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Abstract

Fe(III)-rich deposits referred to as “iron mounds” develop when Fe(II)-rich acid mine drain-

age (AMD) emerges at the terrestrial surface, and aeration of the fluids induces oxidation of

Fe(II), with subsequent precipitation of Fe(III) phases. As Fe(III) phases accumulate in

these systems, O2 gradients may develop in the sediments and influence the distributions

and extents of aerobic and anaerobic microbiological Fe metabolism, and in turn the solubil-

ity of Fe. To determine how intrusion of O2 into iron mound sediments influences microbial

community composition and Fe metabolism, we incubated samples of these sediments in a

column format. O2 was only supplied through the top of the columns, and microbiological,

geochemical, and electrochemical changes at discrete depths were determined with time.

Despite the development of dramatic gradients in dissolved Fe(II) concentrations, indicating

Fe(II) oxidation in shallower portions and Fe(III) reduction in the deeper portions, microbial

communities varied little with depth, suggesting the metabolic versatility of organisms in the

sediments with respect to Fe metabolism. Additionally, the availability of O2 in shallow por-

tions of the sediments influenced Fe metabolism in deeper, O2-free sediments. Total poten-

tial (EH + self-potential) measurements at discrete depths in the columns indicated that Fe

transformations and electron transfer processes were occurring through the sediments and

could explain the impact of O2 on Fe metabolism past where it penetrates into the sedi-

ments. This work shows that O2 availability (or lack of it) minimally influences microbial com-

munities, but influences microbial activities beyond its penetration depth in AMD-derived Fe

(III) rich sediments. Our results indicate that O2 can modulate Fe redox state and solubility

in larger volumes of iron mound sediments than only those directly exposed to O2.
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Introduction

Centuries of coal extraction in the Appalachian region of the United States has left a legacy of

acid mine drainage (AMD), which remains the region’s greatest threat to surface water quality

[1]. The major environmental damage caused by AMD occurs when the anoxic, acidic, and Fe

(II)-rich fluid enters oxic, circumneutral streams, whereupon the higher pH enhances the oxi-

dation of Fe(II) and precipitation of Fe(III) phases, which smother stream substrates and limit

the development of robust stream ecosystems (e.g. algae, macroinvertebrates, fish; [2–4]). As

such, removal of dissolved Fe(II) is the most pressing objective in AMD treatment and stream

restoration activities [5]. In some cases, AMD flows as a 0.5–1 cm sheet over the terrestrial sur-

face, resulting in aeration of the fluid and enhanced activities of Fe(II) oxidizing bacteria

(FeOB; [6–11]). Continuous flow of AMD and sustained Fe(II) oxidation gives rise to massive

Fe(III) (hydr)oxide deposits that are referred to as “iron mounds” or “iron terraces,” and can

grow to thicknesses of meters [6, 7, 12]. While these iron mounds damage the soil and surficial

systems that they cover, they may also be exploited for the treatment of AMD [6–11]. Under

this scenario, the iron mounds represent iron removal systems, whereby the activities of FeOB

induce oxidative removal of Fe from the AMD before the water enters nearby streams [6–11].

Notably, the iron mounds that we have encountered arise with little or no human intervention,

suggesting that constructed iron mounds could serve as inexpensive and sustainable

approaches to AMD treatment.

As these iron mounds grow upward, FeOB are buried in the Fe(III) (hydr)oxide phases that

they produce. The dynamics of iron mound development lead to the continuous upward

movement of the air-water interface, and the potential development of anoxic portions of the

iron mound [12, 13]. We have noted unusual dynamics of Fe(II) oxidation and Fe(III) reduc-

tion in iron mounds, where Fe(III) reduction appears to occur in the presence of abundant O2,

while Fe(II) oxidation might occur under conditions of severe O2 depletion [12, 14]. This

observation may be at least partially attributable to the metabolic versatility of the acidophilic

Fe-metabolizing microorganisms that inhabit the iron mounds, which are capable of Fe(II)

oxidation and Fe(III) reduction (e.g. [15–18]). Indeed, the microbial communities associated

with the iron mounds are remarkably uniform with depth [12]. Anaerobic activities in these

iron mounds are important, because they represent a mechanism for remobilization of Fe that

had been previously oxidatively precipitated—an undesirable process in the context of AMD

treatment [13]. However, the distributions of anaerobic activities have proven to be difficult to

predict, given their (at least partial) independence from O2 availability.

To assess relationships between O2 availability and Fe(III) reduction and microbial com-

munity dynamics associated with aerobic and anaerobic processes in an iron mound setting,

we incubated initially homogenized sediments from an iron mound in North Lima, OH

(referred to as the Mushroom Farm) in a column format. During these incubations we

assessed Fe(II) oxidation and Fe(III) reduction, as well as the associated electrochemical signa-

tures at discrete depths over the course of incubation in the columns. At the conclusion of the

incubations, the extents of O2 penetration into the columns was assessed, and the microbial

community composition at various depths within the columns was determined.

Materials and methods

Sediment collection and processing

Sediments were collected from an iron mound that developed in the sheet flow area at the

Mushroom Farm in North Lima, OH with permission from Northeast Oklahoma A&M Col-

lege [12, 19]. Samples were collected from the top 10 cm of the iron mound sediments using
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alcohol-sterilized shovels and transferred to glass jars, which were sealed for transport to The

University of Akron. Sediments not immediately used were refrigerated in the dark until use.

All sediments were prepared for incubations by first washing them with filter-sterilized syn-

thetic acid mine drainage (SAMD) that contains 5 mM FeSO4, 5 mM CaSO4, 1 mM Na2SO4,

0.5 mM Al2(SO4)3, 0.4 mM MnSO4, and 0.1 mM (NH4)2Fe(SO4)2 [6]. To deactivate microbio-

logical activity for control sediment incubations, iron mound sediments were suspended in

SAMD with 3% formaldehyde [6] and incubated for 12 hours. These sediments were then

washed three times with sterile SAMD to remove excess formaldehyde. The sterility of the sed-

iments was determined by spreading the sediment-SAMD suspension on solid WAYE

medium [20]. Plates were incubated in the dark at room temperature and routinely examined

for growth over a period of three weeks. No growth was observed, indicating that the formal-

dehyde treatment effectively deactivated the sediment-associated microorganisms. After initial

preparation, sediments were packed into columns as described below.

Column construction and incubation setup

Columns were constructed using clear polycarbonate tubing (internal diameter = 5.1 cm),

with ports drilled down the side of the tubing. The ports were sealed using a 1/8” strip of rub-

ber packing on the interior of the column tube and 100% silicone sealant on the exterior. Each

column was sealed at the bottom using a #11 black rubber stopper and wrapped with polyeth-

ylene tape. Prior to packing, columns were sterilized by autoclaving. Columns were packed

with non-sterile or biologically deactivated sediment to a height of 108–115 mm (approxi-

mately 330 g wet sediment), and covered with 10 mm of SAMD, to mimic the water overlying

the iron mound. No exogenous organic carbon was added to the sediments. Columns were

conducted in triplicate and covered loosely with foil during incubation. When necessary, over-

lying SAMD was replenished with sterile deionized water to account for water lost to evapora-

tion. Columns for anoxic incubations were carried out in duplicate sealed at the top with a

rubber stopper, and the headspace was flushed with N2.

Sampling protocol and analytical techniques

Total potential (TP) measurements were collected by inserting 13 mm x 27G Pt-Ir sub-dermal

needle electrodes (Technomed-Europe; Maastricht-Airport, Netherlands) into the sampling

ports arrayed along the side of the column. These electrodes were connected to a Keithley

model 2000 digital multi-meter (internal resistance > 10 GO) with 10-channel expansion card

and an Ag/AgCl reference electrode, which was placed in the SAMD at the top of the column.

For anoxic incubations, the rubber stopper at the top of the columns was removed, and the

headspace was continuously flushed with N2 while the reference electrode was inserted in the

overlying SAMD. We address use of the term “total” with respect to these potential measure-

ments in the Discussion section. Porewater samples were collected from side sampling ports

using needles and syringes, and solids were removed from the liquid by centrifugation. Sam-

ples were then preserved in 0.5 M HCl before measurement of dissolved Fe(II) by ferrozine

assay [21]. Theoretical EH were calculated using WEB-PHREEQ [22] with the PHREEQC

database [23] using the measured Fe(II) concentrations and SAMD chemistry. Since goethite

was the predominant solid phase in sediments (S1 Fig), a dissolved Fe3+ concentration of

2.28 × 10−3 mM (based on the solubility of goethite at pH 1.5 in non-sterile incubations) and

4.04 × 10−7 (based on the solubility of goethite at pH 2.75 in biologically deactivated incuba-

tions) was assumed.

At the conclusion of the incubations, dissolved oxygen and pH measurements at 1 mm

depth increments were collected using a Unisense Microsensor Multimeter Microprofiling
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system (version 2.01; Unisense A/S, Aarhus, Denmark); OX-N, PH-N) with Sensor Trace PRO

3.1.1 microprofiling software and pH-N (pH) and OX-N (DO) electrodes. Columns were then

disassembled by cutting the polycarbonate tubing laterally and opening the half-columns. Sed-

iments were then removed from the columns at 1 cm depth increments, and processed for fur-

ther analyses. Sediment samples that were collected at this time and were intended for nucleic

acid-based microbial community analysis were placed in sterile tubes and stored at -80˚ before

DNA extraction (described below). Water content of the sediments was determined gravimet-

rically, and sediment-associated sulfate was determined by extracting sediment-associated and

porewater sulfate with nanopure water, followed by centrifugation and quantification of sulfate

in the supernatant by ion chromatography using a Dionex (Thermo Fisher Scientific Inc. Sun-

nyvale, CA) Basic Integrated IC System with an IonPac AS22 column and conductivity detec-

tor. Total sediment-associated carbon was quantified using a PerkinElmer 2400 Series II

CHNS/O Analyzer (PerkinElmer, Inc. Waltham, MA). For x-ray powder diffraction (XRD),

sediments were dried in an anaerobic chamber and analyzed using a Rigaku Ultima IV x-ray

diffractometer with CuKα radiation, scanning at 2Θ of 2–70˚, and accelerating voltage of 40

kV at 35 mA.

Nucleic acid-based microbial community characterization

Before DNA extraction, Fe(III) was removed from sediments by washing with 0.3 M ammo-

nium oxalate, with the pH adjusted to 3 with oxalic acid [24]. DNA was extracted from the Fe

(III)-free material using MoBio PowerBiofilm DNA isolation kits (MoBio Laboratories, Inc.

Carlesbad, CA). Partial 16S rRNA gene sequences were determined at Molecular Research LP

(Shallowater, TX) by Illumina MiSeq sequencing, where 515F and 806R primers were used to

amplify DNA through a 28 cycle PCR with HotStarTaq Plus Master Mix Kit (Qiagen USA,

Valencia, CA) with melting at 94˚ for 3 min, then 28 cycles of 94˚ for 30 sec, 53˚ for 40 sec,

and 72˚ for 1 min, followed by a 5 min elongation step at 72˚. Samples were pooled and the

Illumina DNA library was prepared from calibrated Ampure XP bead-purified samples. DNA

was sequenced by Illumina MiSeq (San Diego, CA) following the manufacturer’s instructions.

Sequences were joined and barcodes were depleted, short (<150 bp) sequences or those with

unreliable base calls were removed, and the sequences were then denoised and chimeras were

removed.

Sequence libraries were then further processed and analyzed in the MacQIIME environ-

ment (http://www.wernerlab.org/software/macqiime) using QIIME scripts [25]. Operational

taxonomic units (OTUs) were picked de novo based on 97% sequence similarity, and assigned

to taxonomic groups using the RDP classifier 2.2 with the SILVA database [26–29]. OTUs

were aligned to the SILVA database using the PyNAST algorithm [30], and a phylogenetic tree

was constructed. Distance matrices were constructed using the weighted UniFrac metric [31,

32], with iterative rarefaction to 68,665 sequences (75% of the number of sequences in the

smallest library) with jack-knife sampling of the OTU table performed before UniFrac analysis.

Unweighted pair group method with arithmetic mean (UPGMA) trees based on the produced

distance matrices were then constructed using UniFrac [32]. Sequence libraries from this work

have been deposited in the Sequence Read Archive under project number PRJNA490562.

Results

Column chemistry

To evaluate the dynamics of biogeochemical gradient development in iron mound sediments,

columns were assembled with homogenized iron mound sediments, so that the biology and

chemistry of the columns would be initially uniform throughout, and we could then visualize
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gradient development. In biologically deactivated sediment-containing columns, minimal Fe

(II) accumulation was observed at any depth interval within the columns (Fig 1A). The observ-

able Fe(II) accumulation may have been attributable to desorption of Fe(II) from the sedi-

ments as the sediments equilibrated with SAMD. Total potentials (TP) in inactive sediment

incubations were initially lower than those of the non-sterile incubations, but approached

those of the non-sterile incubations and slightly exceeded those of the theoretical EH (based on

the Fe2+/Fe3+ couple) after approximately 50 d (Fig 1D, 1E, and 1G). TP also remained the

same with depth throughout the incubations, indicating that no electrochemical gradients

Fig 1. Fe(II) concentrations (A-B), measured total potentials (TP; D-F), and theoretical EH (G-I) at various depths in column incubations containing

formaldehyde-deactivated (panels A, D, and G), non-sterile continuously oxic (panels B, E, and H), and non-sterile, initially anoxic (panels C, F, and I) iron

mound sediments. Depths represent the midpoint of a depth interval of 5 mm, with the sediment-water interface at 0 mm. Gray shading in panels C, F, and I represents

the time period during which the headspace of column incubations was N2 (with air subsequently allowed into the incubations). As a guide, cooler colors represent

measurements in shallower portions of the columns, while warmer colors represent deeper portions. Error bars represent one standard deviation.

https://doi.org/10.1371/journal.pone.0213807.g001
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developed over the course of the deactivated incubations (Figs 1D and 2B). EH predicted by Fe

(II) concentration were generally unchanged throughout the incubations and exhibited minor

variation with depth (Fig 1G).

In non-sterile column incubations, an Fe(II) gradient developed in the first 50 d of incuba-

tion, with maximal dissolved Fe(II) concentrations of approximately 120 mM in the deepest

portion of the columns due to Fe(III) reduction (Fig 1B). Early in the incubations, we observed

an initial separation in TP values, with an increase in TP in the shallower sediments, and

decrease in the TP of deeper sediments (Fig 1E). This split occurred concurrently with the

accumulation of Fe(II) in the deeper portions of the sediments (Fig 1B and 1E). Following the

initial peak in TP of shallow sediments at approximately 10 d, the TP of the shallower sedi-

ments decreased, which appears to have been due to upward diffusion of Fe(II) or reduction of

easily reducible Fe(III) phases in the shallower sediments, as Fe(II) concentrations increased

during this period of TP decrease (Fig 1B and 1E). TP patterns can be partially attributed to

variation in Fe(II) concentration, because theoretical EH patterns of shallower sediments

exhibited qualitatively similar patterns to the observed TP (Fig 1E and 1H). TP of sediments

below 30 mm in depth did not exhibit the increase, followed by decrease and subsequent

increase in TP as was observed in the shallower sediment (i.e.�33 mm). Rather, the TP of

these sediments decreased proportionally to their depth in the first 25 d of incubation and

then gradually increased (Fig 1E). Taken together, these observations indicate that the TP is

partially explained by the influence of the Fe2+/Fe3+ couple on the redox potential column

porewater, but the TP is incompletely explained by EH.

At the conclusion of these incubations, we measured DO and pH of the upper 40 mm of the

incubations (a limitation of the electrode length). In sterile incubations, the pH of the upper

portion of the incubations was uniformly approximately 2.5 (Fig 2D). The initial pH of the

SAMD was 3.1, and the observed decrease was likely attributable to minor amounts of abiotic

Fe(II) oxidation, and hydrolysis of Fe3+. Any abiotic Fe(II) oxidation could be supported by O2

that diffused throughout the upper 40 mm of the sediments, and likely through the entire col-

umn (Fig 2A). TP and dissolved Fe(II) concentration were uniform throughout the biologi-

cally-inactive sediment columns at the conclusion of the incubations (Fig 2C). In non-sterile

incubations, DO decreased in the upper 10 mm of the sediment column, and was completely

depleted (detection limit 0.3 μM) below 20 mm (Fig 2C). In this portion of the column, TP

Fig 2. Depth profiles of dissolved Fe(II) (Fe(II)aq; A), total potential (TP; B), dissolved oxygen concentrations

(DO; C), pH (D), and phylum-level microbial community composition (E) at the conclusion of non-sterile (�) and

formaldehyde-deactivated (•) column incubations that were incubated under continuously oxic conditions. The

colored shading across panels A-D indicates depth intervals corresponding to data points shown in Fig 1, and the color

key for panel E is shown on the left side of the figure. The bar outlined in red in panel E represents the composition of

the core microbiome of the entire column. Error bars represent one standard deviation.

https://doi.org/10.1371/journal.pone.0213807.g002
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decreased, and then remained nearly constant throughout the remaining depth, where the

most robust Fe(III) reduction occurred (Fig 2A and 2B). This constant TP was observed

despite substantial Fe(II) accumulation in the deeper, anoxic portions of the columns, which

would induce lower TP (dependent on the Fe2+/Fe3+ couple; EH) than we observed (Fig 1E and

1H). Indeed, a linear Fe(II) gradient was observed with depth, that did not correspond to the

measured TP (Fig 2A and 2B). Based on TP measurements, it appears that the upper 20 mm of

the columns were where the most dramatic aerobic Fe(II) oxidation was occurring, and that

activity was supported by the relatively low concentration of O2 that was available.

Sediment sulfate concentration (including dissolved and solid-associated) was 0.25 mmol/g

(dry) and was consistent through the depth of sediments. Further, sediments were uniformly

dominated by goethite throughout the columns at the conclusion of the incubations (S1 Fig),

and no blackening of the sediments was observed. While we cannot rule out the possibility of

cryptic sulfur cycling that supported Fe(III) reduction (whereby inorganic S species act as elec-

tron shuttles to Fe(III) [33, 34]), sulfate was not an important electron sink in comparison to

Fe(III). Organic carbon (OC) concentration of the sediments was 6.5 mg/g (dry) sediment,

which is consistent with OC contents of the Mushroom Farm sediments reported by Brantner

et al. [12]. Organic carbon in the Mushroom Farm sediments is mostly derived from photo-

trophic microeukaryotic biomass and likely supported Fe(III) reduction in the sediment incu-

bations [12]. As with sulfate concentration, OC was uniform throughout the depth of the

columns at their conclusion.

To further evaluate the relationship between Fe(II) and TP, we incubated columns under

anoxic conditions. During the period of anoxic incubation, Fe(II) accumulated to similar lev-

els, regardless of depth, and TP diminished consistently with theoretical EH during this period

(Fig 1C, 1F and 1I). Upon introduction of atmospheric O2 to the headspace of the columns, Fe

(III) reduction was arrested in the shallower portions of the column, but it continued in deeper

portions of the column (Fig 1C). During this period of Fe(II) oxidation, the TP of shallower

portions of the columns increased, and so did that of the deeper portions of the columns,

despite continued Fe(III) reduction (Fig 1F). As was the case in the first set of column incuba-

tions, this increase in TP was not predicted in EH based on Fe(II) concentrations (Fig 1I).

Indeed, after reintroduction of atmospheric oxygen, the TP of the sediments developed similar

patterns to those observed in the sediments incubated under oxic conditions throughout the

incubation period (Fig 1E and 1F).

Column sediment microbial communities

At the conclusion of the 120 d incubations, we conducted 16S rRNA gene-based surveys of

microbial communities at discrete depths in the columns. Average read length of partial 16S

rRNA gene sequences was 299 bp and the number of sequences recovered from each depth

ranged from 91,553 to 157,653. Despite differences in activities at different depths in the col-

umn incubations, we observed little variability among the microbial communities with depth.

Shannon indices of all of the depth intervals were nearly identical (5.9–6.1) (S2 Fig). Given the

chemical gradients that developed over the course of the incubations, we would expect devel-

opment of unique microbial communities in terms of relative abundances. This was the case

to some extent, as the community in the top 10 mm could be distinguished from those of the

rest of the column using the weighted UniFrac metric, but the communities from the remain-

der of the depths could not be distinguished from each other (S2 Fig).

When viewed compositionally at the phylum level, microbial communities were composed

predominantly of Gammaproteobacteria and unassignable phylotypes as determined using the

Ribosomal Database Project’s taxonomic assignment algorithm (Fig 2E).

PLOS ONE Microbial Fe metabolism in AMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0213807 March 26, 2019 7 / 17

https://doi.org/10.1371/journal.pone.0213807


Aside from a higher relative abundance of unassignable OTUs in the top 10 mm of the col-

umn, microbial communities varied little with depth (Fig 2E). Computation of the core micro-

biome (OTUs that are represented in all samples, and excluding any OTUs that are not

included in all samples) in QIIME yielded a phylum-level taxonomic distribution pattern that

was nearly identical to those observed in depth intervals between 10 mm and 110 mm (Fig

2E). Examination of the sequence libraries at greater taxonomic resolution revealed that 24

OTUs comprised approximately 75% of the total communities of the sediments at the conclu-

sion of the incubations (Table 1). Even though visualizing microbial communities at the phy-

lum level could mask variation in community composition, this was not the case in our

incubations. The predominant OTUs in each phylum were consistently predominant through-

out the columns. For example, the OTU attributable to Xanthomonadaceae comprised approx-

imately 50% of the Gammaproteobacterial OTU at all depths of the column (Table 1). Nearly

all of these abundant OTUs had the greatest similarity with sequences in the NCBI database

that were recovered from AMD-impacted systems (Table 1), including the unassignable

sequences, two of which were most similar to sequences detected in the Rio Tinto AMD sys-

tem [35]. While the unassignable sequences were not similar to any cultured organisms, all but

one of the OTUs with greater than 90% sequence similarity to cultivated organisms were

attributable to acidophilic organisms from AMD-impacted systems, and all but three of these

metabolize Fe (Table 1). Several of these Fe-metabolizing microorganisms are capable of both

Fe(II) oxidation and Fe(III) reduction (Table 1). The most abundant phylotype detected in the

columns was a Xanthomonadaceae, related to Metallibacterium scheffleri, which is an acido-

philic organotrophic FeRB [36]. While M. scheffleri is not known to oxidize Fe(II), several

other closely related Xanthomonadaceae-affiliated acidophiles have been shown to exploit aer-

obic Fe(II) oxidation for growth [37]. Our analysis of the microbial communities associated

with the columns revealed relatively uniform composition of communities in sediments below

10 mm, and a narrow group of organisms (the unassigned OTUs) that were represented in

greater proportions in the top 10 mm of the sediment incubations.

Discussion

O2 availability, controlled by depth in the columns, minimally influenced the composition of

microbial communities in iron mound sediments, but profoundly influenced their activities.

The only phylotypes that exhibited a substantial change with depth at the conclusion of the col-

umn incubations were unassigned sequences that were similar to planktonic phylotypes

observed in acidic (pH approximately 2) and high redox potential (approximately 470 mV)

Rio Tinto, indicating that these organisms metabolize optimally under mostly oxic conditions

[35, 38]. Otherwise, microbial communities throughout the remainder of the sediments were

nearly identical (Fig 2E and S2 Fig). 16S rRNA gene-based surveys can still detect inactive

organisms, which could explain the compositional similarities we have observed. In previous

experiments at the Mushroom Farm, we have observed discernable shifts in microbial commu-

nities over shorter incubation times [9]. Additionally, a similar pattern of microbial commu-

nity composition was observed in intact iron mound microbial communities [12]. In that case,

relative abundances of phylotypes attributable to photosynthetic microeukaryotes and obli-

gately aerobic, Fe(II) oxidizing Gallionella sp. diminished in deeper portions of the sediments,

but other components of the microbial communities retained similar relative abundances [12].

The most notable constants in situ were Gammaproteobacteria assignable to Fe-metabolizing

Xanthomonadaceae [12], which also remained abundant at the conclusion of our column

incubations (Fig 2E). These observations illustrate the metabolic versatility of microorganisms

with respect to Fe metabolism in AMD and AMD-impacted systems. They are often capable of
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Table 1. Comparison (using BLASTn; [65]) of sequences recovered from iron mound sediment incubations to sequences contained in the GenBank database. Most

closely-related 16S rRNA gene sequences from culture-independent surveys and microorganisms in culture are shown. OTUs comprising>5% of a given phylum were

selected for analysis and included in the table.

Pyulum Highest RDP-assigned

taxonomy

Percentage

of phylum1
Environment2 %

ID3
Reference

(acc.

number)

Organism Metabolism4 %

ID3
Reference

(acc. number)

Gammaproteobacteria Xanthomonadaceae 51±3 AMD 99 [66]

(JX297618)

Metallibacterium
scheffleri

Acid/Aer/Fe

(III)

98 [36]

(FR874227)

Sinobacteraceae 21±4 AMD 99 [66]

(JX297610)

Bacterium A4F5 Acid/Aer/Fe

(II)

100 [37]

(JX869414)

Gammaproteobacteria 10±3 AMD 99 [35]

(FN862147)

Thiohalophilus
thiocyanatoxydans

Neut/Aer 90 [77]

(NR_043875

Unassigned Unassigned 40±11 AMD 94 [35]

(FN865900)

Peptostreptococcaceae

AS15

Neut/Anaer 77 [78]

(KX123378)

Unassigned 20±7 AMD 96 [35]

(FN866450)

Paenibacillus
tianmuensis

Neut/Aer 78 [79]

(NR_104532)

Unassigned 18±5 geothermal 98 [67]

(HF677557)

Thermogemmatispora
carboxidivorans

Neut/Aer 86 [80]

(NR_133881)

Actinobacteria Acidimicrobiaceae 21±3 AMD 99 [68]

(JQ217565)

Acidithrix sp. C25 Acid/Aer/Fe

(II)

99 [81]

(LN866582)

Acidimicrobiales 20±3 AMD 99 [69]

(FN870199)

Aciditerrimonas
ferrireducens

Acid/Aer/Fe

(III)

94 [82]

(JX869415)

Acidimicrobiales 15±1 AMD 99 [40]

(KF424863)

Bacterium A4F6 Acid/Aer/Fe

(II)/Fe(III)

94 [37]

(JX869441)

Acidimicrobiales 14±3 AMD 99 [70]

(KC619560)

Bacterium B10H12 Acid/Aer/Fe

(II)

99 [37]

(NR_112972)

Acidimicrobiales 5±1 AMD 99 [35]

(FN861923)

Actinobacterium BGR

86

Acid/Aer/Fe

(II)

98 [83]

(GU168002)

Acidobacteria Acidobacteriaceae 47±8 AMD 99 [71]

(HG003405)

Acidobacteriaceae

bacterium CH1

Acid/Aer 97 [84]

(DQ355184)

Acidobacteriaceae 38±9 AMD 99 [35]

(FN866269)

Acidipila rosea Acid/Aer 96 [85]

(NR_113179)

WPS-2 WPS-2 46±6 AMD 99 [72]

(JF737898)

Thermosinus
carboxydivorans

Neut/Fe(III) 84 [86]

(NR_117167)

WPS-2 46±6 AMD 99 [73]

(HE604029)

Halopeptonella
vilamensis

Neut/Aer 85 [87]

(NR_146012)

Alphaproteobacteria Acetobacteraceae 55±6 AMD 99 [71]

(HG003383)

Bacterium C4H7 Acid/Aer/Fe

(II)

99 [37]

(JX869450)

Acetobacteraceae 16±11 AMD 99 [72]

(JF737912)

Acidisphaera sp. PS110 Acid/Aer 97 [88]

(KC954531)

Firmicutes Alicyclobacillaceae 15±6 AMD 99 [35]

(FN861437)

Alicyclobacillaceae

bacterium Feo-D4-

16-CH

Acid/Aer/Fe

(II)/Fe(III)

93 [40]

(FN870323)

Clostridium 7±4 wastewater 96 [74]

(KP717470)

Clostridium
hydrogeniformans

Neut/Anaer 99 [89]

(NR_115712)

Alicyclobacillaceae 7±2 AMD 99 [35]

(FN867136)

Alicyclobacillaceae

bacterium iFeo-D4-

31-CH

Acid/Aer/Fe

(II)/Fe(III)

95 [40]

(FN870336)

Sulfobacillaceae 6±1 AMD 99 [75]

(FN867136)

Thermovenabulum
ferriorganovorum

Neut/Fe(III) 89 [90]

(NR_042719)

Chloroflexi Thermogemmatisporaceae 81±4 AMD 97 [76]

(KP689063)

Bacterium SOSP1-79 Neut/Aer 88 [91]

(AM180160)

AD3 JG37-AG-4 89±1 AMD 99 [76]

(KP688954)

Bacterium B4H3 Acid/Aer/Fe

(II)

99 [37]

(JX869432)

(Continued)
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Fe(II) oxidation and Fe(III) reduction, depending to some extent (but not completely) on the

availability of O2 [14, 37, 39–41]. In the current work, we started with a homogenized micro-

bial community from the upper 6 cm of an iron mound and challenged that community to

adjust to limitations on O2 delivery. The communities did not vary dramatically from a com-

positional perspective, but exhibited dramatic differences in their activities.

Despite the consistency in community composition, the microbial activities over the course

of the incubations were dramatically different at different depths, with extensive Fe(III) reduc-

tion in the deeper portions of the columns (Figs 1 and 2). O2 was completely depleted from the

sediments at depth where Fe(III) reduction did not occur to its maximal extent (Fig 2A and

2C). In other words, the extent of Fe(II) accumulation (indicative of Fe(III) reduction) fol-

lowed a gradient that was not dependent on O2 availability: less Fe(III) reduction was apparent

at 57 mm than at 97 mm, despite complete depletion of O2 at 33 mm (Figs 1B and 2A and 2C).

Similarly, addition of O2 to the initially anoxic incubations arrested Fe(III) reduction in a

depth-dependent manner, and not exclusively in the shallower sediments (Fig 1C). It is not

clear if Fe(II) oxidation was occurring in the anoxic sediments or if extremely low O2 concen-

trations (i.e. below the detection limit of 0.3 μM) are supporting extensive Fe(II) oxidation [42,

43]. It appears unlikely Fe(III) reduction was simply partially inhibited in the shallower sedi-

ments, because addition of air to the initially anoxic incubations led to Fe(II) oxidation in

deeper sediments (Fig 1C).

Some insight into the conditions that could allow O2 to influence Fe(III) reduction or Fe

(II) oxidation despite separation of these two species can be gained from examination of our

electrochemical measurements. Electrochemical or geophysical approaches are increasingly

deployed to interrogate (bio)geochemical processes in field settings and evaluate spatial distri-

butions of microbiologically-induced redox processes [44–47]. The redox potential (EH) of a

given solution is the potential between a non-polarizable reference electrode and a polarizable

electrode in close proximity to each other and is indicative of the capacity for a solution to

accept or donate electrons relative to the standard hydrogen electrode (SHE [48]). The self-

potential (SP), which is widely used in geophysical surveys, represents the potential difference

between two spatially-separated non-polarizable electrodes (one stationary, and one movable)

and is indicative of electric current between relatively reducing and oxidizing regions or an

electrochemical gradient [44, 48–52]. If a stationary non-polarizable electrode is deployed with

a movable polarizable electrode, the resulting potential is referred to as total potential (TP),

and represents the sum of the EH and SP between the two electrodes [48]. By deploying PtIr

electrodes along the column coupled with a Ag/AgCl reference electrode in the overlying

SAMD, our measurements constitute the TP at various depths within the columns.

Values shown in Fig 1G–1I represent the theoretical EH for the sediments based on the Fe2

+/Fe3+ couple using Fe(II) concentrations from the respective experiments. It is likely that O2

Table 1. (Continued)

Pyulum Highest RDP-assigned

taxonomy

Percentage

of phylum1
Environment2 %

ID3
Reference

(acc.

number)

Organism Metabolism4 %

ID3
Reference

(acc. number)

Planctomycetes Phycisphaerae 73±2 AMD 99 [35]

(FN866617)

Arenimonas
maotaiensis

Neut/Aer 81 [92]

(NR_133967)

1Mean OTU percentage of OTU in phylum in sequence libraries from each depth interval with standard deviation of percentages from eleven depth intervals
2Types of environments from which sequences were recovered
3Percent identity based on BLASTn results
4Acid = acidophilic, Neut = neutrophilic, Aer = aerobic, Anaer = anaerobic, Fe(II) = Fe(II) oxidizer, Fe(III) = Fe(III) reducer

https://doi.org/10.1371/journal.pone.0213807.t001
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also contributes to the EH component of the TP. For instance, O2 was relatively high through-

out the deactivated column sediments (Fig 2C), so the H2O/O2 redox couple could have influ-

enced TP in addition to the Fe2+/Fe3+ couple. Indeed, TP were higher than predicted based on

the Fe2+/Fe3+ redox couple (Fig 1D and 1G). However, at the DO in the deactivated columns

at the conclusion of the incubations, the theoretical EH was 0.96 V. Therefore, while O2 clearly

contributed to TP in regions where it was present, it appears that the Fe2+/Fe3+ redox couple

exerted the most control on the EH component of TP throughout the columns. Additionally,

since we could not detect evidence of sulfate reduction in these incubations, the Fe2+/Fe3+

redox couple would predominantly drive EH in the sediments. The measured TP do not neces-

sarily constitute EH, since the non-polarizable and polarizable electrodes are spatially separated

from each other, but the calculated EH (based on Fe(II) concentration) and measured TP of

the formaldehyde-deactivated incubations match reasonably well (Fig 1D and 1G), as do the

EH and TP during anoxic incubations (gray-shaded part of Fig 1F and 1I). Qualitatively, in

both of the non-sterile incubations, shallower sediments, with lower Fe(II) concentrations and

greater rates and extents of Fe(II) oxidation exhibited higher TP and EH (Fig 1B, 1C, 1E, 1F,

1H and 1I and Fig 2A and 2B). The higher EH is consistent with lower Fe(II) concentration,

and perhaps higher dissolved Fe3+ concentration. For instance, the higher-than-predicted TP

in overlying AMD and shallow sediments (Fig 1E and 1H) could be attributable to accumula-

tion of Fe3+ exceeding its maximum solubility in the oxic portions of the columns where Fe(II)

oxidation is most robust. Overall, these observations illustrate the contribution of redox poten-

tial, as controlled by the Fe2+/Fe3+ redox couple, to the TP measured in these incubations.

EH calculations did not predict the continuous increase in TP at all depths in the incuba-

tions after approximately 20 d (Fig 1E and 1H). They also did not predict the increase in TP

upon addition of O2 to initially anoxic incubations (Fig 1F and 1I). If based exclusively on Fe

(II) concentration, these observed TP would predict a decrease in Fe(II) concentration, which

was not the case. In fact, Fe(II) concentrations segregated further with depth as the TP

increased (Fig 1B and 1E). An explanation for the observed increase in TP in anoxic incuba-

tions could be opposing gradients of Fe2+ and Fe3+, where a high rate of Fe(II) oxidation in

shallow, oxic portions of the column induced the Fe(II) gradients that we observed, while

downward diffusion of Fe3+ from the oxic zone to the oxic zone induced the increase in TP.

However, the rate of Fe(III) reduction during the anoxic period of the incubations (3.7 mM/d,

based on Fe(II) accumulation) exceeded the rate of Fe(II) oxidation in the shallowest sedi-

ments (0.97 mM/d, based on Fe(II) depletion) after O2 was allowed into the columns (Fig 1F).

This pattern of Fe(II) oxidation and Fe(III) reduction rates would result in a steep Fe(II) gradi-

ent near the oxic-anoxic interface, and not the gradual Fe(II) gradient from the top to the bot-

tom of the column that we observed here (Fig 2). While TP and predicted EH closely matched

during the anoxic period of the short-term incubations, upon introduction of O2 to the head-

space, the TP increased at all depths, and Fe(II) concentrations segregated based on depth in

the columns (Fig 1C, 1F and 1I). These inconsistencies between the TP and EH when O2 is

available at the top of the columns can be attributed to the SP contribution to TP [48], and sug-

gest an electron transfer process occurring in the sediments due to the electrochemical pull of

O2 overlying the sediments.

Both field- and laboratory-scale electrochemical/geophysical surveys of SP signals have

illustrated the development of SP signals across regions that connect high and low EH regions

as we have observed here [45, 51, 52]. In order to facilitate the electron transfer that gives rise

to SP signals in sediments, it has been suggested that a perhaps disorderly, but integrated net-

work of microorganisms, extracellular material, and redox-active solid phases gives rise elec-

tron transfer [45, 52, 53]. Such a model could function quite well in iron mound settings, as

the sediments are composed almost exclusively of Fe(III) (hydr)oxide phases [6, 7, 10, 12], and

PLOS ONE Microbial Fe metabolism in AMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0213807 March 26, 2019 11 / 17

https://doi.org/10.1371/journal.pone.0213807


these phases could facilitate the electron transfer processes [54–64], with opposing Fe(II) and

O2 concentration gradients providing the driving force for electron transfer.

Our results are consistent with previous field and laboratory observations of a gap between

intrusion of O2 into the sediments and the zone of Fe(II) oxidation, where an O2 intrusion

front and Fe(II) oxidation zone were spatially separated [12, 14]. This work has allowed us to

visualize the microbially-mediated development of these gradients in the iron mound sedi-

ments and apply electrochemical approaches to assess biogeochemical processes within the

sediments. Our results indicate that the chemical and microbiological influence of O2 in iron

mound sediments exceeds its actual penetration into the sediments. Notably, Fe(II) accumula-

tion in deeper sediments was suppressed despite no O2 availability. If engineered iron mounds

are to be used for oxidative precipitation and removal of Fe(II) from AMD [8–10], our results

indicate that the longer range influence of O2 into the sediments could minimize reductive re-

release of Fe(II) from the sediments.

Supporting information

S1 Fig. Powder X-ray diffraction patterns of sediments collected from columns at the con-

clusion of non-sterile 120 d incubations. The reference diffraction pattern of goethite in the

top panel is from The American Mineralogist Crustal Structure Database [Downs TR, Hall-

Wallace M. Am Mineral 2003; 88:247–250.].

(DOCX)

S2 Fig. PCoA of microbial communities associated with different depths of iron mound

sediment incubations at the conclusion of the incubations (120 d) using the weighted and

Unifrac metric [Lozupone CA,Hamady M, Kelly ST, Knight R. Appl Environ Microbiol

2007; 73: 1576–1585.]. Values in parentheses in depth legend indicate Shanon Indices of

microbial communities at each of those depths. Values in parentheses of axis labels indicate

the percentage of variation explained by a PCo.
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acidic sediments. Appl Environ Microbiol 2010; 76: 8174–8183. https://doi.org/10.1128/AEM.01931-10

PMID: 20971876

PLOS ONE Microbial Fe metabolism in AMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0213807 March 26, 2019 14 / 17

https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1038/ismej.2011.82
http://www.ncbi.nlm.nih.gov/pubmed/21716311
https://doi.org/10.1093/bioinformatics/btp636
https://doi.org/10.1093/bioinformatics/btp636
http://www.ncbi.nlm.nih.gov/pubmed/19914921
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
http://www.ncbi.nlm.nih.gov/pubmed/16332807
https://doi.org/10.1128/AEM.01996-06
http://www.ncbi.nlm.nih.gov/pubmed/17220268
https://doi.org/10.1038/ismej.2015.50
https://doi.org/10.1038/ismej.2015.50
http://www.ncbi.nlm.nih.gov/pubmed/25871933
https://doi.org/10.1038/ismej.2010.101
https://doi.org/10.1038/ismej.2010.101
http://www.ncbi.nlm.nih.gov/pubmed/20631808
https://doi.org/10.1111/1574-6941.12084
http://www.ncbi.nlm.nih.gov/pubmed/23369102
https://doi.org/10.1371/journal.pone.0003853
https://doi.org/10.1371/journal.pone.0003853
http://www.ncbi.nlm.nih.gov/pubmed/19052647
http://www.ncbi.nlm.nih.gov/pubmed/12123477
https://doi.org/10.1128/AEM.01931-10
http://www.ncbi.nlm.nih.gov/pubmed/20971876
https://doi.org/10.1371/journal.pone.0213807


42. Druschel GK, Emerson D, Sutka R, Suchecki P, Luther III GW. Low-oxygen and chemical kinetic con-

straints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim Cosmo-

chim Acta 2008; 72: 3358–3370.

43. Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspec-

tive. Annu Rev Microbiol 2010; 64: 561–583. https://doi.org/10.1146/annurev.micro.112408.134208

PMID: 20565252

44. Hamilton SM, Cameron EM, McClenaghan MB, Hall GEM. Redox, pH and SP variation over mineraliza-

tion in thick glacial overburden. Part I: methodologies and field investigation at the March Zone gold

property. Geochem Explor Environ A 2004; 4: 33–44.

45. Naudet V. Revil A. A sandbox experiment to investigate bacteria-mediated redox processes on self-

potential signals. Geophys Res Lett 2005; 32: L11405.

46. Williams KH, Hubbard SS, Banfield JF. Galvanic interpretation of self-potential signals associated with

microbial sulfate-reduction. J Geophys Res 2007; 112: G03019.

47. Regberg A, Singha K, Tien M, Picardal F, Zheng Q, Schieber J, et al. Electrical conductivity as an indi-

cator of iron reduction rates in abiotic and biotic systems. Wat Resource Res 2011; 47: W04509.
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