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Background. Human cytomegalovirus (HCMV) is a leading cause of virally induced congenital disorders and morbidities in 
immunocompromised individuals, ie, transplant, cancer, or acquired immune deficiency syndrome patients. Human cytomegalovi-
rus infects virtually all cell types through the envelope glycoprotein complex gH/gL/gO with or without a contribution of the pen-
tameric gH/gL/pUL128L. Together with gH/gL, the HCMV envelope glycoprotein B (gB) contributes to the viral fusion machinery. 

Methods. We previously showed that gB is a ligand for the C-type lectin dendritic cell-specific intercellular adhesion mol-
ecule-3-grabbing nonintegrin (DC-SIGN) contributing to HCMV attachment to and infection of DC-SIGN-expressing cells. 
However, the features of the DC-SIGN/gB interaction remain unclear. To address this point, the role of glycans on gB and the conse-
quences of mutagenesis and antibody-mediated blockades on both partners were examined in this study.

Results. We identified DC-SIGN amino acid residues involved in this interaction through an extensive mutagenesis study. We 
also showed the importance of high-mannose N-glycans decorating the asparagine residue at position 208, demonstrating that the 
antigenic domain 5 on gB is involved in the interaction with DC-SIGN. Finally, antibody-mediated blockades allowed us to identify 
DC-SIGN as a major HCMV attachment receptor on monocyte-derived dendritic cells. 

Conclusions. Taken together, these results have permitted us to fine-map the interaction between DC-SIGN and HCMV gB.
Keywords. antibody-mediated blockade; attachment; cytomegalovirus; DC-SIGN; glycoprotein B.

 

Human cytomegalovirus (HCMV) is a highly prevalent 
beta-herpesvirus, ie, 40–90 worldwide. The virus is usually 
asymptomatic, yet it causes diseases in newborns and immu-
nocompromised hosts, eg, transplant, cancer, and acquired 
immune deficiency syndrome patients [1]. Although neutraliz-
ing antibodies (NAb) were shown to target the pentameric com-
plex [2, 3], the HCMV envelope glycoprotein B (gB) remains a 
target for the humoral response [4, 5]. Human cytomegalovi-
rus gB was recently shown to assemble with gH/gL to form the 

fusion machinery that enables virus to penetrate cells [6, 7]. Five 
gB antigenic domains ([AD] 1 to 5) are recognized by NAb [8]. 
Human cytomegalovirus gB belongs to the class III fusion pro-
teins with the herpes simplex virus (HSV)-1 gB [9], the Epstein-
Barr virus gB [10], the baculovirus gp64 [11], the Thogotovirus 
glycoprotein [12], as well as the prototypical vesicular stomatitis 
virus (VSV)-G envelope glycoprotein [13].

Human cytomegalovirus gB interacts with the dendritic 
cell-specific intercellular adhesion molecule (ICAM)-3-
grabbing nonintegrin (DC-SIGN) [14]. Dendritic cell-SIGN 
is expressed by immature monocyte-derived dendritic cells 
(MDDC) and macrophage subsets [15, 16]. It is a type II C-type 
lectin composed of a short N-terminal intracytoplasmic tail, 
seven and a half conserved 23-amino acid repeats forming 
the “neck” region involved in tetramerization [17–19], and 
a C-terminal calcium-dependent carbohydrate-recognition 
domain (CRD) containing 2 calcium sites enabling ligand bind-
ing [15]. Dendritic cell-SIGN tetramers display a high avidity for 
fucose or high-mannose sugars [20]. It recognizes endogenous 
ligands such as ICAM-2 and -3 known to stabilize interactions 
between DC and endothelial cells or naive T-cells, respectively 
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[15, 21]. It also functions as a receptor for many viral glyco-
proteins (for review, see [22]). Nevertheless, the interaction 
between DC-SIGN and gB remains poorly characterized. To 
address this point, we examine the role of glycans, mutagenesis, 
and antibody-mediated blockades.

METHODS

Ethic Statements

Blood samples from anonymous healthy volunteers were 
obtained from the Etablissement Français du Sang, the French 
blood bank (EFS, Nantes, France) in accordance with authoriza-
tions by the “Ministère français de l’enseignement supérieur et 
de la recherche” and the “Comité de protection des personnes” 
(Agreement numbers: DC-2013-1832/DC-2014-2206).

Cells

Monocytes were isolated by immunomagnetic separation 
(Miltenyi Biotec, Bergisch Gladbach, Germany) or by elutriation 
(DTC, Nantes University Hospital/Biogen Ouest, Nantes, France) 
from healthy donors (>95% purity). Monocytes were differentiated 
into MDDC as previously described [23] with 20 ng/mL recom-
binant human interleukin-4 (CellGenix, Freiburg, Germany), 
100  ng/mL granulocyte-macrophage colony-stimulating factor 
(Gentaur, Paris, France), and 2% human serum albumin (Vialebex, 
LFB, Coutaboeuf,  France). U937, HEK293T cells (American 
Type Culture Collection number CRL-3216; LGC Standards, 
Teddington,  UK), and MRC-5 (RD Biotech,  Besançon,  France) 
were propagated as described elsewhere [14].

Viruses and Reagents

TRI, an in-house clinical isolate (no sequence data available 
yet), 3 low passage HCMV laboratory strains (Toledo, TB40/E-
GFP and VHL/E; a gift from Dr. Christian Sinzger) [24, 25], and 
BAC4-based HCMV gB-mutated viruses were propagated on 
MRC-5 cells and used as clarified viral supernatants for trans-in-
fection experiments at a multiplicity of infection (MOI) ranging 
from 2 to 10. Cytomegalovirus (CMV) supernatants were also 
tittered by quantitative polymerase chain reaction (qPCR) as 
described elsewhere [26]. Chinese hamster ovary (CHO)-derived 
recombinant HCMV gB and human immunodeficiency virus 
(HIV)-1 IIIB gp120 were purchased from Sanofi Pasteur (Marcy 
l’Etoile, France) and ImmunoDx (Woburn, MA), respectively. 
Glycoproteins were used either as purified or fluorescence-con-
jugated reagents (Molecular Probes, Thermo Fisher Scientific, 
Waltham, MA). Antibodies against AD-4/5 (clones SM5-1 and 
1G2) and AD-1/2 (clones ITC33, ITC39, ITC48, ITC52, ITC63, 
and ITC88) [27] were kindly provided by Professor Michael 
Mach and Dr. Mats Ohlin, respectively. A polyclonal antibody 
(pAb) against gB was purchased from Sino Biological ([10202-
RP01-100], Beijing, China). Fifteen antihuman DC-SIGN anti-
bodies from Dendritics SA (Lyon, France) were used in this study. 
Four clones, 103G2.07, 111E3.04, 102E11.06, and 111H2.02, are 
directed against the neck region (amino acide [AA] 96–257), 

whereas 9 (clones 104B4.01, 103F12.01, 109H12.03, 113B11.02, 
106A4.01, 120E12.03, 108H8.05, 105E9.01, and 114F1.08) were 
targeting the CRD (AA, 258–404). We considered that clone 
108C7.01 recognized both the extracellular proximal region 
([ECPR] AA 59–95) and the CRD, whereas clone 102F10.04 
bound to the ECPR alone (see Supplementary Table  2). Four 
other commercially available anti-DC-SIGN monoclonal anti-
bodies (mAb), clones MR1 (Bio-Rad AbDSerotec, Oxford, 
UK), AZN-D1 (Beckman Coulter France, Villepinte, France), 
1B10, and an anti-neck (H200, Santa Cruz Biotechnology Inc., 
Heidelberg, Germany), were also used here. Antibodies targeting 
platelet-derived growth factor receptor (PDGFR)α (aR1), the β1 
chain integrin (MAR4), and the αVβ3 integrin (23C6) were pur-
chased from BD Biosciences (Franklin Lakes, NJ). Antibodies 
were used at 20 µg/mL for blockade experiments.

Viral Envelope Glycoprotein Binding Assay

Cells were resuspended in a binding buffer (Tris-buffered saline, 
1 mM CaCl2, 2 mM MgCl2; 0.1% bovine serum albumin) and 
seeded in 96-well plates at 1  ×  105 cells/wells. Dendritic cell-
SIGN/gB interaction blockade was performed by incubating cells 
with antibodies for 30 minutes at 4°C. Conjugated gB or HIV-1 
IIIB gp120 (2 µg/mL) were added to cells for 20 minutes at 4°C 
without washing. After 3 washes with ice-cold binding buffer, 
cells were analyzed on a LSR II flow cytometer (BD Biosciences, 
Franklin Lakes, NJ) with FlowJo (Tree Star, Ashland, OR). 
Surface plasmon resonance was carried out with soluble gB and 
recombinant DC-SIGN extracellular domain [28].

Transinfection Experiments

Cells were incubated with blockers for 30 minutes at 4°C if nec-
essary before adding virus (MOI = 2) without washing. After a 
subsequent 2-hour incubation at 37°C, cells were washed and 
cultured with 70%–80% confluent MRC-5 cells for 48–72 hours. 
Cells were fixed in acetone/water 9:1 (volume/volume) and fur-
ther stained with an Alexa Fluor 488-conjugated anti-IE/E anti-
gen antibody (8B1.2; Millipore, Burlington, MA). Percentages 
of IE/E+ cells were determined on 4 fields per condition with 
Fiji (SciJava consortium; http://scijava.org/).

Statistical Analysis

Statistical tests were performed using the Graph Pad Prism 5.0 
software (Graph Pad Software Inc., La Jolla, CA). On-way anal-
ysis of variance was applied to all data of this manuscript. P val-
ues below or equal to .05 were considered significant. Additional 
materials and methods are available in Supplementary Materials.

RESULTS

Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing 

Nonintegrin Binds to Glycoprotein B Through Its Carbohydrate 

Recognition Domain

Although HCMV gB is known as a DC-SIGN ligand, it is not 
clear whether this interaction is restricted to the DC-SIGN CRD 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
http://scijava.org/
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
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[14]. To that purpose, HEK293T cells were modified to express 
wild-type (WT) DC-SIGN (AA 1–404; UnitProtKB, Q9NNX6) 
or 2 deletion mutants, respectively, lacking neck repeats (AA 
1–80 in frame with AA 253–404, called Δneck) or the CRD 
(AA 1–252, called ΔCRD) in fusion with the enhanced green 
fluorescent protein (eGFP) [29]. All cells expressed compara-
ble eGFP levels and DC-SIGN cell surface expression as well 
(Figure 1A). We showed that gB interacts with CRD-containing 
DC-SIGN molecules and does not require the neck repeats 
(Figure 1A and B).

Then, we sought to identify CRD AA involved in this inter-
action. We hypothesized that AA taking part to the calcium ion 
coordination or sugar binding could be detrimental [20, 30]. 
Single-point mutants were generated and further expressed in 
HEK293T cells. Antineck staining showed similar DC-SIGN 
expression across all cell lines (Supplementary Figure  1). 
Their ability to bind gB was then assessed by flow cytometry 
(Figure 1C). E347, N349, E354, N365, and D366 form the cal-
cium binding “site 2” and enable contact with high-mannose 
sugars as well [30, 31]. Expectedly, mutations at these positions 
precluded interaction with gB (Figure 1D). Similarly, mutants 
D320A, E324A, N350A, and D355A lost their ability to opti-
mally bind gB, assuming that it was likely due to substantial fold 
changes in the calcium binding “site 1” as proposed for HIV-1 
gp120 [32]. Here, F313Y, Q323E, and K368A DC-SIGN muta-
tions were ineffective (Figure 1D). Moreover, we confirmed that 
the E354Q within site 2 broke the interaction [33]. The V351 
residue was shown to discriminate between endogenous and 
pathogen-derived ligands such as ICAM-3 and HIV-1 gp120 or 
hepatitis C virus E1/E2, respectively [32, 34, 35]. In this study, 
we analyzed 2 mutations, ie, V351G and V351T. The V351G 
mutant lost its binding capacity to gB, suggesting that this AA 
is as important as its human herpesvirus (HHV)-8 counter-
part and ICAM-3 [36]. It is interesting to note that a methyl 
group substitution of the V351 by a hydroxyl group of a thre-
onine conserved a nominal binding activity, suggesting that 
subtle variations in the DC-SIGN fold could determine its abil-
ity to recognize unrelated ligands. Taken together, these results 
demonstrate that gB utilizes the same CRD AA as the HHV-8 
gB or even ICAM-3.

Recombinant Glycoprotein B Contains High-Mannose Sugars

Glycoprotein B and HIV-1 gp120 are both able to bind to 
DC-SIGN, although their respective folds are distinct. We pos-
tulated that their glycan covers might be similar. Prototypical N- 
or O-glycans are depicted in the Figure 2A. Culture wells were 
coated with various lectins from plant or mammalian origins 
to characterize glycans on CHO-derived gB. Human immuno-
deficiency virus-1 gp120 was used as a control of a high man-
nose-containing glycoprotein. In line with other pioneering 
studies on gp120 [20], we observed dose-dependent binding of 
both glycoproteins to DC-SIGN, concanavalin A, and, to a lesser 

extent, to wheat germ agglutinin (WGA), suggesting that high 
mannose-containing N-glycans were decorating gB and gp120 
(Figures 2B and C). Binding to Datura stramonium Agglutinin, 
and also to a lesser extent to WGA (due to its double specific-
ity), confirmed the presence of N-acetylglucosamine. A  weak 
binding to Maclura pomifera agglutinin (MPA) at the highest gB 
concentration suggested that O-glycans were almost absent. No 
significant signal was observed with Sambucus nigra agglutinin.

Next, we used whole HCMV virions to perform the same kind 
of experiments. Here, virus attachment to lectins was quantified 
by qPCR. Again, DC-SIGN and WGA retained HCMV parti-
cles, suggesting the presence of high-mannose sugars on viral 
particles. It is interesting to note that O-glycans were readily 
recognized by MPA on virions most likely on glycoproteins 
other than gB. Apparently, no sialic acid (SA) residues could 
be detected on virions. These results demonstrated that CHO-
derived gB and HIV-1 gp120 are decorated with high-mannose 
sugars on N-glycans. We also showed that gB and whole HCMV 
particles share similar glycans contents except for O-glycans.

High-Mannose Sugars Decorating Glycoprotein B Enable Its Binding 

to Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing 

Nonintegrin

Next, we examined the contribution of gB glycans to the inter-
action with DC-SIGN. Hence, various glycosidases were used to 
selectively remove sugars from gB. Although a moderate decrease 
of the gB molecular weight (MW) was observed after a manno-
sidase treatment, the PNGase F digestion induced a clear shift 
in the apparent gB MW, confirming that N-glycans account for 
a substantial part of the molecule (Figure  3A). Neuraminidase 
(NA)-treated gB also exhibited an altered electrophoretic mobil-
ity compared with nontreated gB, likely indicating an unexpected 
presence of SA based on results shown in Figure 3.

We then measured the affinity of DC-SIGN for untreated 
or deglycosylated gB by surface plasmon resonance spectros-
copy. Apparent dissociation constants (Kd app) were calculated 
from the sensorgrams presented in Figure 3B. The Kd app values 
were extrapolated using a kinetic model (Figure 3B). Untreated 
gB had a Kd app of 14 pM (Figure 3C). Sialic acid removal did 
not seem to alter the binding to immobilized DC-SIGN extra-
cellular domain (Kd app  =  25 pM), indicating that SA are not 
important, in line with our results in Figure  2D. In contrast, 
the mannosidase activity led to a marked Kdapp increase (149 
pM), suggesting a function for terminal mannose residues. The 
PNGase F-treated gB had an even higher Kd app (230 pM) in that 
setting, confirming that N-glycans are crucial (Figure 3C). The 
relatively limited Kd app increase upon removal of N-glycans was 
associated to an incomplete PNGase F digestion in regular con-
ditions [37]. By adding sodium dodecyl sulfate to the PNGase 
F or using the trifluoromethanesulfonic acid to chemically 
deglycosylate gB, we confirmed our hypothesis (Supplementary 
Figure 2).

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data


DC-SIGN: A Unique DC Receptor for gB • JID 2018:218 (1 August) • 493

A
eGFP

mock WT DC-SIGN F313Y D320A

pEGFP

10000

1000

100

gB
 b

in
di

ng
 (M

FI
)

10

10000

1000

*
*

*

100

moc
k

F31
3Y

D32
0A

Q
32

3E
E32

4A
E34

7Q
N34

9D
N35

0A
V35

1G
V35

1T
E35

4Q
D35

5A
N36

5D
D36

6A
K36

8A

W
T D

C-S
IG

N

pEGFP

W
T D

C-SIG
N

ce
ll 

co
un

t

gB binding (MFI)

gB
 b

in
di

ng
 (M

FI
)

gB binding (MFI)

WT
DC-SIGN

Δneck

ΔCRD

Δnec
k

ΔC
RD

anti-CRD gB

*
*

anti-neck
B

C D

1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105

1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105

102

100

80

60

40

118

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

11400

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

9620

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

345

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

Q323E

N350A

E324A E347Q N349D
100

80

60

40

9636

20

0

C
el

l c
ou

nt

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

179

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

201

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

145

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

V351G V351T E354Q
100

80

60

40

181

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

366

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

6954

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

173

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

D355A N365D D366A K368A
100

80

60

40

169

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

189

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

174

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

100

80

60

40

4563

20

0

Alexa647-A
10

1
10

2
10

3
10

4
10

5

0
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105

1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105 1020
0

103 104 105

Figure  1. Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) binds the glycoprotein B (gB) through its carbohydrate recognition 
domain. (A) Histograms showing DC-SIGN expression of wild-type (WT) DC-SIGN or deletion mutants lacking the DC-SIGN neck repeat (Δneck) or the carbohydrate-recog-
nition domain ([CRD] ΔCRD) regions fused to enhanced green fluorescent protein (eGFP). The eGFP allowed a rapid quantitation of the DC-SIGN expression level on stably 
transfected HEK293T (left panels), except for the pEGFP-transfected cells (first line). The 2 centered columns represent extracellular staining of DC-SIGN with an antineck 
(clone H-200) and an anti-CRD (clone 1B10) antibody, respectively. The ability of DC-SIGN variants to bind recombinant biotinylated human cytomegalovirus (HCMV) gB is 
represented in right panels. Gray histograms display nontransfected HEK293T cell fluorescence background. (B) Quantitative measurements of the binding of recombinant 
biotinylated HCMV gB (2 µg/mL) onto WT DC-SIGN or Δneck- and ΔCRD-expressing cells compared with a control cell line (pEGFP). Biotinylated HCMV gB was revealed with 
1 µg/mL antigen-presenting cell-conjugated streptavidin. Values are expressed as mean fluorescence intensities (n = 4; *, P < .05; one-way analysis of variance [ANOVA] 
with multiple comparison tests). (C) Histograms showing the binding of recombinant Alexa Fluor 647-conjugated HCMV gB (4 µg/mL, mean fluorescence intensity [MFI]) on 
HEK293T cell lines expressing WT or mutated DC-SIGN on their surface. Values indicated for each histogram represent MFI. These results are representative of 3 independent 
experiments. (D) Quantitative results showing the behavior of mutated DC-SIGN compared with the WT form towards the binding of recombinant Alexa Fluor 647-conjugated 
HCMV gB (n = 3). Statistically significant results were marked by an asterisk (*, P < .05; one-way ANOVA with multiple comparison tests).
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Figure 2. Recombinant soluble or particle-associated human cytomegalovirus (HCMV) glycoprotein B (gB) preferentially interacts with high mannose-specific and N-glycan-
specific lectins. (A) Schematic representation of typical N- or O-glycans potentially harbored by glycoproteins. Sugar linkage is indicated between sugar residues. Green 
zones represent lectin specificities. Lectin binding assay revealing interactions between Alexa 488-conjugated gB (B) or human immunodeficiency virus (HIV)-1 IIIB gp120 (C) 
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fluorescence intensity ([MFI] n = 3). The “no lectin” condition was used for both recombinant glycoproteins as a negative control providing a basal level of unspecific binding 
for fluorescence-labeled glycoproteins. (D) Binding of HCMV infectious particles (TB40/E strain, BAC4) to plastic-immobilized plant and animal lectins. A single input of virus 
was equivalent to 8 × 106 viral genomes/well (vg/well). Results are expressed as vg/well (n = 6). Mean values are represented by horizontal bars for each type of lectin (****, 
P < .0001; ***, P < .001; **, P < .01; *, P < .05; one-way analysis of variance with multiple comparison tests). Abbreviations: DC-SIGN, dendritic cell-specific intercellular 
adhesion molecule-3-grabbing nonintegrin; ConA, concanavalin A; MPA, Maclura pomifera agglutinin; ns, nonsignificant; SNA, Sambucus nigra agglutinin; WGA, wheat germ 
agglutinin.
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Figure 3. High mannose-containing N-glycans on glycoprotein B (gB) are crucial for its interaction with dendritic cell-specific intercellular adhesion molecule-3-grabbing 
nonintegrin (DC-SIGN). (A) Western blot analysis showing the detection of recombinant soluble gB with or without enzymatic treatments to remove specifically particular 
glycan residues. M, NA, and PNGase F stand for the α (1-2,3,6)-mannosidase, the α (2 to 3,6)-neuraminidase, and the peptide-N-glycosidase F, respectively. (B) Adjusted 
sensorgrams and fitting curves (kinetic model 1:1 binding) for Kd app (apparent Kd) measurements. Black triangles indicate decreasing human cytomegalovirus (HCMV) gB 
concentration ([HCMV gB]) with 10-fold dilution steps. (C) The affinity of HCMV gB for the extracellular domain of DC-SIGN was determined by surface plasmon resonance (Kd 
app) before and after deglycosylation with Man, Neu, or PNGase F. (D) Western blot analysis showing from left to right untreated gB, Endo Hf-digested gB in nondenaturing 
conditions (ND; O/N, 37°C, no denaturation buffer), and Endo Hf-digested gB in denaturing conditions, ie, 1 hour at 37°C with denaturation buffer. (E) Biotinylated HCMV gB 
was treated with Endo Hf in nondenaturing conditions or left untreated (NT) and further incubated with wild-type DC-SIGN-expressing HEK293T cells. The HCMV gB fixation 
was revealed as described in the Supplementary Materials. Abbreviation: MW, molecular weight. 
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Dendritic cell-SIGN is a high-mannose sugar specific lec-
tin. We looked for the presence of high-mannose sugars on gB. 
Electrophoretic mobilities of Endo Hf-treated or untreated gB 
were compared (Figure 3D). Endo Hf removed high mannoses 
on gB in denaturing (D) and in non-denaturing (ND) condi-
tions but with an extended incubation time (O/N) compared 
with untreated gB. We showed that Endo Hf-treated gB signifi-
cantly lost its ability to interact with WT DC-SIGN-expressing 
HEK293T cells compared with untreated gB (Figure  3E). 
Altogether, these data show that high-mannose on N-glycans 
but not SA are crucial for the gB/DC-SIGN interaction.

Antibodies Against Antigenic Domains 4 and 5 Impair the Glycoprotein 

B/Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing 

Interaction

To better define the DC-SIGN/gB interaction, we first used 
mAbs against AD-1 (clones ITC33, ITC39, ITC48, ITC52, 
and ITC63B) and AD-2 (clone ITC88) for blockade exper-
iments [27]. None of these mAbs blocked the binding except 
the polyclonal, which demonstrated that AD-1 or -2 were not 
involved (Figure 4A). Two mAbs, clones SM5-1 and 1G2 rec-
ognizing AD-4 and AD-5, respectively [8], were further tested. 
Results showed a partial but significant blocking activity of both 
antibodies up to 48% loss of binding on DC-SIGN+ U937 or 
MDDC, suggesting that AD-4 and AD-5 could be responsible 
for the interaction with DC-SIGN (Figure 4B). It is noticeable 
that DC-SIGN appeared as the only cellular receptor for gB 
because the pAb-mediated blockade totally abrogated binding 
on DC-SIGN+ U937 compared with parental cells (Figure 4B, 
left graph). Those antibodies were also used to block HCMV 
trans-infection by DC-SIGN+ cells, which relies on the trans-
fer of DC-SIGN+ cells-immobilized HCMV virions, ie, either 
stuck on the plasma membrane or endocytosed, to HCMV per-
missive cells. We were surprisinged to find that although 1G2 
consistently blocked half of the trans-infection by DC-SIGN+ 
U937 cells, the SM5-1 clone totally abrogated it (Figure  4C). 
We hypothesized that this was due to the SM5-1 ability to block 
the pre-fusion to intermediate or postfusion transition, thus 
impairing fusion and eventually the infection of MCR-5 cells 
[38]. Similar results were obtained with 4 low-passage HCMV 
strains, ie, TB40/E-GFP, VHL/E, Toledo, and a clinical isolate 
from our center (TRI) on MDDC (Figure  4D). Therefore, we 
concluded that AD-5 and AD-4 were both responsible for the 
interaction with DC-SIGN.

Mutating the Asparagine At Position 208 on Glycoprotein B Impairs 

Its Interaction With Dendritic Cell-Specific Intercellular Adhesion 

Molecule-3 and Subsequent Transinfection

Antigenic domain-4 and AD-5 are heavily N-glycosylated on 
HCMV gB [39]. To identify the high-mannose sugar-con-
taining N-glycans recognized by DC-SIGN on gB, all putative 
N-glycosylation sites were mutated and expressed in HEK293T 

cells (see Methods, Supplementary Figure 3, and Supplementary 
Table 1). Wild-type or mutated gB in non-denatured cell lysates 
were immobilized on a nitrocellulose membrane. The capacity 
of DC-SIGN-Fc to bind to gB in all conditions was calculated 
on a normalized gB expression. Values ranged from 0.24 for 
the negative control (ie, empty pRC-CMV vector) to 1.15 for 
WT gB. The N208A mutation located in AD-5 led to a signifi-
cant DC-SIGN-Fc binding decrease, suggesting that N-glycans 
on this residue are important, although other mutants found 
in AD-4 and AD-5 (from N281A to N409A) behaved similarly 
(Figure 5A).

We sought to determine whether such a mutation could 
alter the binding of a whole HCMV particle. To that end, 
we took advantage of the “en-passant” mutagenesis strategy 
developed by Tischer et al [40] to modify the UL55 sequence 
in the genome of the TB40 HCMV strain (BAC4) to generate 
gB-mutated virions. Virions bearing N208A, N417A, N447A, 
N452A, and N585A mutations were reconstituted with similar 
yields (Figure  5B) reaching a plateau at day 16 postinfection 
(approximately 1  ×  107 genome copies/mL), indicating that 
mutations did not notably alter growth kinetics during recon-
stitution (Figure 5C). Then, we demonstrated that the N208A 
mutation exhibited a significantly altered trans-infection ability 
(Figure 5D). We showed that all mutated and WT virions were 
infecting MRC-5 cells similarly at the same time point, ie, day 
2 postinfection (Figure  5E). We concluded from these results 
that gB interacts with DC-SIGN mainly through high-mannose 
containing N-glycans on the asparagine at position 208.

Antibody-Mediated Targeting of Dendritic Cell-Specific Intercellular 

Adhesion Molecule-3 Blocks Glycoprotein B Binding and Neutralizes 

Trans-Infection

Next, we looked at the blockade of the DC-SIGN/gB interac-
tion with specific Abs to DC-SIGN. First, we characterized the 
specificity of 15 anti-DC-SIGN mAbs by flow cytometry on WT 
DC-SIGN, Δneck- or ΔCRD-expressing cell lines. We identi-
fied 9 anti-CRD mAbs (7 to 15). Monoclonal Ab 1 was listed 
as an anti-CRD or -ECPR antibody (Supplementary Table 2). 
All mAbs were tested in parallel with commercial Abs, 1 anti-
neck (H200), and 3 additional anti-CRD antibodies (1B10, 
AZN-D1, and MR-1), to block gB binding to DC-SIGN. Almost 
all anti-CRD mAbs including commercial ones were moder-
ate to high inhibitors of this interaction. For mAbs 12 to 15, a 
total abrogation of gB binding was even observed (Figure 6A). 
Similar results were obtained with MDDC, confirming that tar-
geting the DC-SIGN CRD almost totally abrogates gB binding 
(Figure 6B). To clarify whether other known HCMV receptors 
could participate to this interaction, we analyzed expression of 
PDGFRα [41], β1 chain integrin [42], and αVβ3 integrin [42] 
on U937 cells and MDDC. Whereas MDDC displayed low 
to moderate expression levels for all tested receptors, U937 
expressed the β1 chain integrin and PDGFRα. However, none 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy194#supplementary-data


DC-SIGN: A Unique DC Receptor for gB • JID 2018:218 (1 August) • 497

A

B

C D

150
MDDC

100

50

****

**

***

****

gB
 b

in
di

ng
(%

  o
f c

on
tr

ol
)

0

anti-AD-1co
ntro

l I
gG

IT
C33

IT
C39

IT
C48

IT
C52

IT
C63

B

IT
C88

 (a
nti-

AD-2)

an
ti-

gB
- p

Ab

150
DC-SIGN + U937

100

50gB
 b

in
di

ng
(%

  o
f c

on
tr

ol
)

0

U93
7 p

ar
en

tal
 

IT
C33

SM
-1 

(an
ti-

AD-4)

1G
2 (

an
ti-

AD-5)

an
ti-

gB
 pA

b

**

****

****

25

20

15

10

5

DC-SIGN + U937

T
ra
ns

- i
nf

ec
tio

n 
ra

te
(%

 o
f M

R
C

-5
 c

el
ls)

T
ra
ns

- i
nf

ec
tio

n 
ra

te
(%

 o
f M

R
C

-5
 c

el
ls)

0

U93
7 p

ar
en

tal
 

co
ntro

l I
gG

SM
5-1

 (a
nti-

AD-4)

1G
2 (

an
ti-

AD-5)

an
ti-

gB
 pA

b

*****

****

150
MDDC

100

50gB
 b

in
di

ng
(%

  o
f c

on
tr

ol
)

0

co
ntro

l lg
G 

SM
5-1

 (a
nti-

AD-4)

1G
2 (

an
ti-

AD-5)

an
ti-

gB
 pA

b

*

ns

*
*** ** * **

**

80

MDDC

TB40/E-GFP
Toledo
VHLIE
TRI (clinical isolate)

0

20

40

60

co
ntro

l lg
G 

SM
5-1

 (a
nti-

AD-4)

an
ti-

gB
 pA

b

Figure 4. Antigenic domains (AD)-4- and AD-5- but not AD-1/2-specific antibodies inhibit the dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin 
(DC-SIGN)/human cytomegalovirus (HCMV) glycoprotein B (gB) interaction and the DC-SIGN-dependent trans-infection of various HCMV strains. (A) Anti-AD-1 (ITC33, ITC39, 
ITC48, ITC52, and ITC63B) monoclonal antibodies (mAbs), anti-AD-2 (ITC88) mAbs, or a polyclonal anti-HCMV gB serum were used as potential competitors of the HCMV gB 
binding to immature DC-SIGN+ monocyte-derived dendritic cells (MDDCs). Binding of HCMV gB was assessed by flow cytometry. Binding intensities are represented as mean 
percentages of the maximum binding (n = 3), ie, without any antibody, and compared with a control immunoglobulin (Ig)G. (B) Inhibition of gB binding on DC-SIGN+ U937 cells 
compared with the parental counterpart (left panel) or on day 6 immature MDDCs (right panel) by anti-AD-4 (clone SM5-1), anti-AD-5 (clone 1G2), and an anti-gB polyclonal 
antibody (pAb). Binding intensities are represented as mean percentages of the maximum binding, ie, without any antibody (n = 5). (C) Graph showing trans-infection results 
obtained with parental vs DC-SIGN+ U937 cells and the TB40/E-GFP strain (multiplicity of infection [MOI] = 2). (D) Similar trans-infection experiments with MDDCs loaded 
with various low-passage HCMV strains (VHL/E, Toledo, and TB40/E) and a clinical isolate (TRI) (MOI = 2). Asterisks represent significant results compared with the control 
IgG condition (****, P < .0001; ***, P < .001; **, P < .01; *, P < .05; one-way analysis of variance with multiple comparison tests). Abbreviation: ns, nonsignificant.
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Figure 5. Mutating the asparagine into an alanine at the position 208 of the human cytomegalovirus (HCMV) gBAA sequence selectively impairs both the HCMV glyco-
protein B (gB)/dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) interaction and the DC-SIGN-dependent HCMV trans-infection. (A) 
Quantitative assessment of the interaction of DC-SIGN-Fc (2 µg/mL) on membrane-immobilized cell lysates of HCMV gB either mutated or wild-type (WT)-expressing HEK293T 
cells (n = 5). Mean ratios measuring the interaction between WT HCMV gB and DC-SIGN-Fc were normalized to 1 (top gray dashed line), whereas the “mock” condition 
determines unspecific DC-SIGN-Fc binding on cells transfected with an empty pRC-CMV plasmid (bottom gray dashed line). (B) Five independent viral supernatants were 
reconstituted for BAC4 gB wt and its mutated versions, ie, N208A, N417A, N447A, N452A, and N585A from BAC-transfected MRC-5 (see Supplementary Materials). The CMV 
deoxyribonucleic acid (DNA) copy quantification per volume unit by quantitative polymerase chain reaction (qPCR) for all stocks produced in this work is shown here. Grey 
dots represent stocks from 1 reconstitution. (C) The growth kinetics of the parental HCMV strain (gB WT) or the virus variants with the indicated mutations in the gB protein 
on MRC5 cells was assessed at day 2, 8, 13, and 16 postinfection. MRC-5 (105) cells were initially infected with a viral dose equivalent to 103 genome copies. Virus amounts 
are given as genome copies per 105 cells. (D) Wild-type (BAC4 gB wt) and mutated virions (N208A, N417A, N447A, N452A, and N585A) were used to load monocyte-derived 
dendritic cells (multiplicity of infection [MOI] = 2) for trans-infection experiments. Trans-infection rates represent the percentages of HCMV-infected MRC-5 cells, ie, IE/E 
antigen-positive among total MRC-5 cells stained at day 2 postinfection (*, P < .05; one-way analysis of variance with multiple comparison tests; n = 4). Results are displayed 
as a minimum to maximum representation; the box plots show the 10th percentile, the mean (intermediate bars in boxes), and the 90th percentile. (E) In parallel, we col-
lected supernatants of MCR-5 infected with the same amount of virus compared with the one used in trans-infection experiments (MOI = 2). Quantifications by qPCR (CMV 
deoxyribonucleic acid [DNA] copies/mL) of these supernatants are shown here (n = 3 except for the N585A supernatant where n = 2).
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of these HCMV receptors could be linked to our observations. 
Therefore, we concluded that DC-SIGN is the major, if not the 
only, attachment receptor for gB on MDDC and DC-SIGN+ 
U937 cells.

Finally, we tested some anti-DC-SIGN CRD mAbs in 
trans-infection blockade experiments. All were shown to dras-
tically neutralize the TB40/E-GFP trans-infection by MDDC or 
DC-SIGN+ U937 cells (62% to 75% reduction; Figure 7A and 
Supplementary Figure  5). Similar results were obtained with 
VHL/E and Toledo and with an in-house-generated clinical 

isolate (TRI) (inhibitions ranging from 67% to 83%, 70% to 
86%, and 79% to 87.5%, respectively; Figures  7B–D). Taken 
together, these results establish that blocking the DC-SIGN 
CRD prevents gB binding and almost completely neutralizes 
HCMV trans-infection.

DISCUSSION

In this study, we characterized the DC-SIGN/HCMV gB inter-
action. We identified DC-SIGN AA residues involved through 
an extensive mutagenesis study. We also demonstrated the 
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Figure 6. Anti-dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) carbohydrate-recognition domain (CRD) antibodies abrogate the 
DC-SIGN/human cytomegalovirus (HCMV) glycoprotein B (gB) interaction. The binding of conjugated gB (2 µg/mL) to (A) parental or DC-SIGN+ U937 cells or (B) immature 
monocyte-derived dendritic cells (MDDC) was assessed by flow cytometry. Fifteen available anti-DC-SIGN antibodies directed against the neck, extracellular proximal region 
(ECPR), or CRD regions were compared with the H200 (anti-neck), 1B10, AZN-D1, and MR-1 (anti-CRD) commercially available monoclonal antibodies for their ability to block 
the DC-SIGN/HCMV gB interaction. Binding intensities are represented as mean percentages of the maximum binding (n = 5), ie, in the absence of any antibody, and compared 
with treatment with an irrelevant control immunoglobulin (Ig)G. Asterisks represent significant results (****, P < .0001; **, P < .01; *, P < .05; one-way analysis of variance 
with multiple comparison tests).
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importance of high mannose N-glycans decorating the aspar-
agine residue in position 208 on gB, although others might be 
involved too. Finally, antibody-mediated blockades allowed 
us to identify DC-SIGN as a major attachment molecule for 
HCMV on MDDC.

Mutating DC-SIGN has confirmed a crucial role for the 
2 Ca2+ binding sites and the glycan binding pocket in the 

recognition of gB, arguing in favor of a common interaction 
mode for all DC-SIGN viral ligands described to date, ie, HIV-1 
gp120 or HSV-1/HHV-8 gB [36, 43]. Su et al [33] showed that 
turning the V351 into an alanine abrogated the HIV-1 gp120 
binding. Our observation is consistent with this and indicates 
that a glycine residue instead of a valine at position 351 is del-
eterious. In contrast, replacement of this valine by a threonine, 
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Figure 7. Blocking dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) carbohydrate-recognition domain (CRD) strongly impairs human 
cytomegalovirus (HCMV) trans-infection by monocyte-derived dendritic cells (MDDC). (A) Antibody-mediated blockade of HCMV trans-infection by MDDC. Six anti-DC-SIGN 
CRD antibodies were used to interfere with the capture and subsequent transmission to highly permissive MRC-5 cells. Monoclonal antibodies were used to block the capture 
and further transmission of HCMV (TB40/E-GFP strain, multiplicity of infection = 2). Similar experiments showing the trans-infection of the VHL/E (B) and Toledo (C) strains 
as well as a clinical isolate from our research center, TRI (D). Asterisks represent significant results compared with the control immunoglobulin (Ig)G condition (***, P < .001; 
**, P < .01; *, P < .05; one-way analysis of variance with multiple comparison tests). Abbreviation: ns, nonsignificant.
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both having similar electron densities, has no effect, indicating 
that the fold matters at this position. In this study, we showed 
that the DC-SIGN neck is dispensable for gB binding, although 
2 anti-neck mAbs, ie, 4 and 6 (Supplementary Figure 5), were 
shown to block HCMV trans-infection. We hypothesized that 
the neck-dependent DC-SIGN microclustering at the plasma 
membrane was dispensable for soluble gB fixation to DC-SIGN 
but mandatory for the HCMV attachment to its target cells by 
permitting multiple ligand/receptor interactions.

We identified gB AD-5 and, more precisely, high man-
nose-containing N-glycans harbored by the asparagine, at least 
in position 208, as responsible for the recognition of DC-SIGN. 
Based on structural homologies and functional studies, Sharma 
et al [44] proposed that HCMV gB could be classified as a class III 
fusion protein. Class  III fusion proteins exist as pre- and post-
fusion states and possibly as conformational intermediates [45]. 
By analogy to a VSV-G pre-fusion crystal structure, a first model 
of a putative pre-fusion HCMV gB conformation was proposed 
by Spindler et al [38]. More recently, a study based on electron 
cryotomography showed for the first time that membrane-as-
sociated HSV-1 gB should exist because at least 2 distinct con-
formations reported as pre- and postfusion conformations [46]. 
Due to a high degree of similarity between HSV-1 and HCMV 
gB sequences, it is tempting to speculate that the latter exists at 
least as pre- and postfusion states. It is interesting to note that in 
the pre-fusion model reported by Zeev-Ben-Mordehai et al [46], 
AD-5 and AD-4 protrudes out of HCMV gB, potentially provid-
ing an accessible platform for DC-SIGN. In contrast, in line with 
a former work [47], Fontana et al [48] propose that the pre-fusion 
model described by Zeev-Ben-Mordehai et al [46] could be an 
intermediate between the pre- and postfusion states. They also 
suggested that the fusion loop points toward the viral membrane 
instead of pointing toward the cellular target membrane in the 
pre-fusion model of HSV-1 gB. In that setting, we can assume 
that DC-SIGN might be long enough to contact AD-4/AD-5 
regardless of their respective locations into the pre-fusion model. 
Further investigations are needed to establish whether DC-SIGN 
can interact with HCMV gB pre-fusion conformation only or if 
it can adapt itself to distinct conformational states of HCMV gB.

CONCLUSIONS

In conclusion, we characterized the DC-SIGN/gB interaction 
in the present study. This work provides the molecular bases 
to understand how some anti-CRD mAbs can efficiently block 
the gB/DC-SIGN interaction. It should also help to rationally 
design other blockers of this interaction with antiviral proper-
ties. We propose that the DC-SIGN/gB interaction represents 
the most important HCMV attachment receptor on MDDC. 
Whether this holds true with other human tissue-resident DC 
or macrophages expressing DC-SIGN remains to be estab-
lished. The relevance of our results now has to be challenged 

in appropriate models. To date, few single-nucleotide polymor-
phisms described in the 5’ untranslated region of the CD209 
gene are associated with variable expression of DC-SIGN on 
MDDC [49]. Unexpectedly, the GG genotype (rs735240), which 
leads to a decreased DC-SIGN expression on MDDC, was 
shown to correlate (1) with increased CMV reactivation or dis-
ease in allogeneic stem cell transplantation patients [49] and (2) 
with decreased CMV infection-free survival in kidney trans-
plant patients [50]. Further investigations are now required to 
reconcile our in vitro results with clinical observations.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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