, SIL small intestine length
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[80]. Based on the data collected from 18 studies describing 
the changes in renal blood flow [15, 58, 59, 61, 62, 81–93], 
we found that absolute kidney blood flow positively corre-
lates with BMI (Fig. 4b), while blood flow relative to cardiac 
output remains constant at around 20% in males and 18.5% 
in females.

3.4.3  Glomerular Filtration Rate

The GFR is an important parameter with a key role for the 
passive elimination of drugs. GFR can be calculated using 
creatinine-based equations, such as the Cockcroft–Gault for-
mula or the Modification of Diet in Renal Disease (MDRD) 
equation, but their predictivity is biased in the obese due to 
higher urine creatinine excretion [94]. For this reason, only 
data derived using Tc-DTPA and 125I-iothalamate were con-
sidered for both the development [15] and validation data-
sets [95, 96]. In healthy-weight male and female individuals, 
GFR was found to be 119 and 107 mL/min, respectively, 
increasing up to 145 and 130 mL/min, respectively, in obese 
individuals, and reaching 166 and 145 mL/min, respectively, 
in the morbidly obese (Fig. 4c).

3.5  Blood

3.5.1  Blood Weight

Obesity is linked to an increase in lean body weight and 
adipose tissue weight, which translates into higher meta-
bolic demand, resulting in greater blood volume (Fig. 5a) 
[97]. Even if the absolute blood volume is higher in obese 
subjects, the ratio between blood volume and body weight 
does not remain constant but decreases. This is explained 
by the fact that adipose tissue is not highly perfused and 
therefore requires less blood than the lean mass. Analysis 
of the blood volume data compiled from the literature [61, 
98–105] resulted in a positive correlation with total body 
weight, with morbidly obese patients with a BMI of 60 kg/
m2 having twice the amount of blood compared with a lean 
subject with a BMI of 20 kg/m2. Additionally, in agreement 
with previous observations, we found that the increase in 
blood weight became less prominent at higher adipose tissue 
percentages [104].

3.5.2  Haematocrit

Haematocrit was evaluated using a dataset of 764 individu-
als, with the analysis resulting in sex being the only signifi-
cant covariate [84, 98–102, 106–108]. Males had a mean 
haematocrit of 0.45, while females had a mean haematocrit 
of 0.41.

3.5.3  Plasma Protein Concentration

α-Acidic glycoprotein (AAG) levels of 455 individuals with 
different grades of obesity were collected from 12 studies 
and were subsequently analysed [109–121]. AAG concentra-
tions increased from 0.73 to 1.01 g/L in healthy-weight indi-
viduals compared with morbidly obese subjects (Fig. 5b).

A negative correlation was found between albumin con-
centration and BMI, with a constant decline of about 0.41% 
at each BMI value (Fig. 5c) [109–114, 117, 122–130].

3.6  Heart

3.6.1  Heart Weight

Higher blood volume and cardiac output in obese subjects 
are the main causes leading to heart hypertrophy (Fig. 6a) 
[131, 132]. We investigated the change in heart weight 
across BMI values by analysing the data of 1203 subjects 
collected from four published studies [8, 9, 133, 134] and 
found that age and lean body weight were the two covariates 
that best described the increase in heart weight. In morbidly 
obese individuals, the heart reached a weight of 0.55 kg, 
85% heavier than in a subject with a BMI of 20 kg/m2.

3.6.2  Heart Blood Flow

Data from 499 subjects and 11 different scientific articles 
were gathered from the literature [135–145]. Both absolute 
and relative values of heart blood flow were increased in 
obese subjects compared with lean-weight subjects. The lat-
ter changed from 5.9% in healthy-weight individuals to 7.3% 
in obese individuals (Fig. 6b).

3.6.3  Cardiac Output

Cardiac output represents the volume of blood pumped by 
the heart per unit of time. It is calculated as the product 
of end diastolic volume, ejection fraction, and heart rate. 
Data from Dini et al. [12] were analysed as the develop-
ment dataset and subsequently compared against data from 
another 15 studies [9, 61, 97, 105, 146–156]. Heart rate was 
found to not change with obesity in accordance with other 
studies [132]. Furthermore, end diastolic volume increased 
proportionally to blood volume, while ejection fraction 
decreased slightly across BMI values. Multiplication of the 
three parameters leads to an increase in cardiac output of 
about 10% every 10 BMI bands, starting from 5.1 L/min in 
healthy-weight subjects to 5.9 L/min in obese individuals, 
and up to 7.5 L/min in morbidly obese individuals with a 
BMI of 60 kg/m2 (Fig. 6c).
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3.7  Gastrointestinal Tract

3.7.1  Gastrointestinal Tract Weight

Only one study compared stomach weight between lean and 
obese individuals, with the authors of that study reporting 
no differences between the two groups [157]. With regard to 
small and large intestine weight, no information was avail-
able in the literature. Studies regarding small bowel length 
were conducted but controversial conclusions were found. 
Despite this, the latest studies performed with more subjects 
found no correlations between intestinal length and body 
weight [158, 159]. Small bowel length was derived using 
the equation proposed by Tacchino et al. [159], while large 
bowel length was obtained using the equation proposed by 
the ICRP [16]. Intestinal weight was then calculated assum-
ing that the intestine has a cylindrical shape and using intes-
tinal length, diameter and thickness data [160, 161].

3.7.2  Gastrointestinal Blood Flow

Small intestine blood flow was found to not increase with 
obesity [162, 163], therefore absolute blood flow was kept 
constant across BMI values. No data regarding obese stom-
ach and colon blood flows are currently available in the lit-
erature, therefore the absolute blood flow was assumed to not 
change across BMI values as for the small intestine.

3.7.3  Gastric pH

Only a few studies investigated the change in gastric pH. 
Two studies found the obese group to have a slightly lower 
gastric pH compared with the lean group (median values 
were 2.3 vs. 2.8, and 1.3 vs. 3.7, respectively) [164, 165], 
while a third study reported no difference (1.69 vs. 1.65) 
[166]. However, when comparing their results with gastric 
pH in young healthy volunteers measured in other studies 
(median values 1.72 and 1.45), we found no correlation with 
BMI [167–169] and therefore used the same gastric pH in 
lean subjects as in obese individuals.

3.7.4  Gastrointestinal Transit Time

Gastric and small bowel transit times have been studied over 
the years using different methods and a variety of test meals, 
leading to conflicting conclusions. Some articles reported a 
faster transit time [170, 171], while others reported a similar 
transit time [172–177], and some even reported a delayed 
transit time [178, 179], in obese compared with lean indi-
viduals. However, more recent papers all point to the same 
conclusions, i.e. both gastric transit time and small bowel 
transit time are similar between the two groups [172–174].

3.7.5  Passive Permeability

Passive permeability was reported to be higher in obese indi-
viduals [180], however the method used to investigate the 
change was based on urine excretion of orally administered 
mannitol and lactulose without correction for the obesity-
dependent increase in GFR. Therefore, it is not clear whether 
the higher concentration of mannitol and lactulose in urine 
are related to higher absorption or higher excretion.

3.8  Brain Weight and Blood Flow

Obesity can cause a small reduction in brain volume. One 
study observed an up to 2.4% reduction in grey matter vol-
ume in obese patients [181, 182]. Unfortunately, data gath-
ered from the literature were insufficient to derive a descrip-
tive equation, therefore the equation from Stader et al. [5] 
was taken and verified against the data of Young et al. [9]. 
On the other hand, only one study examined brain blood 
flow in obese individuals and it was found to decrease by 
0.34 mL/100 g/min per BMI [183].

3.9  Muscle

3.9.1  Muscle Weight

The total skeletal muscle weight was calculated from the 
DEXA instrument data obtained from the NHANES data-
base [24], following the approach proposed by Kim et al. 
[184]. A total of 3620 data points were analysed and com-
pared against 413 MRI data [185]. The increase in muscle 
weight was about 24.7% for each 10 BMI units, up to a BMI 
of 40 kg/m2, and 13.8% afterwards.

3.9.2  Muscle Blood Flow

Eleven studies investigated muscle blood flow in healthy 
and obese individuals, and a total of 361 data points were 
used for deriving the descriptive function [28, 41, 186–194]. 
The analysis revealed a decrease in blood flow relative to 
cardiac output, from 15.7 and 12.6% in healthy-weight males 
and females, respectively, to 13.4 and 10.7% in obese sub-
jects and up to 11.9 and 9.5% in morbidly obese individuals, 
respectively.

3.10  Skeleton Weight and Blood Flow

The skeleton weight equation was derived from the body 
bone mineral content data gathered from the NHANES 
database [24] and verified against dissected skeleton weight 
data [195]. In accordance with the study by Dolan et al., 
skeleton weight increased proportionally with body height 
and body weight but decreased with higher percentages of 
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adipose mass [196]. On average, skeleton weight was 11 
and 22% heavier in obese and morbidly obese individuals, 
respectively. No information regarding the effect of obesity 
on bone blood flow was available in the literature, therefore 
we assumed it was identical to the healthy population [5] and 
constant across BMI values.

3.11  Skin Weight and Blood Flow

Data on skin weight in obese individuals were lacking in 
the literature, therefore we took the equation suggested by 
Kerr [197] and compared it against a small dataset of 49 sub-
jects aged between 22 and 94 years (we also included elderly 
patients since only a few data were available and they were 
not used for the development of the equation) [198]. Due to 
the lack of data on skin blood flow, we used the data meas-
ured in a wide cohort of Tunisian women; however, since the 
data were expressed as arbitrary units rather than mL/100 g/
min, we applied the same slope to the calculated absolute 
blood flow, assuming no difference in slope between Cau-
casian and Berber populations [199, 200].

3.12  Other Organs

Additional organs were studied, with the following informa-
tion being identified. Spleen weight increased from about 
0.19 and 0.15 kg, in lean males and females, respectively, 
to 0.35 and 0.26 kg, respectively, in the morbidly obese 
[9–11, 23, 49]. Pancreas weight, which was derived using 
data from two studies, was found to increase about 1.2% 
at each BMI value [23, 201]. Lungs weight was constant 
across the BMI—on average, 1.38 kg in males and 1.14 kg 
in females [9–11, 23, 45, 78]. Only one study examined the 
change of thymus weight across body weight and reported a 
positive correlation between the two [202]. Data describing 
the weight change of gonads in obese subjects were miss-
ing from the literature and therefore it was assumed to be 
constant across body weights [16, 22].

Only two studies looked at pancreas blood flow in obese 
versus lean individuals and found that pancreas perfusion 
is lower in obese subjects [203, 204]. Calculation of pan-
creas blood flow is actually a novelty since it is derived from 
human data and not taken from the ICRP [16], which refers 
to the paper by Williams and Leggett, where they extrapo-
lated pancreas blood flow from animal data [19].

Unfortunately, blood flow data were not available in the 
literature for spleen, thymus, and gonads and they were 
therefore assumed to be constant across BMI values.

Information regarding the weight of the lymphatic system 
in obese subjects was lacking. However, on the other hand, 
several studies showed that obesity can have a negative effect 
on the functionality of the lymphatic system [205]. In obese 
subjects, there was a reduction of about 30% in the capacity 

of the lymphatic system in removing macromolecules from 
adipose tissue [31].

Figure 7a, b provide an overall picture of how body com-
position, expressed as a percentage of organ weight, and 
organ haemodynamics, expressed as a percentage of car-
diac output, change up to a BMI of 60 kg/m2 in the general 
population.

3.13  Tissue Composition

To correctly estimate the partition coefficients of a drug, and 
thereby the volume of distribution, detailed information on 
tissue composition is essential. In the literature, informa-
tion on lipid and protein fractions for each organ across dif-
ferent BMI values were missing; however, we found a few 
studies analysing the changes in TBW, extracellular body 
water (EBW), and intracellular body water (IBW) in obese 
subjects [88, 206–224]. The absolute TBW was found to 
increase with BMI (Fig. 8), but when normalized by body 
weight, obese subjects had a lower ratio compared with 
healthy-weight subjects. To verify the ability of the model 
to predict body water distribution, we multiplied the tissue 
composition factors [225] by the tissue volumes and com-
pared the results against the literature data. By keeping the 
tissue composition factors constant across BMI values, TBW 
and IBW resulted in an overprediction, while EBW did not. 
We therefore adjusted the fractions by lowering the IBW 
by 0.52% for each BMI and increasing the neutral lipids by 
0.52% for each BMI.

4  Discussion

PBPK modelling is increasingly used to investigate drug 
pharmacokinetics in special populations; thus, it is critical 
to develop repositories including anatomical, physiological, 
and biological parameters to inform PBPK frameworks and 
subsequently simulate drug disposition for the correspond-
ing population.

A repository describing obese physiology was published 
by Ghobadi et al. in 2011 [7]; however since then, new data 
on anatomical, physiological, and biological parameters 
have been published. Additionally, in the previous work, the 
authors created two separate populations, one for the obese 
and one for the morbidly obese, therefore the continuous 
effect of obesity on parameters was not evaluated. Hence, we 
aimed to provide an updated repository on the physiological 
changes induced by different levels of obesity, together with 
continuous equations and their corresponding physiological 
variabilities, in order to predict system parameters within a 
BMI range of 18.5–60 kg/m2.

Our analysis shows that obesity leads to a series of ana-
tomical, physiological, and biological changes, some of 
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which are more relevant than others since they occur in 
organs responsible for drug elimination (liver and kidney) 
or absorption (gut), or in tissues critical for drug distribu-
tion (adipose and skeletal muscle tissues). The effects of 
obesity on the liver were found to be higher liver weight and 
absolute liver blood flow, lower MPPGL and HPGL, and 
decreased CYP3A4 enzyme abundance. Similarly, obesity 
resulted in higher kidney weight and greater absolute renal 
blood flow as well as GFR. These changes lead to higher 
renal excretion, as previously reported for drugs eliminated 
primarily by the kidneys [4]. In the long run, these changes 
may lead to the development of chronic kidney disease in 
some obese individuals [226]. Another effect of obesity 
impacting drug disposition is the increase in volume of dis-
tribution and half-life [227, 228]. This can be explained by 
the increase in adipose and skeletal muscle tissue, and lower 
blood perfusion of the adipose tissue; they act as reservoirs 
where the drug can initially accumulate and then release 
slowly over time. Another important parameter that influ-
ences drug distribution is tissue composition. We found that 
IBW was overpredicted by using constant tissue composition 

factors, meaning that the fraction of IBW decreases at a 
higher BMI while lipid fraction in the cells tends to increase, 
as happens for the adipose tissue and the liver [229, 230]. 
However, studies investigating how each organ composition 
changes across different BMI values were not available in 
the literature.

Overall, rich datasets were available for almost all organ 
weights and for adipose, liver, and muscle blood flow; 
however, there was a paucity of data for organ weight and 
organ blood flow above BMI values of 60 and 40 kg/m2, 
respectively. We therefore decided to stop the validity of the 
equations at a BMI of 60 kg/m2. Additionally, it may not be 
useful to go beyond a BMI of 60 kg/m2 since clinical trials 
in this subpopulation are difficult to find. For some param-
eters, limited information across the whole BMI range were 
reported in the literature. In particular, no data were availa-
ble for MPPGL, HPGL, or HomPPGL, which are key param-
eters necessary to accurately perform the in vitro-in vivo 
calculations; even information on the abundance of enzymes 
and transporters were limited and sometimes contradictory. 
However, we filled these gaps by making physiologically 
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plausible assumptions (e.g. to overcome the lack of MPPGL, 
HPGL, or HomPPGL in obese subjects, we kept their values 
constant and scaled them using only LLV. Overall, the popu-
lation is robust up to a BMI of 40 kg/m2 and less robust with 
a BMI between 40 and 60 kg/m2 due to extrapolation of the 
organ blood flow (Figs. 1, 2, 3, 4, 5, 6).

Nowadays, the obese population represents about 13% of 
the worldwide population, and even if this represents a large 
proportion of individuals, clinical information on drug dos-
ing, pharmacokinetics, or drug–drug interactions magnitude 
in this special population are still missing. This relates to 
the fact that obese individuals are often underrepresented in 
clinical trials. The current repository provides an updated 
description of the physiology of an obese population with 
a BMI up to 60 kg/m2 by using continuous functions and 
physiologic variability for each parameter. It can be imple-
mented in current PBPK models, enabling pharmacometri-
cians to simulate difficult clinical scenarios in this special 
population and thereby filling the existing knowledge gaps 
around the magnitude of individualized drug therapy, drug 
disposition, and drug–drug interactions.

5  Conclusions

The developed repository provides up-to-date data on the 
anatomical, physiological, and biological changes induced 
by obesity. It highlights areas where knowledge gaps still 
exist and where further research is needed. Nonetheless, the 
derived continuous equations and the corresponding popu-
lation variability in subjects with a BMI up to 60 kg/m2 
provide a good description of several key system parameters. 
Finally, this database is a valuable tool that can be added to 
existing PBPK models to investigate the pharmacokinetics 
and support informed decision making regarding optimal 
dosing regimens in this special population.
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