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Abstract: Non-coding RNAs (ncRNAs) are receiving more
and more attention not only as an abundant class of
genes, but also as regulatory structural elements (some
located in mRNAs). A key feature of RNA function is its
structure. Computational methods were developed early
for folding and prediction of RNA structure with the aim
of assisting in functional analysis. With the discovery of
more and more ncRNAs, it has become clear that a large
fraction of these are highly structured. Interestingly, a
large part of the structure is comprised of regular Watson-
Crick and GU wobble base pairs. This and the increased
amount of available genomes have made it possible to
employ structure-based methods for genomic screens.
The field has moved from folding prediction of single
sequences to computational screens for ncRNAs in
genomic sequence using the RNA structure as the main
characteristic feature. Whereas early methods focused on
energy-directed folding of single sequences, comparative
analysis based on structure preserving changes of base
pairs has been efficient in improving accuracy, and today
this constitutes a key component in genomic screens.
Here, we cover the basic principles of RNA folding and
touch upon some of the concepts in current methods that
have been applied in genomic screens for de novo RNA
structures in searches for novel ncRNA genes and
regulatory RNA structure on mRNAs. We discuss the
strengths and weaknesses of the different strategies and
how they can complement each other.

Introduction

Non-coding RNA genes (ncRNAs) have emerged as major

players in the cell and are involved in both housekeeping functions

as well as regulation. They are characterized as functional

transcripts that do not code for proteins and can be processed in

numerous ways, see e.g., [1,2]. An abundant class of ncRNA genes

are the micro RNAs (miRNAs), which have received considerable

attention e.g., [3–5]. This can be observed through the rapid

growth in the literature, not only for miRNAs [6], but also for

ncRNAs in general [7]. Furthermore, regulatory RNA structure in

UTR regions of protein-coding genes is also an exciting, emerging

field.

The roles of ncRNAs are diverse and not only include

regulation of protein coding genes [8], but also inactivation of

other gene classes (e.g., imprinting [9,10]), alternative splicing

[11], and modifying other ncRNAs [12], to mention just a few

examples. Thus the miRNAs are but one among several other

classes of ncRNAs. Novel classes of small ncRNA genes such as

piRNAs [13,14] and hpRNAs [15] have also been reported.

Recently, long intervening ncRNAs (lincRNAs) have been found.

These are mRNA-like transcripts that lack protein-coding

potential, contain exon intron structure, and are apparently

largely unstructured [16]. The repertoire of ncRNAs is rapidly

expanding and RNA-seq sequencing techniques, in combination

with computer methods, are expected to give rise to a general

expansion of the RNA universe. These RNA families are collected

in the Rfam database [17] in the form of structural alignments and

consensus structures. In a number of cases, such as SRP RNAs and

tmRNAs [18], Rfam is based on pre-existing curated RNA

structural alignments from specialized databases. This important

resource is also often used to construct and test RNA structure

prediction tools [7].

The size variation of ncRNAs is extreme, ranging from *20
nucleotides (nt) for small interfering RNAs and miRNAs to

*100,000 nt for the air RNA [10]. ncRNAs are not only located

in intergenic regions, that is outside of protein coding genic

regions, but they are also found in introns. In the latter case they

are either processed out during splicing, or they represent

independent transcripts that come with their own promoters, as

e.g., in Caenorhabditis elegans [19]. There are also examples of

ncRNAs overlapping coding regions [20]. In addition, mRNAs

may contain functional cis-acting RNA structures, such as the iron-

responsive element [21] in vertebrates or riboswitches in bacteria

[22].

As can be seen by inspection of Rfam, a solid volume of

ncRNAs and regulatory RNAs come with a characteristic and

functional RNA structure, which often is more conserved in

evolution than its primary sequence. In order to find ncRNA

genes, it therefore makes sense to search for RNA (secondary)

structure rather than primary sequence. Computationally, this is a

much more challenging and demanding problem than searching

protein coding space, as there are no regular signals in RNA

structured sequence such as open reading frames.

However, searching for RNA secondary structure is likely not to

provide us with all functional non-protein-coding transcripts, since

the emerging compilation of long ncRNAs seems to indicate that

these in general are not densely structured, even though they
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might contain structural regions. This is exemplified by a mouse

transcriptomic analysis that revealed thousands of such transcripts

based upon full-length cDNA sequencing [23]. It remains to be

systematically investigated whether these RNAs harbor character-

istic structures that carry out specific functions, and thus if

searching for RNA structure in general is a sufficient starting point

to search for ncRNAs. It is worth noting that the only functionally

well-characterized lncRNA, hotair, does have functional RNA

structures [24–26].

Here, we focus on describing the principles of searching for de

novo RNA structures in genomic sequences, being aware that the

gene (and functional transcript) itself can be (much) larger than the

(predicted) structure and that overlapping predicted structures can

be in the same functional transcript.

Parameters of the Search Space

Searching for novel RNA secondary structures requires that

functional structures can be distinguished (e.g., by their folding

energy) from those generated on shuffled sequences of the same

composition, that is, the background. In general, programs like

mfold and RNAfold will fold any RNA sequence you feed into

them. Whether the structure (or parts thereof) is actually

trustworthy is of course determined by the user.

It turns out that for most known ncRNAs (with miRNAs as a

notable exception), it is generally not sufficient to screen individual

genomes using minimum free energy folding (of a sequence in

some fixed size window), since neither folding energies nor the

resulting structures provide a reliable signal. Although ncRNAs

tend to have somewhat more stable structures than expected by

chance, the difference in folding energies between random

sequences created by shuffling and native ncRNAs is in general

too small to distinguish real ncRNAs from decoys [27,28].

However, the often stronger conservation of the (secondary)

structure compared to the primary sequence can be used to

enhance the discrepancy to the background. For example, for a

human RNA sequence CCCCCCCAGUUGGGGGG that forms

a simple hairpin, the mouse version could be CACCCCCA-

GUUGGGGUG such that a GC base pair in human corresponds

to an AU base pair in mouse. Not only do such features destroy

conservation of primary sequence, but the base pairs can also be

separated essentially by the full length of the sequence. Hence,

meaningful in silico screens can be carried out on comparative

genomic data, but using complex algorithms that take long-range

base pairs into account.

The ideal search scenario is illustrated by a toy example in

Figure 1, where we have randomized some sequences (shuffling

the order of the nucleotides) and implanted a small hairpin

conserved only in structure. These can be considered as a set of

corresponding (but poorly conserved) sequences that do not

necessarily have much in common except for common RNA

structure. This sequence set can be searched (sequences on the left

side) and a joint structure extracted (on the right side) where base

pairs are represented by matching parentheses. In real examples,

the ‘‘background part’’ of sequences is never so strongly divergent

and neither are the sequences of the contained motifs (while the

structure is convergent). This, of course, creates challenges for the

prediction scheme.

Overall, in silico searches for ncRNAs can in essence be carried

out in the following three ways: (i) by sequence/structure similarity

to already known ncRNAs, (ii) by searching for specific ncRNA

classes, e.g., miRNAs and snoRNAs, and (iii) de novo searches.

Here, we focus on de novo searches, but briefly touch upon the

others below.

Sequence Similarity Search for ncRNAs

The basic form of similarity search is purely sequence based using

BLAST [29], and this approach has apparently not been reported in

the literature for anything other than finding near identical

sequences, e.g., genome and EST annotation projects [30,31].

The more advanced approach is to include the RNA secondary

structure as done for covariance models such as INFERNAL and

RaveNnA [32–34]. These constitute a probabilistic model of the

RNA structure together with the corresponding sequence variation

(e.g., compensating base pairs). More specifically, they employ

stochastic context-free grammars (SCFGs), an extension of hidden

Markov models (HMMs), that can cope with the long-range base

pair interactions. An alternative (which is faster) is to extract

patterns for RNA motif search, e.g., RNAmotif [35].

To obtain good models, well-curated data (structural RNA

alignments) are needed, which can be obtained either from

specialized databases, as in the case of RNAseP RNA and SRP

RNAs [18,36], or from the meta database Rfam. Curating these

and conducting homology-based searches comes with its own set

of issues, which is described elsewhere [7].

Class-specific searches use distinctive features of an RNA class to

search for novel, but not necessarily homologous, members of that

class. miRNAs are such an example that can be identified on the

basis of the characteristic stem-loop shape of the precursor either

encoded as explicit rules or combined with machine learning

techniques [6]. Another example is the well-known tRNA-scanSE

program to search for tRNAs [37]. Similar types of searches have

also been employed for other families, and incorporating this

information is generally expected to help span greater distances in

the evolutionary tree than what can be done solely from (present)

covariance models. The principal reason is RNA structure itself

changes, so that models made for one family cannot readily be

applied to another. Well-known examples are RNAse P RNA [12]

and telomerase RNA [38]. A recent advance in the INFERNAL

package is that it can search for local structural matches.

As previously mentioned, in silico screens currently involve

searching for de novo RNA structure, but there have also been a few

cases employing GC content as an indicator of RNA sequence

structure in certain organisms (extremophiles with biased AU

content) [39–41]. Here, we focus on describing the principles and

the concepts of de novo searches. When there is overlap with

similarity search methods, this will be mentioned. We will

concentrate, however, on the concepts and not on reporting what

one actually can expect to find and what to do with these

sequences. The latter aspects are reviewed e.g., in [42].

To summarize, in Figure 2 there are two basic flow charts of

current similarity searches to provide mapping of homologous

ncRNAs and regions of synteny for related genomes. The latter

can be used as an extra layer of confirmation for the raw similarity

search, but also to investigate if genomic rearrangements have

taken place. Clearly, synteny can yield further support for the

outcome of an in silico screen.

RNA Structure and Folding

As mentioned above, folding of single sequences is in general

not sufficient to reliably detect RNA structure. Still, the principle

of folding single sequences is fundamental in basically all

computational approaches constructed to search for RNA

structure in genomic sequence. The structured RNA molecules

by nature take a characteristic three-dimensional (3D) structure.

As depicted in Figure 3, even though it is still difficult to predict 3D

from 2D structure, most contacts between bases are already part of

the secondary structure. Moreover, the canonical base pairs
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making up the secondary structure can be reasonably well

predicted without any knowledge of tertiary structure. This makes

the minimum free energy secondary structure a useful abstraction

of the full 3D structure. Current methods do generally focus on the

RNA secondary structure, even though the awareness and

feasibility of taking the 3D structure into account is improving.

It is beyond the scope of this text to go deeper into this. Unless

mentioned otherwise, we will from now on write RNA structure as

a shorthand for RNA secondary structure. The RNA secondary

structure can be represented in numerous ways, as depicted in

Figure 4.

Concepts of Folding RNA Sequences
The basic folding algorithm goes back to the early work of Ruth

Nussinov [43], who proposed a simple dynamic programming

algorithm to find the maximum number of base pairs for an RNA

sequence. The idea is to keep track of the number of base pairs of

any sub-sequence starting at some position, say i, and ending at

position j. Given that the sequence is L nucleotides long, the

recursion requires that 1ƒivjƒL. Additionally, pseudoknots are

ignored as a first approximation. Pseudoknots can be considered as

higher-order base pairing interactions and would correspond to

having lines crossing in the outer left part of diagram shown in

Figure 4. Including pseudoknots results in much more complex

algorithms with higher time and memory consumption.

Thus, starting with (unpaired) sub-sequences of length one and

extending (and meeting the first base pair at some point), one can

consider a structure on the sub-sequence x½i::j�. Such structure can

be formed in only two distinct ways from shorter structures: Either

the starting nucleotide i is unpaired, in which case it is followed by

an arbitrary structure on the shorter sequence x½iz1::j�, or the

first nucleotide is paired with some partner base, say k. In the

Figure 1. Searching for common RNA secondary structure in unaligned sequences. The scenario of searching for common RNA structure
in sequences (left) that are otherwise unrelated (here generated by shuffling the order of the nucleotides in real sequences). This structure can either
represent portions of an ncRNA gene or a structural RNA element in an mRNA. The search result in a multiple structural alignment (right) is typically
based on the pattern of obtained compensating changes.
doi:10.1371/journal.pcbi.1002100.g001

Figure 2. Basic flow homology (left) search in combination with identification of syntenic regions (right) of related genomes. (Figure
courtesy of Christian Anthon.)
doi:10.1371/journal.pcbi.1002100.g002
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latter case the rule that base pairs must not cross implies that we

have independent secondary structures on the sub-intervals

x½iz1::k{1� and x½kz1::j�. Graphically, we can write this

decomposition of the set of structures as shown in Figure 5.

Denoting Eij as the maximum number of base pairs (or optimal

energy) for a secondary structure on x½i::j� corresponding to the

left side of the equation, we see that Eij is the optimal choice

among each of the alternatives. In this context, independence of

two substructures in the paired cases implies that we have to

optimize these substructures independently. Using bij as 1 if xi and

xj base pair and zero otherwise, we arrive at the recursion:

Eij~ max
Eiz1,j

maxk, (i,k) pairs Eiz1,k{1zEkz1,jzbik

� �
(

, ð1Þ

where the maximum runs over iz1vkƒj. Rather than having

the parameter bij one or zero and rather than counting the

maximum number of base pairs, we can let bij take negative values

depending on the type of base pair, that is, by replacing bij with

bx½i�x½j� to take the individual base pairs into account, and then

replace the max in the recursion by min. An example of filling out

the dynamical programming matrix is shown in Figure 6. The

recursion in Equation 1 is a simplification (and less ambiguous) of

a more general form of the Nussinov algorithm. A good

introduction is given in [44].

Towards a Full Folding Algorithm
This simple model is still too inaccurate, since it does not

capture energetically important structure motifs, such as stacked

pairs, bulges, and various types of loops (hairpin, multi, interior,

and exterior). The more realistic ‘‘nearest-neighbor’’ energy model

is therefore based on loops, rather than base pairs. A complete set

of loop energies is available from the group of Doug Turner [45].

Stacked pairs, for example, consist of two consecutive base pairs

and are the major source of stabilizing energy. Each possible

stacking comes with its own free energy as listed in Figure 7. It can

be observed that GCs have lower binding values and therefore

form more stable stacks and thereby structures. This relates to the

issue of searching for RNA structures in GC-rich regions in the

genomes. In general, loop energies depend on the loop type and its

size, and sequence dependence is conferred only through the base

pairs closing the loop and the unpaired bases directly adjacent to

the pair (the terminal mismatches). The general form of loop energy is

therefore

Eloop~EmismatchzEsizezEspecial , ð2Þ

Figure 3. An example of 2D (left) and 3D (right) representations of RNA structures, here illustrated for a tRNA. The RNA secondary
structure is an important step towards the full 3D structure. (Figure from [116].)
doi:10.1371/journal.pcbi.1002100.g003

Figure 4. Representations of RNA (secondary) structure. From top left: A circle plot, a conventional secondary structure diagram, a mountain
plot, and a dot plot. The bottom diagram shows the secondary structure in dot-bracket notation, where a base pair is represented by matching
parentheses. The respective colors in each diagram represent the same base pairs. The structure shown is a glycine riboswitch from B. subtilis, Rfam
family RF00504.
doi:10.1371/journal.pcbi.1002100.g004
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where the last term is used for special cases, e.g., to assign bonus

energies to unusually stable tetra loops. While the model allows only

Watson-Crick (AU, UA, CG, and GC) and wobble pairs (GU,

UG), non-standard base pairs in helices are treated as special types

of interior loops. Therefore, an extended dynamic programming

algorithm is needed and replaces the one shown above.

Using the loop-based energy model is essential in order to

achieve reasonable prediction accuracies. On average, current

energy models achieve accuracies of *50{70% in terms of the

percentage of correct base pairs [46]. Prediction accuracy tends to

fall somewhat with sequence length [47]. This effect could be

simply due to combinatorics (long RNAs have more wrong

structures), or because long sequences are kinetically trapped in

structures other than the ground state. Recent approaches

combine structure-probing experiments and use the following

information for single/double-stranded positions as constraints to

the folding algorithms to obtain higher accuracy [48,49].

The more standard energy model results in somewhat more

complicated recursions and requires additional tables. However,

memory and CPU requirements remain O(L3) and O(L2) as in

the Nussinov algorithm. The factor L3 comes from the time it

takes to fill out the upper half of the matrix of size L2 and then

check for adding sub-structures (the k index in Equation 1). The

crucial quantity in the loop-based version is the optimal free

energy for a sub-sequence x½i::j� enclosed by a base pair (i,j). In

order to compute that, we now have to distinguish between the

different types of loops that can be closed by i and j. For a

complete set of corresponding recursions see e.g., [50].

Folding of Randomized Sequences
While it seems natural to detect ncRNA genes on the basis of

structure prediction, the task is far from straightforward. The

problem is that almost any RNA sequence will form some kind of

secondary structure. The real challenge is therefore to distinguish

whether a structure is spurious or may constitute a functional

structure. Unfortunately, structures formed by functional ncRNAs

do not look significantly different from structures formed by

random sequences [51], as illustrated in Figure 8. By random

sequences we denote sequences for which the order of the

nucleotides has been shuffled. Often this is done by preserving the

di-nucleotide order, as that has an impact on the stacking of base

pairs.

In fact, when Rivas and Eddy set out to build a general RNA

gene finder based on this principle, they had to conclude that

secondary structure alone is generally not significant enough for

the detection of ncRNAs [27]. Subsequent studies [52] focused on

folding energies and showed that (i) functional RNAs tend to be

slightly more stable than randomized RNAs, (ii) the difference is

statistically significant, but too small to be of much use without

additional criteria, and (iii) that for a fair comparison randomized

sequences should be generated such that the di-nucleotide content

(not just nucleotide composition) is conserved.

A notable exception are microRNAs [53] which form unusually

stable structures.

Extracting Structure from Multiple RNA
Sequences

As single sequences are not sufficient to extract a clear signature

of RNA structure, and since RNA structure can be more

conserved than sequence, multiple (orthologous/syntenic) se-

quences can be searched to find a common structure. It is

particularly of interest to detect or exploit compensating base

changes, as these indicate conserved structure in spite of varying

sequence as exemplified in the toy example in Figure 1. Below, we

conceptually describe approaches to predicting consensus RNA

structure from either aligned or unaligned sequences, an essential

step towards searching for RNA structure in genomic sequence.

Mutual Information
Given a multiple sequence alignment (typically made without

knowledge of the structure), the most common way to quantify

covariation for the purpose of RNA secondary determination is by

measuring the mutual information content [54,55]:

Mij~
X
X,Y

fij(XY) log
fij(XY)

fi(X)fj(Y)
, ð3Þ

where i and j are two columns of a multiple sequence alignment,

fiX denotes the frequency of nucleotide X in column i, and

Figure 5. Decomposition of RNA secondary structures for the Nussinov algorithm. The decomposition is unambiguous in the sense that
each structure can only be decomposed in a single way.
doi:10.1371/journal.pcbi.1002100.g005

Figure 6. Free energies for stacked pairs and loops in kcal/mol. Note that both base pairs have to be read in 59-39 direction.
doi:10.1371/journal.pcbi.1002100.g006
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fij(XY ) denotes the frequency of co-occurrence of the nucleotides

X and Y .

Mutual information makes no use of pairing rules and can

therefore be used to detect tertiary interactions as well. However,

the number of sequences needed to reliably deduce secondary

structures from mutual information alone is prohibitive for most

classes of RNA. Nonetheless, alternative versions of the mutual

information content have been shown to drastically lower the

required number of sequences [56–58]. In any case, however, it

makes good sense to combine co-variance analysis with structure

prediction techniques. A manual approach to optimize the

alignment is to revise the alignment based upon computation of

the mutual information content, a process which recently has been

automated in several projects, e.g., [59–61]. In a prediction screen,

the consensus structure predictions are often based on a fixed pre-

computed sequence alignment.

Folding Multiple Alignments of RNA Sequences
Consider a multiple alignment for which the mutual informa-

tion content has been computed, then one simple way to extract

the information about base pairs would be to employ a Nussinov-

style algorithm to maximize the amount of mutual information

between paired columns. In general, such an approach is

insufficient, as a number of structural features cannot be taken

into account, for example base pair stacking. An alternative is to

combine the information from covarying base changes with a

standard dynamic programming folding algorithm. In the RNAa-

lifold program this is done simply by averaging the folding

energy over all sequences, thus, e.g., the energy contribution of a

stacked pair in the consensus structure is taken as the average of

the stacking energy over all sequences in the alignment. To make

best use of the covariation information, this average folding energy

is augmented by a covariance term that is added as a pseduo-

energy. Instead of mutual information (Equation 3), the following

covariation term is employed:

Cij~
X

XY,X’Y’

fij(XY)DXY,X’Y’fij(X’Y’), ð4Þ

where the 16|16 matrix D is chosen such that compensatory

mutations receive a bonus of {2 kcal/mol, consistent mutations (such

as G-C ? C-U) receive {1 kcal/mol, conserved pairs get a score of 0,

and non-canonical pairs incur a penalty of 1 kcal/mol. In contrast to

mutual information, this covariance term explicitly favors consistent

mutation and tends to be less noisy for alignments with few sequences.

A widely used alternative, but similar approach, is to compute

probabilities for alignment columns (based on 4|4 substitution

rates) to be single stranded (unpaired) and probabilities for

columns to be base paired (based on 16|16 substitution rates)

and search for the structure that leads to the highest alignment

probability. This approach is taken in the SCFG program Pfold,

which aims to maximize the joint probability of consensus

structure and alignment [62]. More precisely, it computes the

probability P(Djs,T ,M) of an alignment D given a consensus

structure s, a phylogenetic tree T , and a model of substitution

rates M. This uses a Felsenstein model [63], as is usual in

maximum likelihood tree estimation, for single-stranded and base-

paired columns, respectively. In addition, it uses an SCFG to

compute the prior probability of a structure P(sjM), and thereby

the joint probability P(D,sjT ,M)~P(Djs,T ,M):P(sjM). Re-

cently, the concepts of Pfold were extended to a maximum

Figure 8. Structure prediction for two non-coding RNA sequences (DsrA and DicF) and respective (shuffled) sequences with the
same length and nucleotide composition. Most readers will not be able to distinguish between the real and randomized scenarios.
doi:10.1371/journal.pcbi.1002100.g008

Figure 7. Filled dynamic programming matrix Eij for the toy
sequence AGCACACAGGC. Values giving rise to the optimal folding
energy of {9 are shown in red.
doi:10.1371/journal.pcbi.1002100.g007
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expected accuracy framework, PETfold, to simultaneously

optimize phylogenetic and energetic information [64].

Under ideal conditions, i.e., well-conserved structure, many

compensatory mutations, and error-free alignments, all these

algorithms produce near-perfect predictions. For realistic datasets,

the challenges lie in dealing with (small) structural variations

between the sequences, while being not too sensitive to alignment

errors, and dealing gracefully with the lack of covariation.

Simultaneously Folding and Aligning RNA Sequences
Consensus structure prediction exploits the co-variation signal

in an alignment, and this signal should increase as sequences

become more diverged. A potential problem in applying sequence-

based alignments for RNA structure prediction is, however, that

with lower sequence similarity, alignments become more inaccu-

rate, eventually leading to a breakdown of structure prediction.

Empirically, this limit has been found to lie at about 60% pairwise

sequence identity, both for RNAalifoldZ [65] and in a study by

Gardner et al. [66], who showed for tRNAs that around this

similarity sequence-based alignment methods drastically lose the

ability to reproduce the alignment, whereas structure-based

methods are still providing fairly good results. A toy example in

Figure 9 illustrates how sequence similarity can be insufficient for

comparing structured RNA sequences.

In 1985, Sankoff [67] published the first method for

simultaneously folding and aligning N sequences of length L, a

method that has time and memory complexities of O(L3N ) and

O(L2N ), respectively. This basically makes the algorithm intrac-

table for more than two sequences as well as for long sequences.

Intuitively, for two sequences all folds in the one sequence are to

be compared with all folds in the other, leading to twice as high an

exponent, e.g., O(L6) instead of O(L3). This intractable high

complexity has prompted several creative attempts at simplified

versions of the Sankoff algorithm, as well as completely different

types of approaches, e.g., [68]. Complementary to folding

alignments, approaches folding the individual sequences and

aligning the structures have been proposed, e.g., [69].

Some of the first implementations for RNA structure alignments

are based on SCFGs [70,71] and avoid the high cost of the Sankoff

algorithm by using an iterative approach that alternates between

aligning sequences to a covariance model and deducing a refined

covariance model from the alignment ([70]).

The first simplified implementation of the Sankoff algorithm

was the first version of FOLDALIGN [72], which was restricted to

stem-loop structures only. Later, more complete versions were

published and the first full-scale implementation for two sequences

was dynalign [73,74]. A nice SCFG framework was also

introduced in stemloc and later consan methods [75–77].

Later, PMcomp [78] and LocARNA [79] introduced the use of pre-

computed base pair probability matrices to reduce computational

cost (PMcomp) and memory (LocARNA). Common for these

methods is that when structurally aligning two sequences, the

recursion involves a four dimensional dynamical programming

matrix. Essentially, Equation 1 can be extended to a Eij,kl where

the sub-sequences x½i::j� and y½k::l� are simultaneously folded and

aligned. The scoring scheme (energy model) thus has to be able to

score (mis)matches between unpaired nucleotides as well as

between base pairs. For the latter, one often uses the so-called

ribosum matrices [80], derived from substitution frequencies in

ribosomal RNAs, but also pair probabilities or even the energies of

base pair stacking.

Recently, basic conceptual improvements to the Sankoff-style

approach as introduced in FOLDALIGN [81] have been imple-

mented. The first improvement was introduction of sparsification, in

which not all computations of what correspond to the k index in

the Equation 1 need to be carried out, as a number of

configurations are the same, but obtained in different ways from

composition of various sub-structures. The other improvement

was a heuristic approach that basically prunes away cells in the

dynamical programming matrix that never exceed a length-

dependent threshold. This could be accomplished by filling out the

dynamical programming matrix ‘‘ahead of time’’ (see Figure 10 for

details).

Additional methods (not explicitly employed for ncRNA gene

finding) have been published since and we refer to [42] for further

details.

Whereas most methods perform global alignments, a few do local

structural alignments. These include FOLDALIGN and LocaRNA,

which conduct pairwise local structural alignments, as well as

CMfinder [82].

RNA Structure-Based ncRNA In Silico Screens

Here, we describe the basic principles applied for the search of

structured RNAs in genomic sequence and we refer to [42] for a

detailed overview and discussion of the outcome. There are two

main directions that have been applied for the de novo search for

RNA structure, which is, as indicated above, a trade off between

computational resources and the ability to explore the size of the

search space. The two directions are, one that employs sequence-

based alignments and one that also exploits synteny/orthology, but

allows for structural (re-)alignment of the sequences. This is also

sketched in Figure 11.

Figure 9. Two toy sequences that, if aligned only by their sequence, do not match in secondary structure. If correctly aligned, low
sequence similarity between the two sequences does not hinder the revelation of structure.
doi:10.1371/journal.pcbi.1002100.g009
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Screens on Sequence-Based Alignments
These screens are typically carried out by using a sliding

window, that is, a pre-defined window of some size is moved along

a set of multiple aligned genomes (typically MAF [Multiple

Alignment Format] blocks from the UCSC browser [83]). The

alignment is based on sequence similarity and the window slides a

Figure 10. Filling out the dynamical programming matrix ‘‘ahead of time’’. That is, for the current position in the sequence just partially
filling out future cells, either for the first time, or by updating the maximum score in the particular cell. All grey cells, including the blue cell and the
current cell (i,j of a single sequence), have been completely computed. The green and yellow cells are partially filled out, making part use of the red
cells (previously computed). (The figure is from the supplemental material of [81].)
doi:10.1371/journal.pcbi.1002100.g010

Figure 11. The basic flow of strategies for de novo prediction of RNA structures in genomic sequences. Given the strategy of applying
multiple organism sequences, orthologs are already obtained. For the homology search using the obtained de novo candidates, these can be
compared in syntenic regions as for obtained homology candidates. (Figure courtesy of Christian Anthon.)
doi:10.1371/journal.pcbi.1002100.g011
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number of nucleotides (e.g., half or quarter of the window size) in

each step. In each window a consensus structure prediction is

performed. By the end of the screen, various types of post

processing are carried out, such as ranking the findings, estimating

a false positive rate, determining strand specificity, and finding

overlapping regions.

A potential drawback of the procedure is that results depend not

only on the quality of the input alignments, but also on the

windowing procedure. Windows should be large enough to fully

cover ncRNAs (or at least a complete substructure), but should not

be much larger than the smallest ncRNAs one wants to detect. A

window size of, e.g., 120 nt, as has been used in RNAz screens (see

below), is large enough to ensure that almost all miRNAs

precursors will be detected. However, for maximum sensitivity,

it can make sense to repeat screens using different window sizes.

An early reasonably successful attempt to predict structured

RNAs from sequence alignments was qrna [84], which employed

three different models of sequence evolution: a pair of HMMs

describes the null model of sequences evolving without position

dependent constraints, a second HMM that produces pairs of

codons and models the evolution of protein coding sequences, and

finally a pair of SCFGs is responsible for determining the evolution

of sequence pairs with a common secondary structure. qrna

computes the likelihood of the input alignment for each model,

and identifies the model that yields the highest likelihood for the

input alignment. qrna was successfully used to predict ncRNAs

candidates in E. coli and S. cerevisiae [85,86], some of which were

verified experimentally. A limitation of qrna is that it only works

on pairwise alignments. With the more recent method, Evofold

[87] tries to extend the qrna approach of model comparison to

multiple alignments. It adopts the pfold approach of modelling

the joint probability of consensus structure and alignment by

combining a phylogenetic model (substitution process along the

branches of a tree) with a simple SCFG to compute the a priori

probability of a structure.

In contrast to the SCFG-based approaches, the AlifoldZ and

RNAz programs are based on energy-directed folding. In [65] it

was shown that (in contrast to single-sequence folding) the joint

folding energy of real ncRNAs can be distinguished from the

folding energies of randomized alignments. A natural measure to

assess whether an RNA is unusually stable is to compute a z-score

over folding energies z~
E{m

s
where m and s are the mean and

standard deviation of randomized sequences obtained by shuffling.

The idea in AlifoldZ is simply to compute the z-score using the

energies of consensus structures as returned by RNAalifold. This

is straightforward except that it requires a method to randomize

alignments. Simply shuffling columns would result in alignments

with unusual gap and conservation patterns (e.g., many short gaps

instead of a few longer gaps). AlifoldZ therefore uses a

conservative shuffling where only columns that display the same

gap pattern and similar conservation can be swapped.

The shuffling procedure, however, results in a somewhat slow

procedure. RNAz [88] therefore aims to avoid shuffling altogether.

It uses energy z-scores for single sequences only and combines it

with a separate measure of structure conservation. Importantly,

the z-scores for single sequences can be estimated, as it turns out

that the mean energy m and standard deviation s are simply

functions of the sequence length and composition. RNAz therefore

uses a support vector machine (SVM) (for a tutorial, see e.g., [89])

to train regression models for m and s, which allows computation

of z-scores with only a single call to the folding algorithm. The

latest version of RNAz [90] improves detection accuracy by using

a regression model based on di-nucleotide content rather than

nucleotide frequencies. To quantify structural conservation, RNAz

uses a structure conservation index (SCI), defined as the ratio of the

energy returned from consensus structure prediction EA divided

by the average folding energy of the individual sequences

SCI~EA=�EE, see Figure 12. Finally, a SVM takes the z-score

and SCI as input and classifies the alignment (of the given window)

as containing a significant RNA structure or not.

The Sankoff-based method Dynalign was applied in a

screening approach using a fixed size window, but allowing for

realignment (by Dynalign) and training of an SVM on such

alignments. For low sequence similarity candidates (with identity

less than 50%), it (not surprisingly) performs better than RNAz [91].

Subsequently, Dynalign has been optimized to lower its

computational resources by employing an HMM for pre-

processing the input and applying the HHM-based alignment as

a constraint [74].

Local Searches
A local search for RNA structure deviates from that of

sequence-based alignments in two main ways. Firstly, even though

the alignment is used to indicate orthology or synteny, the

alignment itself is ignored and the combined sequence structure

approach is applied to the sequences. Secondly, the approach is

Figure 12. Computation of the SCI from a multiple alignment.
doi:10.1371/journal.pcbi.1002100.g012
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not bound by any window, so does not suffer from limitations such

as adding too much flanking region and/or partial overlap to a

real RNA structure, both of which can result in erroneous

detection of RNA structures. In contrast, the local search

approaches do not suffer from these limitations, but come with a

set of their own to lower the computational overhead and make

the methods practical. These limitations include a limited motif

size, typically *200{500 nt, though this might change in the

future.

In the Sankoff-based approach FOLDALIGN, constraints other

than those mentioned above made genome-wide screens possible.

Two corresponding genomic sequences of lengths L1 and L2 were

screened, but since the motif size was limited to size lƒL1,L2, it

was only necessary to store a 4D matrix constrained by l (typically

*200 nt) rather than the full (large) sequence lengths. Essentially,

the dynamical programming matrix slides along the two genomes

and for each position throws away elements corresponding to

positions no longer included by the motif range while adding new

ones. To screen (genomic) sequences, one of the sequences is

chopped into pieces of size ls, where a default value is ls~2l{1
and where two consecutive pieces overlap l{1 nucleotides.

Without employing pruning, this doubles the running speed as

compared to storing the entire 4D programming matrix in

memory. This approach was applied to screen corresponding but

unaligned sequences between human and mouse [92].

While the current local alignment version of FOLDALIGN is

limited to two sequences, it is also of interest to conduct a screen

involving multiple sequences. The program CMfinder [82]

searches a set of unaligned sequences using seed structures found

from energy folding. It aims exactly to do what is outlined in

Figure 1. The principle is summarized in Figure 13 and holds

significant overlap to the early SCFGs [70]. The candidates are

used to construct an initial alignment from which a covariance

model is constructed and used to make further searches.

Additional findings are incorporated into the model and a new

search is made until convergence is reached. As in the work of

Eddy and Durbin, an expectation maximization (EM) algorithm

was employed to find the optimal local structure. CMfinder was

also recently applied to screen for ncRNAs in prokaryotes [93,94]

and has been a main tool in riboswitch discovery, e.g., [94]. An

additional strength is that if some of the sequences do not contain

the RNA structure, they will simply be ignored, whereas the

sequence alignment–based methods discussed above try to predict

an RNA structure in all sequences.

An overview of the methods applied in in silico screens along

with a short description of what they have been applied on can be

found in [42].

False Discovery Rates
A main issue that comes with all the methods for de novo RNA

structure searches is they have high false positive rates, around

50% [42]. Furthermore, a comparison of the ENCODE regions

[95] that comprise one percent of the human genome show little

overlap between RNAz, Evofold, and CMfinder. Even though the

methods work in quite different ways, they all aim to fulfill the

same task. This clearly shows that the area still needs to mature. A

future direction is to improve the background model for the

screens, e.g., by using di-nucleotide shuffling [90]. A major

challenge lies in providing good background models for shuffling

multiple alignments. Recent advances in that area include

methods like SISSIz [96] and Multiperm [97].

The Multiperm program shuffles the multiple alignments,

while preserving gap and local patterns of conservation, while also

preserving the approximate di-nucleotide frequencies, which is a

main concern. The SISSIz program simulates (using a phyloge-

netic substitution model) a multiple alignment with a given

dinucleotide content and does preserve, on average, local

conservation patterns and gap structure. To our knowledge, the

two programs have not been systematically benchmarked, but in

our experience they are of approximately the same quality

(unpublished observations).

Performance Evaluation
Evaluating the performance of both RNA structure prediction

and RNA gene finding is a subtle task. In both cases, a comparison

to known (blinded to the experiment) data is required. RNA

structure prediction is typically evaluated by comparison to

curated structure data, e.g., [61]. From the number of (in)correctly

predicted base pairs one computes accuracy measures, such as the

positive predictive value (PPV) [98] and specificity, or Matthews

correlation coefficient [99]. The latter is for RNA structure

prediction well approximated by the geometric mean of the

sensitivity (SEN) and PPV [100]. Note that the SCI measure is not

suitable for performance evaluation, since it does not compare

predictions to a blind dataset. SCI is a measure of divergence of

the structures in the multiple alignment, and a high SCI does not

necessarily imply correct performance, but merely states that the

consensus structure is in good agreement with the structure of the

individual sequences. Still, the entire structure prediction can be

wrong.

For RNA gene finding, the genomic locations of predicted

structures are compared to the locations of known RNAs (in blind

dataset). Overlap of prediction and known gene (by some

threshold) are used to state that a known RNA gene has been

correctly predicted, see e.g., [81]. A major problem, however, is to

measure the false positives, because a prediction in a given

genomic location might indicate a so far unannotated ncRNA

gene. What can be measured, however, is how many of the known

ncRNA genes are missed in some benchmark dataset.

Discussion

Approaches for de novo and in silico searching for structured

RNAs is a highly difficult task that exceeds ‘‘regular’’ finding of

protein coding genes in complexity due to the lack of regular

patterns (such as codon bias). Algorithms have to take long-range

interactions (secondary structure) into account, and typically work

in a comparative manner requiring several homologous sequences.

The current algorithmic approaches using sequence-based

alignments are much faster than using structural alignments

[42]; however, structural alignments can take regions with weak

sequence conservation into account more accurately. An observa-

tion from the CMfinder screen on the ENCODE regions was that

the CMfinder alignment was similar to the original alignment for

MAF blocks with high sequence similarity, but showed significant

rearrangement for low similarity blocks [101].

A major challenge is the quality of currently available genomic

MAF alignments. Especially if the number of species is large,

alignment blocks are quite short such that an ncRNA may be

broken up into multiple blocks. In this case one can try to extend

or merge MAF blocks without losing too many species. Often,

MAF blocks appear to be broken by gaps in one organism

(unpublished observations).

When screening for RNA structures in genomic sequence, the

respective methods optimizes a scoring function and within that

function seeks an optimal structure. However, the structure

predicted might well be suboptimal for a number of reasons.

These include inaccuracies of the energy model, kinetic folding
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effects, as well as neglecting tertiary structure. Adding covariance

information can dramatically improve the quality of structure

prediction, but is dependent on the quality of the alignment. This

is an issue in particular due to the limited quality of genome-wide

alignments.

As the number of species grows, alignment blocks tend to

become smaller. This imposes length constraints on the length of

ncRNAs that can be detected, and may in the future require more

sophisticated pre-processing of input alignments. In addition, the

different search strategies have their own constraints on the length

of their motifs (due to fixed window size, computational

complexity, etc.) and thus have the same issues as for limited size

MAF blocks. Currently, genomic screens typically result in a

number of overlapping predictions, and the entire region is then

merged into a candidate region for which there sometimes is not

an entire structure prediction, e.g., [101,102]. In fact, an open

challenge is to make a good strand discriminator, as a prediction

on one strand can imply an almost equally good prediction on the

other strand. Some work has been initiated in this area [103].

Compensating base pairs are clearly important, even though

systematic analyses to study the impact have not been carried out.

As discussed in [42], the overlap between RNAz, EVOfold, and

CMfinder on the ENCODE regions [95] was poor, and a main

difference was that a substantial amount of CMfinder candidates

had more and more of the MAF blocks re-aligned as sequence

similarity dropped, suggesting that compensating base changes are

important in lesser regions. In a study of known RNAs from Rfam,

it was concluded the that MULTIz alignments were relatively

accurate, but with room for better alignments in a number of

regions [104]. Thus, a factor contributing to the lack of detection

of novel RNAs could be the ability to include compensating

changes into the alignments.

Suboptimal structures have not yet been taken systematically into

account in ncRNA gene finding methods. However, at least in some

cases, they might be essential for the detection of functional RNAs.

Riboswitches, for example, are known to change conformation, and

it is therefore expected that such types of information can add value

to a genomic screen in general. To our knowledge, there have not

been any systematic studies to compare predicted RNA structures

from in silico screens with experimental data.

Simultaneously with the potential for RNA structure in the

genome, a number of recent studies have shown the existence of

long non-coding RNAs (lncRNAs), which are long transcripts.

Presumably, these lncRNAs are largely unstructured [105].

However, recently, one of these lncRNAs was shown to have an

enhancer-like function [106] that was coupled to the presence of

short RNA structures in the lincRNA. These lncRNAs have been

revealed to cover a variety functions [107], including epigenetic

gene silencing [108], antisense regulation [109], and possibly

chromatin organization, to promote long-range gene activation

[110], to mention just a couple of examples. Over time there have

been some attempts to distinguish coding from non-coding

sequence on transcript. For a recent approach (post the lncRNA

awareness), see [111].

Whether all lincRNAs contain local structured domains remains

an open question. In [101] a functional RNA structure (67 nt) was

predicted within a 2.8-kb ncRNA expressed in the brain, and

subsequent studies revealed that this ncRNA also has overlap to

RNAz predictions. Scenarios like this add to the challenge of

arriving at full-length and/or functional transcripts from the RNA

structure predictions, and it appears that RNA structure

predictions cannot stand alone and will need to be accompanied

by other types of data and possibly follow-up experiments to assign

functional information.

Recently, exciting experimental developments have opened the

arena for high-throughput structure probing on a transcriptome

scale [112,113]. These methods promise to provide useful data

that can complement the computational screens, but are still in

their early phase, each with their own challenges. For example,

none yet work in vivo. Other sources for probing data are also

Figure 13. Searching unaligned sequences using CMfinder. After construction of an initial alignment (based on energy folded seeds), a
covariance model is constructed and used to make further searches. Additional findings are incorporated into the model and novel searches are
made until convergence was reached. (The figure was kindly provided by Zizhen Yao.)
doi:10.1371/journal.pcbi.1002100.g013
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promising to provide information applicable to a transcriptome-

wide scale [114]. Incorporating such data in folding algorithms,

including those used for genomic screens, will therefore be highly

relevant. Emerging work in that area has recently been initiated

[115].
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