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Abstract

Understanding the molecular mechanism of antibiotics that are currently in use is important

for the development of new antimicrobials. The tetracyclines, discovered in the 1940s, are a

well-established class of antibiotics that still have a role in treating microbial infections in

humans. It is generally accepted that the main target of their action is the ribosome. The esti-

mated affinity for tetracycline binding to the ribosome is relatively low compared to the actual

potency of the drug in vivo. Therefore, additional inhibitory effects of tetracycline on the

translation machinery have been discussed. Structural evidence suggests that tetracycline

inhibits the function of the essential bacterial GTPase Elongation Factor (EF)-Tu through

interaction with the bound nucleotide. Based on this, tetracycline has been predicted to

impede the nucleotide-binding properties of EF-Tu. However, detailed kinetic studies

addressing the effect of tetracycline on nucleotide binding have been prevented by the

fluorescence properties of the antibiotic. Here, we report a fluorescence-based kinetic

assay that minimizes the effect of tetracycline autofluorescence, enabling the detailed

kinetic analysis of the nucleotide-binding properties of Escherichia coli EF-Tu. Further-

more, using physiologically relevant conditions, we demonstrate that tetracycline does not

affect EF-Tu’s intrinsic or ribosome-stimulated GTPase activity, nor the stability of the EF-

Tu•GTP•Phe-tRNAPhe complex. We therefore provide clear evidence that tetracycline does

not directly impede the function of EF-Tu.

Introduction

Developing new antibiotics is a global priority as antibiotic-resistant bacteria are becoming

more prevalent in common infections worldwide [1, 2]. There has been great investment in

developing new antibiotics from chemical libraries, however, this approach has not been

overly successful [3, 4]. The most promising route to developing new antibiotics to date has

been through the modification of already known, naturally produced antibiotics [3]. However,

resistance to these antibiotics usually occurs quickly because the respective resistance mecha-

nisms are already present [4]. An alternative approach would implement known antibiotic

molecular mechanisms while screening chemical libraries and rationally designing new small

molecule inhibitors [3, 5]. However, from thousands of developed antibiotics, the molecular
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mechanism is only known for a few [3, 6]. Furthermore, little is known about the secondary

and non-specific targets of these antibiotics. One of these antibiotics is tetracycline.

Tetracycline is a broad-spectrum antibiotic used in human and animal health with activity

against a wide range of pathogens [7–10]. While tetracycline use has declined due to increasing

antibiotic resistance, many tetracycline derivatives have been developed based on the core

molecular structure of tetracycline. Newly developed tetracycline derivatives can bypass cur-

rent resistance mechanisms [7, 11–14]. All tetracyclines, except for atypical tetracyclines that

target the bacterial cytoplasmic membrane, bind to the 30S ribosomal subunit and sterically

block aminoacyl (aa)-tRNA from being accommodated into the A site of the ribosome [7, 15].

The primary tetracycline-binding pocket is formed by the irregular minor groove of helix 34

and the stem loop of helix 31 in the 16S rRNA [13, 16, 17]. Tetracycline’s polar edge interacts

with the sugar phosphate backbone of helix 34 and a magnesium ion, which coordinates indi-

rect interactions with other nucleotides. A second magnesium ion coordinates interactions

between tetracycline and helix 31. The hydrophobic face of tetracycline makes stacking inter-

actions with bases of helix 34 [13]. These unspecific interactions and the chelating properties

of tetracycline are the reason why tetracycline binding can also be observed for a number of

secondary sites. The discrepancy between the minimal inhibitory concentration (MIC) and

half maximal inhibitory concentration (IC50), as well as the diverse resistance mechanisms for

tetracycline, support the functional relevance of tetracycline binding to these secondary bind-

ing sites [13, 18].

Apart from targeting the bacterial ribosome, a tetracycline-binding pocket has also been

reported in EF-Tu, suggesting that tetracycline does indeed affect the function of EF-Tu

directly [15, 19–24]. The structure of a 1:1 complex of trypsin-modified EF-Tu•GDP and tetra-

cycline, solved using X-ray crystallography, supports a putative role of tetracycline in interfer-

ing with efficient nucleotide exchange in vivo [21]. Tetracycline is bound to the GTPase

domain and interacts with several key functional residues within conserved motifs found in

the GTPase and ATPase super families (Fig 1A). Briefly, tetracycline is coordinated through a

magnesium ion, which is an essential co-factor for nucleotide binding in EF-Tu [25]. The fol-

lowing features of EF-Tu are involved in hydrogen bonding interactions with tetracycline: the

α-phosphate of GDP, Thr25 (Escherichia coli numbering), and Asp80. Thr25 belongs to the

conserved sequence of the phosphate-binding (P)-loop ([G/A]X4GK[S/T]). Asp80 is part of

the conserved switch II trigger sequence (DX2G). The switch II trigger sequence and the P-

loop are the most important contributors to GTP binding in all GTPases, and guanine nucleo-

tide tri-phosphate specificity is due to the aspartate residue in the switch II trigger sequence

[26]. Both of these motifs are conserved in many ATPases and GTPases [27]. In addition, a

stacking interaction occurs between Pro82 and tetracycline. This proline residue is invariant

in translational GTPases [28, 29]. Based on the location and amino acids that tetracycline

interacts with in EF-Tu, it was predicted that nucleotide binding and GTP hydrolysis would be

affected [21]. No steric clashes in the superposition of the EF-Tu•GDP•tetracycline complex

and the EF-Tu•EF-Ts complex (Fig 1B) were observed [21]. However, given that the P-loop

and magnesium ion are important features in EF-Ts-stimulated nucleotide dissociation, the

ability of EF-Ts to stimulate GDP dissociation might be impeded (Fig 1C) [25, 30]. For exam-

ple, in EF-Tu, nucleotide dissociation is initiated by the release of the phosphate end of the

nucleotide [31]. Further, since the tetracycline-binding pocket is conserved in many GTPases

and ATPases, additional essential proteins could be affected by tetracycline. It is estimated that

10–18% of all gene products are P-loop NTPases [32]. In turn, this would explain the observed

discrepancy between the MIC and IC50 for in vitro translation assays.

Previously reported biochemical evidence suggests that tetracycline binding is able to

modulate E. coli EF-Tu function [22, 23]. Using fluorescence spectroscopy, the ability of
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Fig 1. Structural comparison of tetracycline bound to different functional states of EF-Tu. Tetracycline is colored by atom, GDP and GTP are in black,

and the magnesium ion is purple. In panel (A) the tetracycline-binding pocket is illustrated with the GTPase domain of EF-Tu (red) bound to GDP and

tetracycline. Switch II is highlighted in green and the P-loop in yellow. Tetracycline is coordinated by the conserved magnesium ion, interacts with Thr25 (E.

coli numbering), Asp80, and Pro82, and is in close proximity to Asp21, Thr64, Ser65, and Leu178. The X-ray structure of the EF-Tu•GDP•tetracycline

complex (PDB ID 2HCJ) [21] was used to generate the cartoon illustration. Panel (B) shows that tetracycline binding is compatible with EF-Ts binding to

EF-Tu•GDP. The interaction between tetracycline-bound EF-Tu•GDP (red) and EF-Ts (brown) is modeled, with the phosphate-binding loop highlighted in

yellow. Domain I of EF-Tu in the EF-Tu•EF-Ts (PDB ID 1EFU) [33] crystal structure was superimposed onto domain I of EF-Tu•GDP•tetracycline (PDB ID

2HCJ) [21]. Panel (C) shows that tetracycline binds proximally to switch I and II in EF-Tu, illustrated by the superposition of EF-Tu in the GTP- and GDP-

bound states onto the trypsin-modified EF-Tu•GDP•tetracycline X-ray structure. Switch I is highlighted in blue, switch II in green, and the P-loop in yellow.

The structures aligned to domain I of the EF-Tu•GDP•tetracycline crystal structure (PDB ID 2HCJ) [21] were the E. coli homology model of the GTP-bound

structure based on the crystal structure of T. aquaticus EF-Tu•GTP (PDB ID 1EFT) [34], and the EF-Tu•GDP crystal structure (PDB ID 1EFC) [35].

https://doi.org/10.1371/journal.pone.0178523.g001
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tetracycline to bind both E. coli EF-Tu and Sulfolobus solfataricus EF-1α was demonstrated

[22]. This study also provided evidence that tetracycline binding might have an effect on nucle-

otide affinity as well as the rate of GTP hydrolysis in EF-1α. The effects of tetracycline on EF-

1α were slight (a ~1.5-fold reduction in nucleotide affinity at 50 μM tetracycline and a ~25%

decrease in the salt-stimulated GTPase activity at 120 μM tetracycline) but provided the basis

for studying the effects of tetracycline on E. coli EF-Tu, which has a greater affinity for tetracy-

cline than S. solfataricus EF-1α [22]. Due to the use of non-equilibrium methods (e.g. nitrocel-

lulose filtration) and non-physiological conditions (e.g. salt-stimulated GTPase activity), the

results reported for S. solfataricus EF-1α make it difficult to assess the effect of tetracycline on

GTPase activity under in vivo conditions. Here, we adapted the fluorescence stopped-flow

approach previously used [25, 30, 31, 36, 37] to study the kinetics of nucleotide binding in

EF-Tu in order to gain detailed kinetic and thermodynamic information regarding the interac-

tion of guanine nucleotides with EF-Tu in the presence of tetracycline. With the previously

reported approach, it was not possible to observe the fluorescence of mant-labeled nucleotides

in the presence of tetracycline due to the fluorescence properties of the antibiotic (Fig 2). Fur-

thermore, using purified components from the E. coli translation machinery, we were able to

determine the intrinsic and ribosome-stimulated GTPase activity of EF-Tu, as well as the sta-

bility of the ternary complex EF-Tu•GTP•Phe-tRNAPhe in the presence of tetracycline, avoid-

ing the use of non-physiological, high salt conditions.

To our knowledge, this is the first study that reports rate constants for the nucleotide-bind-

ing kinetics of EF-Tu in the presence of tetracycline. The results described here provide clear

evidence that tetracycline does not affect translation through direct effects on the key enzy-

matic properties of EF-Tu, dismissing the observed interaction of tetracycline with EF-Tu as

an exploitable target for antimicrobial drug development.

Fig 2. Fluorescence emission properties of tetracycline and mant-nucleotides. Comparison of the

emission spectra of tetracycline and mant-GTP with the transmittance range of the 430 ± 10 nm band-pass

filter (represented by the non-shaded area). Three concentrations of tetracycline, 0.1 μM (light pink), 10 μM

(red), and 100 μM (brown) and two concentrations of mant-GTP, 1 μM (light blue) and 5 μM (dark blue), were

excited at a wavelength of 335 nm.

https://doi.org/10.1371/journal.pone.0178523.g002
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Materials and methods

Expression and purification of EF-Tu and EF-Ts

EF-Tu was expressed and purified to homogeneity as described in [36, 37]. All purification

steps contained GDP to prevent EF-Ts co-purification. The concentration of EF-Tu was deter-

mined using the extinction coefficient of 32,900 M-1cm-1 at a wavelength of 280 nm. Protein

purity was assessed by 12% SDS-PAGE stained with Coomassie Brilliant Blue.

EF-Ts was expressed as a fusion protein from the IMPACT I system (NE Biolabs), provided

by Charlotte Knudsen (Åarhus, Denmark), as described in [37] and purified to homogeneity.

The fusion protein contains a self-splicing intein and a chitin-binding domain that is removed

during purification. The concentration and purity of EF-Ts were determined through 14%

SDS-PAGE stained with Coomassie Brilliant Blue and ImageJ [38] was used to quantify the

concentration through densitometry.

Preparation of nucleotide-free EF-Tu

Nucleotide-free EF-Tu was prepared as described in [36, 37]. Briefly, EF-Tu•GDP was incu-

bated with Buffer A (25 mM Tris-HCl, pH 7.5, 50 mM NH4Cl, and 10 mM EDTA) at 37˚C

for 30 min to promote the dissociation of GDP. Then, EF-Tu and GDP were separated on a

Superdex 75 (GE healthcare) size exclusion column in Buffer B (25 mM Tris-HCl, pH 7.5,

and 50 mM NH4Cl). Fractions containing EF-Tu were collected and the concentration was

quantified spectroscopically (ε280 = 32,900 M-1cm-1). EF-Tu was diluted with Buffer C (50

mM Tris-HCl, pH 7.5, 70 mM NH4Cl, 30 mM KCl, and 7 mM MgCl2) prior to all experi-

ments. All nucleotide-free EF-Tu was prepared the same day as the rapid-kinetics assays were

performed.

Rapid-kinetics measurements

A fluorescence stopped-flow apparatus (KinTek SF-2004) was used to determine rate constants

as described in [25]. Buffer C was used for all stopped-flow measurements. Nucleotide binding

to EF-Tu was determined through fluorescence resonance energy transfer from Trp184 (λex =

280 nm) in EF-Tu to the mant-group on either mant-GTP or mant-GDP. The fluorescence

signal was detected after passing through a 430 ± 10 nm band-pass filter (Edmund Optical).

Nucleotide association rates were determined under pseudo first order conditions by titrating

mant-GTP/mant-GDP against a constant concentration of nucleotide-free EF-Tu (~0.3 μM).

The apparent rate constant for each mant-nucleotide concentration was determined by fitting

the following one-exponential function to each fluorescence time course,

F ¼ F1 þ A� expð� kapp � tÞ ð1Þ

where F is fluorescence at time t, F1 is the final fluorescence, A is the amplitude and kapp is the

apparent rate constant. The association rate constant was determined by plotting the apparent

rate as a function of the nucleotide concentration. For all association and dissociation experi-

ments, both syringes contained the respective concentration of tetracycline.

Dissociation rate constants were determined by forming the respective EF-Tu•mant-GTP/

mant-GDP complex with 0.6 μM EF-Tu and 6 μM mant-nucleotide (syringe concentrations).

Then, EF-Tu•mant-GTP/mant-GDP was chased with 60 μM of unlabeled nucleotide by rap-

idly mixing equal volumes of both solutions using the stopped-flow apparatus. The dissocia-

tion rate constant was determined by fitting each time course with a one-exponential function

(Eq 1).
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GTPase assays

The rate of GTP hydrolysis was determined as in [39]. All GTPase assays were performed in

Buffer C. Prior to measuring GTPase activity, [γ-32P]GTP (20 μM) was charged for 15 min at

37˚C with phosphoenol pyruvate (3 mM), and pyruvate kinase (0.02 μg/μL). Then, EF-Tu

(10 μM) alone or together with EF-Ts (0.02 μM or 0.2 μM) was added and the reaction was

incubated for 15 min at 37˚C and subsequently allowed to cool to room temperature for 5 min.

EF-Ts was added into the reaction mixture to prevent GDP dissociation from being the rate-

limiting step. The reaction was started by the addition of a solution containing the respective

concentration of tetracycline with no ribosomes, 70S ribosomes (0.1 μM), or 50S ribosomes

(0.1 μM). At each time point, a 5 μL aliquot of the reaction was quenched in 50 μL of perchloric

acid (1 M) and dipotassium phosphate (2 mM). The liberated 32Pi was extracted using 400 μL

isopropyl alcohol and 300 μL sodium molybdate (20 mM). The amount of hydrolyzed [γ-32P]

GTP was determined by adding 200 μL of the organic phase to 2 mL of scintillation cocktail

(EcoLite, MP Biomedical) in 10 mL scintillation vials and scintillation counting (Tri-Carb

2800TR Perkin Elmer). Background hydrolysis was determined and subtracted by using a

reaction mixture that contained all components except EF-Tu.

Hydrolysis protection assays

The stability of the EF-Tu•GTP•Phe-tRNAPhe ternary complex was assessed as described in

[36]. To this end, EF-Tu•GTP•Phe-tRNAPhe ternary complex was formed in Buffer D (50 mM

Tris-HCl, pH 7.5 (4˚C), 70 mM NH4Cl, and 10 mM MgCl2) with EF-Tu (1.5 μM), [14C]Phe-

tRNAPhe (1.08 μM), GTP (1.5 mM), phosphoenol pyruvate (3 mM), and pyruvate kinase

(0.17 μg/μL). [14C]Phe-tRNAPhe was prepared as described in [36] by incubating tRNAPhe

(E. coli MRE 600, Sigma) with ATP (6 mM), inorganic pyrophosphatase (3 mM), phosphoenol

pyruvate (3 mM), and pyruvate kinase (0.17 μg/μL) in Buffer E (25 mM Tris-Ac, pH 7.5 (room

temperature), 11 mM Mg(OAc)2 100 mM NH4OAc, 30 mM KOAc, and 1 mM dithiothreitol)

for 30 min at 37˚C. Then,[14C]-Phe (40 μM) and purified phenylalanyl-tRNA synthetase

(~1 μM) were added to the solution and incubated for 20 min at 37˚C. The reaction was

quenched with the addition of 3 M KOAc (pH 4.5) to a final concentration of 0.3 M. Following

phenol/chloroform extraction, the RNA was precipitated with 2.5 volumes of cold (-20˚C)

100% ethanol overnight.

Results and discussion

The effect of tetracycline on the nucleotide-binding properties of EF-Tu

The binding of tetracycline to the GTPase domain of EF-Tu (Fig 1A) was speculated to affect

EF-Tu’s ability to bind and exchange guanine nucleotides [21], ultimately inhibiting efficient

protein synthesis. Tetracycline was also reported to decrease the affinity of guanine nucleo-

tides, suggested to be the result of tetracycline affecting the association rate constant of GTP/

GDP [22]. Since tetracycline has a greater affinity for E. coli EF-Tu than S. solfataricus EF-1α,

we predicted that the effect of tetracycline on nucleotide binding would be more pronounced

in E. coli EF-Tu. We therefore modified the previously reported stopped-flow approach,

described in [25, 30, 31, 36, 37], to enable the direct analysis of guanine nucleotide association

and dissociation kinetics in EF-Tu. The major challenge to this approach is the autofluores-

cence of tetracycline which, at sufficiently high concentrations, overwhelms the mant fluores-

cence signal that reports binding of the respective nucleotide to EF-Tu [25]. A close inspection

of the fluorescence spectra of mant-nucleotides and tetracycline when excited at 335 nm

reveals that the majority of the tetracycline autofluorescence occurs at wavelengths greater

Tetracycline and elongation factor Tu
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than 450 nm, whereas the florescence maximum of mant lies at 440 nm (Fig 2). In the past,

mant fluorescence was recorded using 400 nm long-pass cut-off filters. Based on these spectral

properties, we used a 430 ± 10 nm band-pass filter which is optimal to reduce tetracycline

emission and to still observe the fluorescence emission of the mant group (Fig 2) with high

enough sensitivity to obtain time-resolved fluorescence changes of mant-GTP/mant-GDP (Fig

3). This modification of the well-established approach to dissect the nucleotide-binding kinet-

ics in E. coli EF-Tu [25, 30, 31, 36, 37] allowed us to perform a detailed analysis of the associa-

tion and dissociation kinetics of GTP and GDP, and of EF-Ts-stimulated nucleotide exchange

in EF-Tu according to the kinetic scheme shown in Fig 4.

Nucleotide association (k1 and k5)

The association rate constants for GDP (k1) and GTP (k5) were determined by titrating mant-

guanine nucleotides against a constant concentration of nucleotide-free EF-Tu. At each nucleo-

tide concentration, the apparent association rate constant (kapp) was determined in the presence

and absence of 100 μM tetracycline (Fig 5C). By plotting the apparent rate constants with respect

to the nucleotide concentration, the respective rate constant was determined (Table 1). The GTP

association rate constant in the absence of tetracycline was k5 = 3.9 ± 0.1 × 105 M-1s-1. In the

presence of 100 μM tetracycline, no change was observed (k5, tet = 3.4 ± 0.1 × 105 M-1s-1). Both of

these GTP association rate constants are in agreement with the previously reported value of k5 =

5 ± 1 × 105 M-1s-1 [25]. Similarly, the GDP association rate constant k1 is not affected by the

addition of 100 μM tetracycline (k1 = 2.1 ± 0.1 × 106 M-1s-1 and k1,tet = 2.1 ± 0.3 × 106 M-1s-1),

and both rate constants are consistent with the earlier reported value of k1 = 2.0 ± 0.5 × 106

M-1s-1 [25]. Therefore, tetracycline has no effect on the association rate constants of either GTP

or GDP to E. coli EF-Tu and, in turn, on the thermodynamics of this interaction.

Nucleotide dissociation (k-1 and k-5)

The dissociation rate constants for GDP (k-1) and GTP (k-5) were measured by chasing EF-

Tu•mant-GTP/mant-GDP with excess unlabeled GTP/GDP [25]. Under these conditions, dis-

sociation of the mant-labeled nucleotide is rate limiting and the binding of unlabeled nucleotide

is rapid, effectively preventing rebinding of the labeled nucleotide. Therefore, the observed dis-

sociation rate is the rate constant of this first-order dissociation reaction (k-1, k-5). Fig 5A shows

the obtained dissociation time course of GDP in the absence of tetracycline. When carried out

in the presence of increasing concentrations of tetracycline, no change of the rate constant for

either GTP (k-5 = 1.7 ± 0.3 × 10−2 s-1) or GDP (k-1 = 1.2 ± 0.1 × 10−3 s-1) was observed (Fig 5B).

The obtained dissociation rate constants (summarized in Table 1) agree with the previously

reported rate constants of k-5 = 3 ± 1 × 10−2 s-1 for GTP dissociation and k-1 = 2 ± 1 × 10−3 s-1

for GDP dissociation [25]. These results demonstrate that tetracycline does not interfere with

the spontaneous dissociation of guanine nucleotides from EF-Tu (k-1 and k-5).

EF-Ts stimulated nucleotide dissociation from EF-Tu (k3/(1 + k-3/k-4) and

k6/(1 + k-6/k-7))

Under in vivo conditions, the exchange of nucleotides in EF-Tu requires an additional transla-

tion factor, EF-Ts. The action of nucleotide exchange factor EF-Ts is required because sponta-

neous dissociation of nucleotides, in particular GDP, from EF-Tu is too slow to sustain in vivo
protein synthesis rates. To investigate a potential effect of tetracycline on this physiologically

relevant step, we performed an EF-Ts titration of the stimulated nucleotide exchange reaction.

We determined the apparent rate of nucleotide dissociation from EF-Tu at increasing concen-

trations of EF-Ts in the presence of a constant amount of EF-Tu•mant-GTP/mant-GDP,

Tetracycline and elongation factor Tu
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Fig 3. Effect of tetracycline on the association rate of EF-Tu and mant-nucleotides. Representative time

courses of (A) mant-GTP (2 μM) or (B) mant-GDP (2.5 μM) binding to nucleotide-free EF-Tu (0.3 μM) in the

Tetracycline and elongation factor Tu
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similar to the approach describe above [25]. Consistent with the coupled equilibria in Fig 4, we

observed a linear initial phase (Fig 6) under low concentrations of EF-Ts, which represents the

combined rate constants for the formation of the EF-Tu•GTP/GDP•EF-Ts complex and the

dissociation of the nucleotide (Fig 4). This approach allows us to assay if any of the EF-Ts

related steps are affected by tetracycline, as a change in the rate constant of either of the con-

tributing steps will alter the slope of the concentration dependence. Interestingly, the slope of

the combined rate constants in the presence and absence of 100 μM tetracycline is unchanged

(summarized in Table 1). The value of the combined rate constants for stimulated GTP disso-

ciation was k6/(1 + k-6/k-7) = 21.9 ± 1.4 × 106 M-1s-1 in the absence of tetracycline and k6/(1 +

k-6/k-7) = 19.8 ± 1.1 × 106 M-1s-1 in the presence of 100 μM tetracycline. Both of these values

agree with earlier reported work (k6/(1 + k-6/k-7)tet = 20 × 106 M-1s-1) and indicate that tetracy-

cline does not affect EF-Ts-stimulated dissociation of GTP from EF-Tu [25]. Similarly, the

combined rate constants for the stimulated dissociation of GDP were determined to be k3/(1 +

k-3/k-4) = 13.4 ± 1.1 × 106 M-1s-1 in the absence of tetracycline and k3/(1 + k-3/k-4)tet = 13.9 ±
0.5 × 106 M-1s-1 in the presence of 100 μM tetracycline, which is in excellent agreement with the

reported value of k3/(1 + k-3/k-4) = 16 × 106 M-1s-1 [25]. Therefore, our results indicate that tetra-

cycline does not affect either the interaction of EF-Tu and EF-Ts (k-3 and k-6) or the subsequent

nucleotide release steps from the EF-Tu•GTP/GDP•EF-Ts ternary complex (k4, k-4 and k7, k-7).

In summary, the detailed kinetic analysis of the nucleotide-binding properties of EF-Tu in

the presence of up to 100 μM tetracycline support the notion that this essential step in the func-

tional cycle of EF-Tu is not affected by tetracycline. The tetracycline concentration used here is

much greater than the peak plasma concentration of a single standard administered dose of tet-

racycline in humans, which is 1.02 μg/mL (2.29 μM) [40]. Therefore, we feel confident that tet-

racycline does not target nucleotide binding in EF-Tu as part of its mode of action. Our results

are in contrast to data reported by Lamberti et al. [22], which reported a slight (1.5- to 1.7-fold)

decreased affinity in EF-1α for guanine nucleotides in the presence of 50 μM tetracycline.

presence of either 0 μM (grey) or 100 μM (black) tetracycline measured by exciting the single tryptophan

residue at 280 nm and observing fluorescence resonance energy transfer to the mant group through a

430 ± 10 nm band-pass filter. (C) Concentration dependence of the apparent rate constant (kapp) for mant-

GTP (squares) or mant-GDP (circles) binding in the presence of either 0 μM tetracycline (open symbols,

dashed line) or 100 μM tetracycline (solid symbols, solid line). Each kapp was determined by fitting individual

time courses to a single exponential function, and the average of (n > 10) time courses determined at a given

nucleotide concentration is plotted. Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0178523.g003

Fig 4. Kinetic mechanism of nucleotide exchange in EF-Tu.

https://doi.org/10.1371/journal.pone.0178523.g004
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However, non-equilibrium methods were used by Lamberti et al. and the effect on the associa-

tion rate constant was not directly measured [22]. Furthermore, our observations are supported

by a computational study suggesting that tetracycline binding to EF-Tu causes only a small

change in free energy and is facilitated indirectly via the magnesium ion and GDP [19].

Tetracycline has no effect on the GTPase activity of EF-Tu

Although the nucleotide-binding properties of EF-Tu are not altered in the presence of tetracy-

cline, the fact that tetracycline binds to the G domain of EF-Tu and interacts with the P-loop

Fig 5. Effect of tetracycline on the dissociation rate of EF-Tu and mant-nucleotides. Panel (A) shows a

representative time course of GDP dissociation from EF-Tu (0.3 μM) in the presence of either 0 μM

tetracycline (grey) or 100 μM tetracycline (black). The concentration dependence of the k-5 (GTP, squares) or

k-1 (GDP, circles) as a function of tetracycline concentration is shown in panel (B). Fluorescence resonance

energy transfer was monitored by exciting the single tryptophan residue present in EF-Tu and monitoring

mant fluorescence through a 430 ± 10 nm band-pass filter. Each rate constant is an average of (n > 9) time

courses fit to a single exponential function, and error bars are standard errors.

https://doi.org/10.1371/journal.pone.0178523.g005
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and the switch II trigger sequence (Fig 1C) gives rise to the hypothesis that its mode of action

might include a direct effect on GTP hydrolysis by EF-Tu [21, 41]. Consistent with such a role,

the previously reported salt-stimulated GTPase activity of S. solfataricus EF-1α was reduced by

~25% in the presence of 120 μM tetracycline [22]. However, decreasing the already extremely

slow intrinsic GTP-hydrolysis rate of EF-Tu seems an unlikely additional mode of tetracycline

antibiotic action. To investigate this further, we used physiologically relevant buffer conditions

to determine if tetracycline had an effect, not only on the intrinsic, but also on the 70S ribo-

some and 50S ribosomal subunit-stimulated GTPase activity of EF-Tu.

Intrinsic GTPase activity

To investigate if tetracycline affects intrinsic GTP hydrolysis by EF-Tu, we determined the

multiple turnover GTPase activity of EF-Tu at increasing concentrations (up to 500 μM) of tet-

racycline. Rates of multiple turnover GTP hydrolysis (kGTPase) were determined from the ini-

tial linear phase of the time course, both in the presence and absence of tetracycline (Fig 7A,

Table 1. Kinetic parameters of nucleotide binding in EF-Tu in the presence of 0 μM and 100 μM

tetracycline.

Rate constant 0 μM tetracycline 100 μM tetracycline

k1 (× 106 M-1s-1) 2.1 ± 0.1 2.1 ± 0.3

k5 (× 105 M-1s-1) 3.9 ± 0.1 3.4 ± 0.1

k-1 (× 10−3 s-1) 1.4 ± 0.1 1.2 ± 0.1

k-5 (× 10−2 s-1) 1.4 ± 0.2 1.7 ± 0.3

k3/(1 + k-3/k-4) (× 106 M-1s-1) 13.4 ± 1.1 13.9 ± 0.5

k6/(1 + k-6/k-7) (× 106 M-1s-1) 21.9 ± 1.4 19.8 ± 1.1

https://doi.org/10.1371/journal.pone.0178523.t001

Fig 6. Effect of tetracycline on EF-Ts-stimulated dissociation of mant-nucleotides from EF-Tu. The

EF-Ts dependence of the apparent dissociation rates (kapp) for mant-GTP (squares) and mant-GDP (circles)

dissociation from EF-Tu (0.15 μM) is shown in the presence (solid symbols, solid line) and absence (open

symbols, dashed line) of 100 μM tetracycline. Fluorescence resonance energy transfer from the mant group

to the single tryptophan in EF-Tu was observed through a 430 ± 10 nm band-pass filter by exciting the single

tryptophan in EF-Tu at 280 nm. Each kapp is the average (n > 11) of time courses at that EF-Ts concentration.

The error bars indicate the standard error.

https://doi.org/10.1371/journal.pone.0178523.g006
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Table 2). Our results in the absence of tetracycline are consistent with previous work using the

same buffer [39]. In addition, increasing the tetracycline concentration up to 500 μM (Fig 7B)

did not reduce the observed multiple turnover hydrolysis rate of intrinsic GTP hydrolysis

(summarized in Table 2). This further supports our observation that tetracycline at concentra-

tions higher than 100 μM is not interfering with the EF-Ts-mediated nucleotide exchange

reaction. Furthermore, our results presented here demonstrate that tetracycline, although

Fig 7. Effect of tetracycline on the intrinsic GTPase activity. (A) The linear phase of multiple turnover

GTP hydrolysis reactions using 10 μM EF-Tu and 0.2 μM EF-Ts are shown for 0 μM (open squares, dashed

line) and 100 μM (solid squares, solid line) tetracycline. (B) Comparison of the multiple turnover GTP

hydrolysis rates at different tetracycline concentrations. Data shown are averages (n = 3) and the error bars

indicate the standard error.

https://doi.org/10.1371/journal.pone.0178523.g007
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able to bind in the vicinity of the γ-Phosphate of the bound GTP, does not alter the intrinsic

GTPase activity of EF-Tu.

Ribosome-stimulated GTPase activity

The multiple turnover GTPase activity of EF-Tu can be stimulated ~2-fold by the presence of

empty 70S ribosomes [23, 39], providing a sensitive measure for tetracycline interfering with the

interaction of EF-Tu•GTP. Similar to the reported intrinsic GTPase activity, rates of hydrolysis

were determined from the initial phase of the respective GTP hydrolysis time courses. The 70S-

stimulated multiple turnover GTP hydrolysis activity of EF-Tu was kGTPase,70S = 2.67 ± 0.20 ×
10−3 μM/s (Fig 8A and Table 2). In the presence of increasing concentrations of tetracycline, up

to 500 μM (Fig 8B), the multiple turnover GTP hydrolysis activity remains essentially unaffected.

With a k70S, tet at 100 μM of 2.17 ± 0.23 × 10−3 μM/s, the rate of 70S-stimulated GTPase activity

in EF-Tu is similar under all tetracycline conditions tested. Consistent with this, the 50S-stimu-

lated GTP-hydrolysis activity of EF-Tu is unaffected by 100 μM tetracycline (k50s = 1.0 ± 0.3 ×
10−3 μM/s and k50S,tet = 1.3 ± 0.3 × 10−3 μM/s, summarized in Fig 8C and Table 2). This is not sur-

prising, as the 70S-stimulated GTPase activity of EF-Tu is mainly due to the interaction of EF-Tu

with the GTPase Activating Center (GAC) and the sarcin-ricin loop (SRL), including ribosomal

proteins L7/L12 located on the 50S [42]. Our observation that the 70S ribosome, which is the cel-

lular target of EF-Tu, is able to stimulate the GTPase activity of EF-Tu, even at 500 μM, is in con-

trast to Lamberti et al. [22] who reported an effect of tetracycline on the ribosome-independent

salt-stimulated GTPase activity of EF-1α. The observed 25% reduction might be specific to their

use of 3.6 M NaCl to stimulate the GTPase activity of S. solfataricus EF-1α. Therefore, the salt-

stimulated GTPase activity could involve an alternative mechanism that might be sensitive to the

presence of tetracycline but that is not relevant under physiological conditions.

Tetracycline does not alter EF-Tu•GTP•Phe-tRNAPhe stability

In the active GTP bound state, EF-Tu has a high affinity for aminoacyl(aa)-tRNA (KD� 10−8 M)

and forms the EF-Tu•GTP•aa-tRNA ternary complex [43]. The interaction between aa-tRNA and

EF-Tu involves binding of the aminoacylated 3’-end of the tRNA into the cleft between domain I

and II. The 5’-end of the tRNA body is bound by the junctions of the three domains of EF-Tu

[44]. While the aa-tRNA is bound by EF-Tu as part of the ternary complex (Fig 9A), the aminoa-

cyl-ester bond between the amino acid and the tRNA body is protected from spontaneous hydro-

lysis (~10-fold) [36]. This effect is highly sensitive to structural perturbation of the amino acid

binding pocket as well as slight changes in the on- and off-rates of the aa-tRNA. The tetracycline

binding site is proximate to switch I and II, which undergo structural rearrangements upon

GTP binding to EF-Tu and form part of the aa-tRNA interaction surface of EF-Tu. Therefore,

we wanted to investigate if the binding of tetracycline to EF-Tu might perturb the aa-tRNA

interaction. To this end, we monitored the stability of the aminoacyl-ester bond of Phe-tRNAPhe

Table 2. Effect of 100 μM tetracycline on the intrinsic, 70S-, and 50S-stimulated GTPase activity of

EF-Tu.

Multiple turnover rate 0 μM tetracycline 100 μM tetracycline

kGTPase (× 10−4 μM/s) 7.67 ± 1.33 6.67 ± 1.33

kGTPase, 0.02μM EF-Ts (× 10−4 μM/s) 5.33 ± 0.67 4.67 ± 0.67

kGTPase, 0.2μM EF-Ts (× 10−4 μM/s) 5.33 ± 0.33 4.67 ± 0.33

kGTPase,70S (× 10−3 μM/s) 2.67 ± 0.20 2.17 ± 0.23

kGTPase,50S (× 10−3 μM/s) 1.0 ± 0.3 1.3 ± 0.3

https://doi.org/10.1371/journal.pone.0178523.t002
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as previously described [36] in the presence of increasing tetracycline concentrations (Fig 9B).

As reported by De Laurentiis et al. [36], the half-life of the [14C]Phe-tRNAPhe was ten-fold

greater in the presence of EF-Tu•GTP than in the absence of EF-Tu. Increasing the tetracycline

concentration to 100 μM had no effect on EF-Tu’s ability to protect the highly sensitive aminoa-

cyl-ester bond against spontaneous hydrolysis (Fig 9B and Table 3). This is supported by the

observation that tetracycline does not impede the delivery of the EF-Tu•GTP•aa-tRNA ternary

complex to the ribosome [15]. This observation suggests that either tetracycline binds to E. coli
EF-Tu and does not affect aa-tRNA binding or that tetracycline does not have a high enough

affinity to the ternary complex under physiologically relevant conditions.

Conclusion

Our data reported here demonstrates that tetracycline does not affect the nucleotide-binding

properties of EF-Tu, nor the ability of EF-Ts to stimulate nucleotide dissociation. Further-

more, no effect on the intrinsic, 70S- and 50S-stimulated multiple turnover GTP hydrolysis

Fig 8. Ribosome-stimulated GTPase activity. Effect of tetracycline on the 70S (0.1 μM) and 50S (0.1 μM) -stimulated GTPase activity of EF-Tu

(10 μM) in the presence of EF-Ts (0.02 μM). Panel (A) is the linear phase of the time course of multiple turnover GTP hydrolysis of EF-Tu stimulated

by the 70S ribosome in the presence (100 μM, solid squares, solid line) and absence (open squares, dashed line) of tetracycline. Panel (B) shows the

dependence of the rate of 70S-stimulated GTP hydrolysis on the concentration of tetracycline. The linear phase of 50S stimulated GTP hydrolysis

reaction is shown in panel (C) in the presence (100 μM, solid squares, solid line) and absence (open squares, dashed line) of tetracycline. Each point

on the plots is the average of (n = 3) independent experiments and the error bars represent the standard error.

https://doi.org/10.1371/journal.pone.0178523.g008
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activity of EF-Tu could be detected. Similarly, the formation or stability of the EF-Tu•GTP•aa-

tRNA ternary complex is insensitive to the presence of tetracycline under physiologically

relevant conditions. These findings suggest that during therapeutic use of tetracycline, EF-Tu

is not a direct target of the antibiotic because the observed peak plasma concentration of tetra-

cycline is more than 100-times lower than the concentrations used in our work [40]. Our

observations also indicate that although tetracycline is able to bind to the trypsin-modified

fragment of EF-Tu, it does not influence the functional cycle of EF-Tu. As a consequence,

direct tetracycline binding to EF-Tu as an exploitable target for antimicrobial drugs likely has

to be dismissed.

Fig 9. Effect of tetracycline on EF-Tu•GTP•Phe-tRNAPhe stability. (A) Model of the EF-Tu•GTP•Phe-tRNAPhe

complex interacting with tetracycline (coloured by atom). EF-Tu is shown in red and Phe-tRNAPhe is orange. The

crystal structure of the EF-Tu•GTP•aa-tRNA complex (PDB ID 1OB2) was superimposed onto domain I of the

EF-Tu•GDP•tetracycline complex (PDB ID 2HCJ) [21]. (B) Time dependence of the spontaneous hydrolysis of

the amino-ester bond obtained by incubating Phe-tRNAPhe (1.08 μM) at 37˚C with no EF-Tu (solid diamonds,

dotted line), with EF-Tu•GTP (1.5 μM) and no tetracycline (open circles, dashed line), or EF-Tu•GTP (1.5 μM)

and 100 μM tetracycline (solid circles, solid line).

https://doi.org/10.1371/journal.pone.0178523.g009

Table 3. Effect of tetracycline on EF-Tu mediated protection of the Phe-tRNAPhe against spontaneous

hydrolysis.

Reaction conditions Half-life (min)

0 μM EF-tu, 0 μM Tet 35 ± 4

1.5 μM EF-Tu, 0 μM Tet 382 ± 64

1.5 μM EF-Tu, 3 μM Tet 542 ± 46

1.5 μM EF-Tu, 30 μM Tet 483 ± 45

1.5 μM EF-Tu, 100 μM Tet 282 ± 72

https://doi.org/10.1371/journal.pone.0178523.t003
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Interestingly, the reported binding pocket of tetracycline is conserved in many other

GTPases and ATPases. However, the predicted main contributor to tetracycline binding in

EF-Tu is the conserved, nucleotide-bound magnesium ion [19]. If tetracycline binds other

GTPases and ATPases through a divalent metal ion interaction in a similar binding pocket as

in EF-Tu, our data suggest that tetracycline will likely also not affect their function. Therefore,

the observed discrepancy between the MIC and IC50 for tetracycline must be caused by other

tetracycline binding sites on the 30S and 50S ribosomal subunits, likely through perturbation

of different processes such as ribosome biogenesis or translation termination [17, 45]. Further

detailed mechanistic studies regarding these secondary-binding sites will be necessary and

could provide novel structural and mechanistic targets for the development of new classes of

antibacterial compounds.
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