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The SARS-CoV-2 pandemic has highlighted how an emergent

disease can spread globally and how vaccines are once again

the most important public health policy to combat infectious

disease. Despite promising initial protection, the rise of new

viral variants calls into question how effective current SARS-

CoV-2 vaccines will be moving forward. Improving on vaccine

platforms represents an opportunity to stay ahead of SARS-

CoV-2 and keep the human population protected. Many

researchers focus on modifying delivery platforms or altering

the antigen(s) presented to improve the efficacy of the

vaccines. Identifying mechanisms of natural immunity that

result in the control of infection and prevent poor clinical

outcomes provides an alternative approach to the

development of efficacious vaccines. Early and current

evidence shows that SARS-CoV-2 infection is marked by

potent lung inflammation and relatively diminished antiviral

signaling which leads to impaired immune recognition and viral

clearance, essentially making SARS-CoV-2 ‘too hot to handle’.
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Inflammation: good or bad for infections and
vaccines?
The SARS-CoV-2 pandemic has resulted in an estimated

248 million cases worldwide with over 5 million deaths

[1]. Though healthy adults and children generally clear

infection with mild to no symptoms, they are able to

spread the virus to more vulnerable populations (elderly,

obese, diabetic, immunocompromised, etc.) who are more
www.sciencedirect.com 
susceptible to developing severe COVID-19 disease. A

wealth of literature has been published on SARS-CoV-2

infection and one common theme observed is that severe

COVID-19 is a disease characterized by production of

potent inflammatory mediators including IL-1b and IL-6,

both in the lungs and systemically [2,3,4��,5,6]. While

inflammation is a necessary component of protective

immune responses to viral infection, too much inflamma-

tion and/or the wrong type of inflammation can lead to

poor outcomes. Likewise in vaccination, inflammation is

observed to be part of the signature of a good vaccine

response [7–10]. However there are multiple types of

inflammation (Interferon-driven, NF-kB driven, MAPK

driven, Type 1 versus Type 2) and which types of

inflammation are good versus bad at promoting protective

immune responses is highly dependent on the nature of

the pathogen. So how do we go about investigating what is

good inflammation in SARS-CoV-2 vaccination and

leveraging this to develop better vaccines? One approach

is to leverage Systems Immunology to identify the

immune signatures during vaccination which are associ-

ated with vaccine efficacy. Arunachalam et al. used this

approach to identify the components of the immune

response which modulate efficacy of the Pfizer-BioN-

Tech BNT162b2 mRNA vaccine. They showed that

boosting of this vaccine resulted in significant increases

in polyfunctional CD4 and CD8 T cell responses, as well

as a potent induction of interferon and inflammatory

signaling in monocytes. Interestingly, this inflammation

was only present after the boost and did not persist a week

after boosting. Could the lack of sustained inflammation

account for the waning immunity observed post-vaccina-

tion? How can we promote and sustain a proper inflam-

matory response to SARS-CoV-2 vaccination? Only

detailed studies of the approved SARS-CoV-2 vaccines

can answer these questions but such studies and data are

not currently available.

Approved SARS-CoV-2 vaccine platforms
Six COVID-19 vaccines have been approved by the

WHO which span four different platforms and have

efficacies ranging from 50 to 95%. The four platforms

are: 1) the Moderna and Pfizer mRNA vaccines [11,12]; 2)

the Johnson & Johnson human Adenovirus (AD26.COV

2.S) [13]; 3) the AstraZeneca AZD1222 chimpanzee Ade-

novirus (ChAdOx1 vector) vaccine [14]; and 4) the Sino-

pharm and Sinovac-CoronaVac inactivated virus vaccines

[15,16]. The first three platforms encode for the full-

length prefusion stabilized spike protein. That efficacy

varies among the platforms even though the antigen is
Current Opinion in Virology 2022, 52:89–101

mailto:jeffrey.alan.tomalka@emory.edu
http://https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/1051V071C04
http://https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/1051V071C04
https://doi.org/10.1016/j.coviro.2021.11.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2021.11.012&domain=pdf
http://www.sciencedirect.com/science/journal/18796257


90 Preventive and therapeutic vaccines
similar, with the mRNA platforms having the highest

efficacy, supporting the idea that there are specific

immune pathways induced by vaccination which promote

protection and vary by platform.

The development of more broadly efficacious vaccines is

critical for continuing efforts to fight the SARS-CoV-2

pandemic. The emergence of variants including the delta

(B.1.617.2) and omicron (B.1.1.529) variants have already

begun to raise questions about the efficacy rates of current

COVID-19 vaccines [17��,18,19,20��]. It has been shown

that the neutralizing activity of vaccine-induced antibo-

dies is reduced against variants including the delta, beta

(B.1.351), gamma (P.1), kappa (B.1.617.1) and mu

(B.1.621) variants [21–25]. Compounding this scenario

is the fact that herd immunity has not been, and may

never be, reached by a combination of vaccination and

natural infection due to a multitude of factors including

limitations on vaccine availability around the globe, the

fact that high vaccine efficacy rates are benchmarked

against preventing severe disease not infection/transmis-

sion, vaccine hesitations/concerns and preexisting medi-

cal conditions. Herd immunity is a population state in

which a large enough percentage of individuals are

immune to infection such that it nearly abrogates disease

transmission between individuals thus providing protec-

tion of the whole population to the spread of disease.

Common examples of vaccine-induced herd immunity

are measles, mumps, and smallpox for which infections do

still occur but they are not able to spread. Higher rates of

infection and transmission associated with SARS-CoV-2

variants further limits the potential for herd immunity. As

a result, SARS-CoV-2 viruses continue to circulate, inevi-

tably giving rise to new variants which will further impact

the efficacy of approved vaccines. This may lead to a

seasonal infection similar to Influenza and the other

endemic b-Coronaviruses. So where do we go from here

to develop a better vaccine?

Adjuvants as a means to the end of better
vaccine efficacy
Altering the antigenic component of a vaccine is not the

only way to improve the efficacy of the response. The

components of the vaccine platform themselves, includ-

ing delivery methods, formulation, and adjuvant, can

directly impact how the immune system responds to

the vaccination and modulate whether or not protective

responses are induced. Recent results from Arunachalam

et al. showed that modifying the adjuvant included with a

RBD protein subunit can modulate immune responses

including Ab magnitude and breadth of variant neutrali-

zation, T cell responses and protection from viral chal-

lenge supporting the idea that inclusion of adjuvants

which drive the proper protective immune responses is

critical for enhancing efficacy [26��]. Similar differences

in vaccine efficacy based on adjuvant inclusion were

shown, specifically, for Alum and MF59 in the context
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of SIV/HIV [27,28�] as well as TB and Influenza [29]. This

work, done by our group and others, demonstrates that

Alum and MF59 induce distinct inflammatory immune

profiles during vaccination which directly modulates the

efficacy of vaccine responses; whether this modulation

promotes or reduces vaccine efficacy is platform and

pathogen dependent. That distinct adjuvants induced a

different magnitude and quality of the SARS-CoV-2 (and

others) vaccine response isn’t surprising, yet the expe-

dited nature of SARS-CoV-2 vaccine development meant

no testing was performed to study the impact of adju-

vants. Understanding the inflammatory pathways which

drive protective COVID-19 vaccine responses and how

these pathways are differentially modulated by available

vaccine platforms and adjuvants is critical to the

development of next generation COVID-19 vaccines.

Unfortunately, the data does not currently exist to com-

prehensively compare the protective immune responses

across the currently approved COVID-19 vaccine plat-

forms. In the absence of such data, how can we begin to

understand the key inflammatory cells and pathways

important for vaccine responses to SARS-CoV-2?

Informative and relevant knowledge could be garnered

from studies of an efficient natural immune response

triggered upon SARS-CoV-2 infection and which would

lead to the protection from dissemination of infection and

from the development of poor clinical outcomes in

infected subjects. Understanding the dysregulation of

natural immunity during infection will provide insights

into immune pathways which contribute to pathology and

thus might not be effective at preventing infection. At the

same time, immune pathways which are suppressed in

severe cases compared to mild or asymptomatic cases

could represent key targets to boost the immune response

and improve vaccine efficacy. We will now discuss a

critical immune mechanism associated with severe dis-

ease that can help inform on developing more efficacious

vaccines.

Inflammation is a hallmark of COVID-19
disease progression
COVID-19 is characterized by progressive inflammation,

lung damage, and lymphopenia which culminate in

severe respiratory distress and cytokine storm in patients

with severe COVID-19 disease [2,3,4��,5,6]. It has

become evident that the SARS-CoV-2 virus utilizes mul-

tiple subversions of the human immune system including

driving inflammation and the inhibition of the antiviral

innate interferon responses [30,31]; this promotes viral

persistence, mainly in individuals with pre-existing co-

morbidities (age, high BMI, diabetes, etc.) or who are

immunocompromised, by driving an aberrant immune

response that is not capable of controlling the SARS-

CoV-2 virus within the first 1–2 weeks of infection, as is

normally the case for most infected individuals. Damp-

ened interferon (IFN) responses during acute infection in
www.sciencedirect.com
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vitro and in vivo distinguish SARS-CoV-2 from other

respiratory infections including Respiratory Syncytial

virus (RSV) and Influenza A virus (IAV) [32��,33]. Select

human clinical trials using IFN treatment have shown

efficacy in reducing disease severity, disease longevity,

recovery from symptoms and mortality, indicating that

interferons may be critical for limiting COVID-19 disease

[34–36]. This early IFN signaling is responsible for prim-

ing cells towards an anti-viral state that allows the control

of viral dissemination. In the absence of a potent induc-

tion of antiviral interferons stimulated genes (ISGs),

SARS-CoV-2 virus can persist in the upper and lower

airway epithelium leading to infectious spread to the

circulation and progressive COVID-19 disease. It is

known that inflammasomes and IFNs regulate each other;

inflammasomes antagonize IFN responses by cleaving

cGAS to limit IFN production downstream of cGAS/

STING; IFN signaling has been shown to suppress

inflammasome activation in response to multiple stimuli

including the adjuvant Alum [37–39]. Thus, scales tipped

too far in favor of inflammation over IFN signaling could

be a major contributing factor to the severity of acute

infection, the subsequent down regulation of effective

innate and adaptive immune responses, and disease pro-

gression. So then, what is the source of this deleterious

inflammation?

Progression to severe COVID-19 is highlighted by a local

and systemic inflammatory response and the subsequent

degeneration of respiratory function. Evidence from

SARS-CoV-2 infected patients highlight inflammasomes

and IL-1b as potential critical mediators of this inflam-

mation [5]. Inflammasomes are cytosolic, multi-protein

complexes which mediate activation of inflammatory

caspases and the eventual processing of pro-IL-1b and

pro-IL-18 into their biologically active forms. Inflamma-

somes can be activated in response to a wide range of

stimuli, including bacteria [40–44], fungi [45–47] and host

DAMPs [48,49] as well as, to a lesser extent, viruses [50–

52]. These cytokines are potent inflammatory regulators

which drive leukocyte chemotaxis, activation, and differ-

entiation. IL-1b in tissue activates potent neutrophil and

macrophage responses to combat extracellular infection

and cellular dysfunction caused by tissue damage [46,53–

56]. In line with this, altered neutrophil and macrophage

responses are hallmarks of COVID-19 lung damage and

disease progression [57,58,59��,60–62]. Evidence of

inflammasome activation is also present in the blood of

patients with severe COVID-19 [63�,64].

Inflammasome activation also routinely induces a lytic

form of cell death called pyroptosis which is mediated by

cleavage of Gasdermins, canonically Gasdermin-D, and

their insertion as multimeric pores into cellular mem-

branes [65,66]. The resulting perturbation in ion homeo-

stasis (K+ efflux and Ca2+ influx/mobilization) leads to

cellular rupture and release of inflammatory components
www.sciencedirect.com 
normally sequestered within the cytosol of the cell. One

of these components, Lactate Dehydrogenase or LDH, is

a marker for COVID-19 disease severity and progression

supporting that inflammasome induced cell death is a

driver of COVID-19 pathology [67,68�,69]. Heightened

cell death induced by inflammasomes combined with the

capacity of IL-1b to promote chemokine production and

extravasation of cells into tissues could explain the acute

and persistent lymphopenia observed in COVID-19

patients [70–72]. Systemically, IL-1b mediates its effects

through direct binding to the cell as well as through

inducing production of secondary inflammatory media-

tors including IL-6 and CRP [73–75], both of which have

been identified as critical determinants of disease pro-

gression and severity [74,76–79]. With this mounting

evidence for inflammasome signaling being a central

player in COVID-19 disease progression, the next step

would be to identify potential cellular sources of SARS-

CoV-2-dependent inflammasome activation.

Lung inflammation spreads from epithelial
cells to infiltrating cells
Given that the upper airway and lungs are the primary

target of SARS-CoV-2 infection, it is logical to hypothe-

size that cells resident to and/or infiltrating into the lungs

would be the initial source of this inflammasome activa-

tion. In vitro infection of human monocytes with SARS-

CoV-2 induced inflammasome activation and cell death

[63�,80]. Yet, airway epithelial cells are the main targets of

natural SARS-CoV-2 infection, not monocytes.

To understand how IL-1 and inflammasome signaling is

activated and spreads among the first line of immune

defense, we probed publicly available datasets of single

cell RNA sequencing of bronchioalveolar lavage fluid

(BALF) [81��]. Liao et al. found that in severe COVID-

19 disease there is heightened infiltration of macrophages

and neutrophils into the BALF. To confirm these find-

ings, we mined transcriptional profiles from the Human

Cell Atlas and Human Protein Atlas to encapsulate a

wider set of cells and visualize clusters using UMAP.

Visual comparison of cluster frequency between healthy,

mild, and severe disease shows accumulation of epithelial

cells, neutrophils, and a shift in the monocyte population

(Figure 1a). Quantitative assessment of frequencies of

cell clusters shows significant increase in the frequency of

epithelial cells within BALF from patients with severe

disease compared to healthy controls and mild disease

(Figure 1b). Gene Set Enrichment Analysis (GSEA) was

performed to identify if IL-1 and inflammasome related

pathways were being differentially modulated in the

epithelial cells from severe COVID-19 as compared to

mild COVID-19 and healthy controls. Indeed, we

observed heightened expression of key pathways of IL-

1 signaling and NF-kB inflammation in epithelial cells

from severe COVID-19 compared to mild disease or

healthy controls (Figure 1c). Multiple key inflammatory
Current Opinion in Virology 2022, 52:89–101
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(Figure 1 Legend) Epithelial cells in the BALF of severe COVID-19 patients are elevated in frequency and have heightened inflammatory signaling.

Single cell sequencing of the BALF from three healthy controls and three mild and six severe COVID-19 patients was analyzed. Cells were

clustered using UMAP and cell identify annotated using the Human Cell Atlas and Human Protein Atlas. (a) UMAP visualization of cells/clusters

split into healthy control, mild and severe COVID-19. (b) The frequency of epithelial cells in the BALF is significantly enhanced in severe disease

compared to healthy controls, with a similar trend seen in mild versus healthy controls. (c) Gene Set Enrichment Analysis (GSEA) was performed

to identify how pathways of inflammation and IL-1 signaling compared between severe disease and mild disease or healthy controls. Inflammatory

signaling including by NF-kB is significantly increased in severe disease. (d) Heatmap of expression of the leading edge genes from NF-kB

signaling which are enhanced in severe disease. Comparison of cluster frequencies was performed using paired-Wilcoxon sum rank test.
mediators (including IL-18, CXCL1, CCL2) and tran-

scriptional regulators (including KLF4, FOS, JUN, MYC,

NFKB2, NFKBIE) were among the leading-edge genes

from the Hallmark NF-kB pathway (Figure 1d). Interest-

ingly, expression of genes in the INFLAMMASOME

pathway, including CASP1 which encodes for Caspase-1,

are reduced in severe disease. The simultaneous height-

ened IL-1/inflammatory signaling and diminished inflam-

masome expression in epithelial cells, normally upregu-

lated by inflammatory signaling, suggests that epithelial

cells in severe disease which express inflammasomes die;

the resulting inflammatory signaling then spreads to the

remaining neighboring epithelial cells.

Analysis of infiltrating leukocyte populations revealed

that there were significantly elevated neutrophils in

severe disease compared to mild or healthy controls

(Figure 2a). Increased monocyte derived macrophages

and decreased alveolar macrophages are a feature of both

mild and severe disease, with severe disease showing

more significant modulations (Figure 2b). Pathway anal-

ysis for inflammatory and IL-1 pathways reveals that

inflammatory pathways are significantly elevated in

severe versus mild disease for all subsets of monocytes/

macrophages probed and neutrophils. Thus, not only are

there more neutrophils and monocyte derived macro-

phages in severe disease but these cells are also in a

heightened inflammatory status. IL-1 signaling pathway

genes upregulated in neutrophils during severe disease

include IL-1B itself, suggesting a potential additional

source of IL-1b in vivo, early targets (IL1RN, HMGB1)

and regulators of IL-1/NF-kB signaling (IL1R1, IRAK1/

3, RELA, NFKB1/2, NFKBIA). In this way, severe

COVID-19 disease is marked by the infiltration of circu-

lating neutrophils and monocytes, which become macro-

phages, that sense the inflammation driven by IL-1

signaling in epithelial cells and become primed for

inflammatory responses. These potently activated neu-

trophils and macrophages can then mediate tissue dam-

age through the production of proteases (MMPs, Elastase,

etc.) which degrade extracellular components, cytokine

production and cell death. Cell death releases inflamma-

tory mediators which further exacerbate cell activation

and tissue damage. Inflammation generated in the lungs

can then spread to the periphery, as evidenced by previ-

ous discussion of systemic markers of inflammasome and

inflammation, where a cytokine storm drives progressive

dysfunction and disease severity. Inflammasome
www.sciencedirect.com 
activation that is localized to the lungs and limited in

the circulating blood could explain why the cytokine

storm in COVID-19 does not lead to the rapid and high

mortality traditionally associated with microbial sepsis.

Microbial sepsis [82] is a disease where inflammasome

activation and inflammation within the blood drives rapid

multi-system organ failure and death in contrast to the

prolonged disease course associated with the cytokine

storm seen in severe COVID-19. Figure 3 provides a

model of initial inflammatory signaling that is activated in

the lungs in response to SARS-CoV-2, and potentially

mucosal microbial dysbiosis, and spreads to the periphery,

driving disease severity and eventually mortality. Thus,

vaccines which include adjuvants, or vectors, that aug-

ment or exacerbate tissue inflammation as is seen in

SARS-CoV-2 infection may not produce robust or effec-

tive immune responses following vaccination.

Implications for vaccine development
Avoiding the bad inflammation

So what does this mean for the development of the next

generation of COVID-19 vaccines? If inflammasome and

IL-1 activation do not induce protective immunity to

natural infection, we may consider avoiding using vaccine

components which can potently activate the inflamma-

somes. Though inflammasome/IL-1 activation is often

thought of only as a modulator of innate immunity, it also

modulates adaptive immune function. It has been shown

that inflammasome activation in vaccines can enhance

CD4 polyfunctionality, T follicular helper responses and

the magnitude of Ab titers [83,84]. In yellow fever virus

(YFV), vaccination with YFV17D is associated with

inflammasome activation which, combined with comple-

ment and interferons, leads to a broad and polyfunctional

T cell and B cell response post-vaccination [85]. IL-1 and

IL-18 are associated with T helper subset skewing of Th1

and Th17 responses [83,86–88]. IL-18 produced by DCs

has also been shown to induce antigen-independent

production of IFN-gamma from effector CD8+ T cells

[89].

The licensed adjuvant Alum [90,91] is known to activate

the NLRP3 inflammasome. Likewise, certain DNA viral

vectors including Adenoviruses [92,93] and modified vac-

cinia virus Ankara (19543380) lead to activation of inflam-

masomes including AIM2 [94], IFI16 and NLRP3. The

widespread use of Alum as an adjuvant suggests that

inflammasome activation is important for vaccine
Current Opinion in Virology 2022, 52:89–101
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Figure 2
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Infiltrating neutrophils and monocytes into the lung acquire an inflammatory phenotype and dominate the local immune response to SARS-CoV-2.

Using the same data as in Figure 1, we analyzed the frequency and gene expression status of immune cells in the BALF. (a) Neutrophil

frequencies were significantly increases in the BALF of severe disease versus mild disease and healthy controls. Monocyte-derived macrophages

were also significantly increased in severe disease versus healthy controls, with an increase also observed in mild disease. (b) We observe a

concomitant loss of resident alveolar macrophages in severe and mild disease. These data suggest that infiltrating neutrophils/monocytes begin to

dominate the local lung immune response during severe COVID-19. (c) GSEA analysis per cell cluster reveals a consistent signature of

upregulated inflammation in immune subsets including in monocytes/macrophages, alveolar macrophages and neutrophils. (d) Leading edge

genes from the IL-1 signaling pathway reveal key regulators of IL-1b/NF-kB are upregulated in infiltrating immune cells in severe COVID-19

disease. Comparison of cluster frequencies was performed using paired-Wilcoxon sum rank test.

Current Opinion in Virology 2022, 52:89–101 www.sciencedirect.com
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Figure 3
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Model of the induction and spread of inflammasome/IL-1b driven inflammation from the lung to the periphery in COVID-19.

In Step i, SARS-CoV-2 virus infected epithelial cells and leads to intrinsic inflammasome activation and inflammatory signaling from infected

epithelial cells in Step ii. This local inflammatory response promotes chemokine production and leads to the infiltration of circulating leukocytes

including innate and adaptive immune cells to the lungs in Step iii. The rampant inflammatory response activates these infiltrating cells eventually

leading to Step iv involving degranulation and/or cell death of immune cells further exacerbating inflammation; this process culminates in further

damage to the lung tissue including epithelial cells in Step v. This inflammatory response does not remain local and spreads to the periphery

causing (Step vi) cytokine storm and eventually the need for oxygen, mechanical ventilation and death in severe cases.
responses, however there is controversy concerning this

subject. There are multiple publications which have

published data showing that the NLRP3 inflammasome

is dispensable for the adjuvant effect of Alum [95–97].

Similarly, while flagellin has been shown to be an adju-

vant [98,99], it has been shown that the adjuvant activity

of flagellin can be independent of NLRC4 [100,101], the

inflammasome known to be activated by flagellin [100].

So while Alum is a potent adjuvant, it is far from clear how

dependent this effect is on inflammasome activity.

Inflammatory caspases are not the only mechanisms of

activating IL-1 cytokines. There are multiple sources of

proteases including neutrophils which can mediate cleav-

age and activation of IL-1 (reviewed in Ref. [102]).

Inflammasome activity in the context of other vaccines is

also ambiguous. In influenza, it was recently shown that

heightened inflammasome activation, resulting from
www.sciencedirect.com 
antibiotic treatment, was associated with lower H1N1-

specific neutralizing and binding IgG and IgA [103].

However in HIV/SIV, it has been shown that the canar-

ypox vector ALVAC, a known activator of the inflamma-

some via AIM2 [104], promotes vaccine efficacy by

inflammasome activation in monocytes NHP [105]. We

have recently published that ALVAC induced CREB1

activation, a critical modulator of reduced HIV-1 acquisi-

tion in humans and protection from SIV challenge in

NHP, was associated with IL-18 production which regu-

lated pathways of immune activation in DCs [27].

In the context of SARS-CoV-2, the two approved inacti-

vated virus vaccines, Sinopharm and Sinovac-CoronaVac,

both use Alum as adjuvant and have reported lower

efficacy rates than the mRNA-based vaccines from Mod-

erna and Pfizer. A recent study used Systems Vaccinology

to investigate the immune responses induced by the
Current Opinion in Virology 2022, 52:89–101
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Pfizer vaccine. Of pertinence, they did not observe potent

or persistent inflammation post-vaccination, however

they did not compare this to any other SARS-CoV-2

vaccine [106��]. It is prudent and necessary to better

understand how inflammasome activation and inflamma-

tion during SARS-CoV-2 vaccination modulates vaccine

efficacy and long-lived immunity. Controlled clinical

studies are needed to compare Alum with other adjuvants

(MF59, TLR ligands) to clearly understand the innate

immune responses needed during vaccination to promote

vaccine efficacy. We can learn lessons from what does and

does not work for the immune response during natural

infection to continue to inform vaccine development.

Augmenting the good inflammation

By identifying dampened Interferon antiviral responses

as a hallmark of SARS-CoV-2 infection and disease, we

can now envision designing vaccine regimens which

potently induce IFN responses to augment the genera-

tion of cells which can combat SARS-CoV-2 infection. A

recent study of Influenza vaccination identified epige-

netic changes which persisted after vaccination in mono-

cytes and DCs which were correlated with protection

from subsequent viral challenge, both to homologous

(same) and heterologous (different; Zika and Dengue)

viruses [107��]. Another study, which used a Systems

Immunology approach to dissect the immune responses

generated in human to the Pfizer-BioNtech SARS-CoV-2

vaccine, showed that antiviral and IFN signaling path-

ways were more potently induced in monocytes and DCs

after the boost (2nd dose) compared to the prime (1st

dose) [106��]. Both of these studies indicate the acquisi-

tion of Trained Immunity, a newly described process

whereby exposure of innate immune cells to pathogenic

stimuli induces epigenetic changes which augment future

innate immune responses to challenge [108–111]. This

has tremendous implications for vaccine development as

these heightened innate immune responses could help

limit breakthrough infections in vaccinated individuals.

This includes infections with viral variants as innate

immune responses are antigen-independent and unlikely

to be substantially impacted by mutations observed in

viral variants.

Adjuvants are currently in development and pre-clinical/

clinical testing which may potently induce interferon

signaling including TLR agonists [112–114] and small

molecule STING agonists [115–117]. We know from a

recent study that inclusion of 5 distinct adjuvants in a

protein subunit COVID-19 vaccine results in differential

modulation of vaccine response. Specifically, 4 adjuvants

targeting antiviral/interferon signaling showed efficacy

while an oil-in-water formulation did not [26��]. Within

the 4 successful adjuvants, there was variance in protec-

tion with all adjuvants inducing no detectable virus in the

BAL but in the nares, there was no detectable viral RNA

in four of five monkeys for AS03 and CpG-Alum
Current Opinion in Virology 2022, 52:89–101 
compared to only three of five monkeys for AS37 and

Alum. Different nucleic acid composition of vaccine

vectors may be differentially sensed by TLRs and cyto-

solic sensors of nucleic acids leading to downstream

differences in interferon signaling.

What we learn about the pathogenesis of SARS-CoV-2

infection can inform how the research community

approaches profiling and identifying the immune corre-

lates of protection during COVID-19 vaccination, across

multiple platforms. A targeted approach to optimize the

platform(s) ultimately chosen for future COVID-19 vac-

cines represents an opportunity to improve on the overall

efficacy of vaccines, irrespective of antigen inclusion.

While inflammation is a necessary component of vaccine

responses, too much vaccine induced inflammation may

not yield protective responses in COVID-19 vaccines.

Identifying what constitutes good inflammation versus

bad inflammation for SARS-CoV-2 vaccination requires

controlled studies which access samples within days of

vaccination and link these early signatures to long-term

protection; a difficult task made even more difficult by the

increasingly lower number of individuals naı̈ve to SARS-

CoV-2 infection and/or vaccination. An ideal adjuvant

may be one that is capable of potently inducing inter-

feron/antiviral responses while maintaining enough

inflammation to drive chemotaxis and jump start the

immune response. Identifying potential pathways ahead

of time provides the opportunity to stay ahead of SARS-

CoV-2 by not waiting potentially years for detailed

immune analyses of current vaccine(s) to inform on

vaccine design. Using available data on natural SARS-

CoV-2 infection and COVID-19 disease allows us to be

more proactive in designing the future of COVID-19

vaccines.

Methods
Single-cell transcriptomics

Raw count matrices for BALF single-cell RNA-seq data

were extracted from SRA Archive GSE145926 and

imported into the R package Seurat for preprocessing.

Cells with high mitochondrial content (>0.1 of reads) and

low number of reads (<200) were filtered out for Quality

Control. Expression was integrated across patients using

the SCTransform approach from Seurat using 3000 genes

as anchors on the basis of their high variance across cells,

while an additional 4000 genes were also integrated using

those same anchors. Principal component was performed

on normalized integrated data, and the optimal number of

components was inferred (25) using the Elbow method

for clustering and UMAP dimension reduction.

SingleR was used to infer cell identity of individual

clusters on the basis of the expression of their top 100 most

differentially expressed genes (FindAllMarkers function,

Seurat) in comparison with the Human Cell Atlas (https://
www.sciencedirect.com

https://www.humancellatlas.org/
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www.humancellatlas.org/) and Monaco reference profiles

from the Human Protein Atlas (https://www.proteinatlas.

org/). Clustered inferred with the same cell type were

merged together to facilitate downstream analysis.

MAST was used to perform differential expression across

severity groups, or versus viral counts/cell frequencies, by

using raw counts and taking into account cellular detec-

tion rate and sample provenance as covariates.

Gene Set Enrichment Analysis (GSEA) was performed

using the z score from the MAST analysis as ranking

variable, and was tested against inflammasome/apoptosis

genesets.

Median expression per gene/cell type/sample was com-

puted and used for visualization purposes in heatmap

format. The combined leading edge genes across con-

trasts was extracted on significant GSEA enrichments,

and was leveraged to generate row-normalized heatmaps

of pathways across cells and patients.
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In this paper, Wimmers et al. are able to demonstrate that influenza
vaccination induces not only transcriptional changes but modulates
the epigenetic landscape of the vaccine, conferring long-lived changes
in chromatin accessibility which impact on future responses. Importantly,
they show that months after vaccination these epigenetic modifications
render cells refractory to infection by both homologous and heterologous
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