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Borophene has important application value, boron nanomaterials doped with transition
metal have wondrous structures and chemical bonding. However, little attention was paid
to the boron nanowires (NWs). Inspired by the novel metal boron clusters Ln2Bn

− (Ln � La,
Pr, Tb, n � 7–9) adopting inverse sandwich configuration, we examined Sc2B8 and Y2B8

clusters in such novel structure and found that they are the global minima and show good
stability. Thus, based on the novel structural moiety and first-principles calculations, we
connected the inverse sandwich clusters into one-dimensional (1D) nanowires by sharing
B−B bridges between adjacent clusters, and the 1D-Sc4B24 and 1D-Y2B12 were reached
after structural relaxation. The two nanowires were identified to be stable in
thermodynamical, dynamical and thermal aspects. Both nanowires are nonmagnetic,
the 1D-Sc4B24 NW is a direct-bandgap semiconductor, while the 1D-Y2B12 NW shows
metallic feature. Our theoretical results revealed that the inverse sandwich structure is the
most energy-favored configuration for transition metal borides Sc2B8 and Y2B8, and the
inverse sandwich motif can be extended to 1D nanowires, providing useful guidance for
designing novel boron-based nanowires with diverse electronic properties.

Keywords: first-principles, clusters, inverse sandwich structure, boron-based nanowires, magnetic and electronic
properties

INTRODUCTION

Boron-based materials were found wide applications in the fileds of emissions, supercapacitors,
optical absorptions, photodetectors, etc. (Xu et al., 2013; Sussardi et al., 2015; Akopov et al., 2017;
Carenco et al., 2013; Tian et al., 2019). Unlike the extensive attention on carbon clusters such as
fullerenes and carbon fibers, boron clusters and materials are relatively less studied by scientists.
However, there is much space and potential to develop boron-based nanomaterials.

Boron shows a strong tendency to form multi-center-two-electron bonds (mc-2e) in both
polyhedral molecules and bulk isotopes (Wang, 2016; Jian et al., 2019; Lipscomb, 1977;
Alexandrova et al., 2006) due to its electron deficiency. Therefore, boron clusters have the
characteristic of electron delocalization bonding with some delocalized electronic structures and
unique aromaticity (Li et al., 2018). In the past two decades, the structure and chemical bonding of
bare boron clusters have been studied by combining experimental and theoretical methods (Li et al.,
2017; Li et al., 2017; Pan et al., 2019), and planar clusters, nanotube-like cluster structures, graphene-
like boron spheres and fullerene-like boron spheres have been found (Kiran et al., 2005; Piazza et al.,
2014; Li et al., 2014; Bai et al., 2019; Zhai et al., 2014). Also due to the characteristic of electron
deficiency, boron can be doped with metal to form different kinds of metal boride structures. Boron
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has formed a large number of important boride materials, ranging
from superconducting MgB2 and superhard transition metal
borides to borides with extremely high thermal conductivity
(Nagamatsu et al., 2001; Chung et al., 2007).

As the 5th element adjacent to carbon in the periodic table,
ring and cage boron clusters have poor stability due to their
electron-deficient properties. However, the introduction of
transition metals can greatly improve the stability of boron
clusters. Transition-metal-doped boron clusters have led to a
new direction of boron nanomaterials, such as the metal-centered
aromatic borometallic wheels and tubular metal-centered drums
(Romanescu et al., 2011; Popov et al., 2015; Jian et al., 2016; Jian
et al., 2016; Li et al., 2017). On the other hand, assembling boron
clusters by doping them with different types of atoms is a
potential way to change properties. For example, CoB18

‒ and
RhB18

‒ planar clusters have been found, which makes it possible
to dope metal with borographene (Li et al., 2016; Jian et al., 2016).
Wang and Boldyrev’s joint research group have reported a variety
of neutral or charged planar wheel clusters centered on
supercoordination transition metals M©Bn (M � Fe, Co, Nb,
Ru, Rh, Ir, Ta; n � 8–10) (Romanescu et al., 2011).

Recently, Wang’s experimental group and Li’s theoretical
group jointly observed several new metal boron clusters
Ln2Bn

− (Ln � La, Pr, Tb; n � 7–9) with an inverse sandwich
structure (Li et al., 2018; Chen et al., 2019). It is found that these
clusters have the double aromatic properties of π and σ bonding
contributions, showing high stability and symmetry, and the
magnetization of B8

‒ ring is high. The study provides a novel
pattern for the design of new lanthanide borides, and a few
inverse sandwich complexes were proposed (Wang et al., 2019;
Cui et al., 2020; Shakerzadeh et al., 2020; Xiao et al., 2021). A few
questions arise naturally: Would the transition metal borides
adopt the inverse sandwich structure in a stable manner? Can the
inverse sandwich structure motif be extended to periodic
nanomaterials, like designing the super stable 1D-P10 nanowire
and 2D-P8N2 nanosheet based on all pentagon containing P8
clusters (Wang et al., 2020; Dong et al., 2021)? Thus, in this work,
by means of first-principles calculations, we examined the
stability of M2B8 (M � Sc and Y) clusters with the inverse
sandwich structure, and extended the inverse sandwich moiety
to design novel boron-based nanowires (NWs). The constructed
1D-Sc4B24 and 1D-Y2B12 NWs show good stability, and the
former/later one is a semiconductor/metal. Our theoretical
work successfully extended the inverse sandwich moiety to the
1D crystals, which is helpful to design novel boron-based
nanowires with diverse electronic properties.

METHODS

The comprehensive genetic algorithm (CGA) (Zhao et al., 2016)
combined with the DMol3 program (Delley, 1990; Delley, 2000)
was used to search the global minimum of Sc2B8 and Y2B8
clusters. The low-energy clusters generated by CGA were
further optimized using density functional theory (DFT)
implemented in the Vienna Ab initio Simulation Package
(VASP) code (Kresse and Furthmuller, 1996; Kresse and

Hafner, 1993; Kresse and Hafner, 1994). The exchange and
correlation functional are defined by the generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE)
functional (Perdew et al., 1996). The k points of the geometric
optimization and the molecular dynamics simulation were set to
1 × 7 × 1 and 1 × 3 × 1. The phonon spectra were calculated by
VASP and Phonopy codes (Togo and Tanaka, 2015). Thermal
stability was assessed at 300 and 500 K based on first-principles
molecular dynamics [FPMD simulations conducted at the DFT
level using a canonical ensemble having a constant number of
atoms, volume with the temperature controlled by the Nosé-
Hoover thermostat (Martyna et al., 1992; Kresse and Hafner,
1993)], and temperature (NVT) with 1 fs time steps for a total
simulated time duration of 5 ps. The band structures of the
designed nanowires were calculated by PBE and Heyd-Suseria-
Ernzerhof (HSE06) hybrid functional (Heyd et al., 2003). To
predict the clusters and nanowires in a more reliable manner, we
also considered the PBE + D2 approach (Bučko et al., 2010).
Almost no difference was found between the PBE-D2 and PBE
structures and cohesive energies.

RESULTS

Structure, Stability andMagnetic Properties
of Sc2B8 and Y2B8 Clusters
Based on the inverse sandwich structure of La2B8

−, we optimized
the neutral transition metal boron clusters of the same
configuration—Sc2B8 and Y2B8 clusters (the two Sc/Y atoms
locate symmetrically to the two sides of the B8 ring). In
Figure 1, M−B (M � Sc and Y) and B−B bond lengths in two
cluster structures are given. For the cluster Sc2B8, the bond
lengths of Sc−B (dSc−B) and B−B (dB−B) are 1.68 and 1.62 Å,
respectively. For the cluster Y2B8, Y−B bond length (dY−B) is
2.81 Å and the bond length of B−B (dB−B) is 1.62 Å. Both two
optimized neutral clusters well preserve the inverse sandwich
structure of D8h symmetry.

As shown in Supplementary Figure S1, the two vibrational
spectra have simple vibration modes due to the high symmetry,
and no negative mode was found, indicating the stability of these
two clusters. In the Sc2B8 cluster, the intensity peaks of 144 and
752 cm−1 can be assigned to Sc−B bond and B−B bond vibrations,
respectively. The sharp asymmetric oscillations in the Y2B8
cluster are at 149 and 721 cm−1, indicating the vibration
modes of the Y−B bond and the B−B bond, respectively.

At the same time, a FPMD simulation lasting for 5 ps was
performed for both clusters at room temperature (300 K). The
annealed structures well remain the original inverse sandwich
configuration, as shown in Supplementary Figure S2, which also
suggests the good stability of the Sc2B8 and Y2B8 clusters adopting
inverse sandwich structure.

Furthermore, CGA was used to generate low-energy isomers
of Sc2B8 and Y2B8 clusters. The four low-lying structures, and an
isomer, which can be viewed as the B-centered B7 ring
sandwiched by two Sc/Y atoms, were presented in
Supplementary Figure S3, and the inverse sandwich
configuration for both Sc2B8 and Y2B8 clusters is the most
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stable one (0.69–1.34 eV lower than the other four low-energy
isomers at PBE-D2 level of theory). In particular, the CCSD(T)
test computations also support the PBE-D2 results that the
inverse sandwich structures are much lower in energy than
other isomers. Thus it is feasible to synthesize the inverse
sandwich Sc2B8 and Y2B8 clusters in experiments.

Additionally, we examined the dissociation of inverse
sandwich M2B8 (M � Sc, Y) clusters. For the first M
dissociation (M2B8 → M + MB8), the reaction is endothermic
by 2.11 and 2.08 eV, respectively for M � Sc and Y; and for
removing the secondM (MB8 → M + B8), it is also an
endothermic reaction with the energy input of 2.37 and
2.17 eV for M � Sc and Y, respectively. The highly
endothermic dissociations of M from B8, indicate reaction
barriers are >2 eV. Meanwhile, when the M atoms were put
5 Å from the B8 center, it will be optimized to the energetically
favored inverse sandwich structure. The above results as
summarized in Supplementary Figure S4 again confirmed
that the M2B8 (M � Sc, Y) clusters with inverse sandwich
configuration are highly stable.

Besides, we further explored magnetic properties of the global
minimum structures. Three magnetic configurations were
compared, namely, antiferromagnetic (AFM), ferromagnetic
(FM) and nonmagnetic (NM) states. We set the energy value
of NM as 0 eV and all other energy values as their relative

differences. Our calculations revealed that both Sc2B8 and
Y2B8 clusters are nonmagnetic (Table 1).

Structure and Stability of 1D Nanowires
Considering that the Sc2B8 and Y2B8 clusters of inverse sandwich
configuration are the global minima, the inverse sandwich
structural moiety might be extended to a periodic manner.
Therefore, we connected the inverse sandwich clusters into 1D
nanowires by sharing B−B bridges between adjacent clusters,
similar to the observation of inverse triple-decker La3B14

− (Chen
et al., 2019). The 1D-Sc4B24 and 1D-Y2B12 nanowires were
obtained after structural relaxation as displayed in Figure 2.
For the optimized 1D-Sc4B24 (Figure 2A), neither the inverse
sandwich moiety of Sc2B8 nor the sharing B−B bonds was clearly
observed, largely due to the formation of B4 rhombus, which is
regarded as a stable unit of boron analogs. The shared B–B (dB−B)
key length is ∼1.59 Å, and the other B–B (dB−B) lengths are in the
range of 1.58–1.62 Å. The Sc–B bond lengths (dSc−B) are
2.41–2.49 Å. In contrast, for the 1D-Y2B12 NW (Figure 2B),
the unitcell is formed by two Y2B8 clusters of inverse sandwich
moiety by sharing a B−B bond. The length of the shared B−B
bond (dB−B) is 1.56 Å, the lengths of others B−B bonds are ranged
from 1.56 to 1.60 Å. The Y–B bond lengths (dY−B) are ranged in
2.56–2.72 Å. Compared to the free cluster structures, the dY−B
were compressed in 1D-Y2B12 nanowire, while the dSc−B were
significantly stretched in the 1D-Sc4B24, indicating that although
Sc2B8 and Y2B8 clusters have the same structure, they have
different structural characteristics when forming one-
dimensional nanowires.

In order to confirm the stability of the two nanowires, we
first examined their thermodynamic stability by calculating the
cohesive energy (Ecoh). In our work, the cohesive energy
is defined as equation 1, where, E1/E2 is the energy of an

FIGURE 1 | Side and top views of the optimized Sc2B8 (A) and Y2B8 (B) clusters.

TABLE 1 | Relative energies of Sc2B8 and Y2B8 clusters with different magnetic
configurations (in eV).

NM FM AFM

Sc2B8 0.00 0.00 0.00
Y2B8 0.00 0.00 0.00
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isolated transition metal atoms (Sc or Y)/B atom, Etot is the
total energy of nanowire, n/m is the number of transition
metal/B atoms.

According to the above definition of cohesive energy, the
larger the calculated value is, the more stable the structure is.
The calculated cohesive energies of 1D-Sc4B24 and 1D-Y2B12
nanowires are 5.92 and 6.00 eV/atom, respectively, much
larger than the Ecoh values of the clusters (5.35 and 5.29 eV/
atom, respectively for Sc2B8 and Y2B8). These high cohesion
energies show that two 1D nanowires have good thermodynamic
stability.

Then, we calculated the phonon dispersion to investigate their
dynamic stability. In these phonon dispersions, no imaginary
frequencies were observed (Figure 3), indicating that the two
designed nanowires based on the inverse sandwich Sc2B8 and
Y2B8 clusters are dynamically stable.

Finally, we performed FPMD simulations in order to access
their thermal stability with the supercell of 112 atoms (16

transition metal atoms and 96 B atoms). The 1D-Sc16B96 was
annealed at 300 K for 5 ps, and the final structure retained the
original B8 rings (Supplementary Figure S5A), and the structure
obtained remains intact. For the one-dimensional nanowire
structure constructed by Y2B8, we conducted two 5 ps
simulation at room temperature of 300 K (Supplementary
Figure S5B) and 500 K (Supplementary Figure S5),
respectively. The 1D-Y16B96 structure still showed structural
integrity under both simulation conditions. It also preserves
structural integrity at 500 K in particular. The results of
FPMD simulations confirm that two designed nanowires
possess good thermal stability.

Magnetic and Electronic Properties
Through the above analysis of thermodynamic, dynamic and
thermal stability, it is found that the two designed nanowires
are stable. Therefore, we further explored the magnetic and
electronic properties of the two nanowires. For the magnetic

FIGURE 2 | Two views of the 1D-Sc4B24 NW (A) and 1D-Y2B12 NW (B). The unitcell was marked by black dashed lines. The inverse sandwich unit M2B8 was
marked by red and blue dashed rectangle. The sharing B‒B bonds and the B rhombus were highlighted in purple and orange, respectively.
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feature, five magnetic orderings were considered, namely AFM
(including AFM1: − + − +, AFM2: + − − +, and AFM3: − − + +,
Supplementary Figure S7, FM, and NM. Our computations
showed that neither 1D-Sc4B24 nor 1D-Y2B12 is magnetic. The
relative energies of examined magnetic configurations of the
two structures were given in Table 2. In addition, through the
analysis of charge transfer, we found that each Sc/Y atom
transferred ∼1.5/2.0 electrons to boron. The differential charge

density diagrams of the two 2D nanostructures (Figure 4)
showed that the electrons have delocalized bonding
characteristics.

We used the PBE method to predict the electronic band
structures of the two designed nanowires (Figure 5).
Compared to the metallicity of teetotum cluster Li2FeB14

based nanowire (Shakerzadeh et al., 2020), the 1D-Sc4B24

nanowire is a direct-bandgap semiconductor with the
bandgap of 0.51 eV, while the 1D-Y2B12 NW is a metal, and
the p orbital of B dominates the state near the Fermi level. The
commonly used PBE method usually underestimates the
bandgaps. Therefore, we also used HSE06 method to
calculate the electronic band structure of 1D-Sc4B24

nanowire, as shown in Supplementary Figure S8. The
bandgap calculated by the HSE06 method is about 0.85 eV,
0.34 eV larger than the PBE value. The different electronic

FIGURE 3 | The calculated phonon spectra of the designed 1D-Sc4B24 (A) and 1D-Y2 B12 (B).

TABLE 2 | Relative energies of 1D- Sc4B24 and 1D-Y2B12 nanowires with various
magnetic configurations (in eV).

NM FM AFM1 AFM2 AFM3

1D-Sc4B24 0.00 0.00 0.00 0.00 0.00
1D- Y2B12 0.00 0.00 0.00 0.00 0.00

FIGURE 4 | Differential charge density diagrams of designed nanowires 1D-Sc4B24 (A) and 1D-Y2B12 (B). The isosurface value was set to be 0.015 e/Bohr3.
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behavior of the two designed nanowires may originate from
the different structures (Zeng et al., 2019).

CONCLUSION

In summary, by means of first-principles calculations combined
with CGA search, we found that Sc2B8 and Y2B8 clusters of
inverse sandwich structure are the lowest-energy isomers and
have good stability, and we constructed one-dimensional
nanowires containing the structural moiety of the two
clusters. The high stability of 1D-Sc4B24 and 1D-Y2B12
nanowires is confirmed by the investigation of
thermodynamical, dynamical and thermal perspectives. Both
1D-Sc4B24 and 1D-Y2B12 nanowires are nonmagnetic; in terms
of electronic behavior, the 1D-Sc4B24 is semiconducting with the

HSE06 bandgap of 0.85 eV, while the 1D-Y2B12 is metallic. Our
theoretical work not only identified the inverse sandwich
configuration as the lowest-energy one for transition metal
borides Sc2B8 and Y2B8 clusters, but also successfully
extended the inverse sandwich moiety to 1D nanomaterials.
Thus, it is helpful to design novel boron-based nanowires for
both experimental and theoretical communities.

Ecoh � (nE1 +mE2 − Etot)/(n +m)
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FIGURE 5 | Energy band and density of states of 1D-Sc4B24 (A), 1D-Y2B12 (B) nanowires predicted by PBE.
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