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Ingestion or exposure to chemicals poses a serious health risk. Early detection of cellular
changes induced by such events is vital to identify appropriate countermeasures to
prevent organ damage. We hypothesize that chemically induced organ injuries are
uniquely associated with a set (module) of genes exhibiting significant changes in
expression. We have previously identified gene modules specifically associated with
organ injuries by analyzing gene expression levels in liver and kidney tissue from rats
exposed to diverse chemical insults. Here, we assess and validate our injury-associated
gene modules by analyzing gene expression data in liver, kidney, and heart tissues
obtained from Sprague-Dawley rats exposed to thioacetamide, a known liver toxicant
that promotes fibrosis. The rats were injected intraperitoneally with a low (25 mg/kg) or
high (100 mg/kg) dose of thioacetamide for 8 or 24 h, and definite organ injury was
diagnosed by histopathology. Injury-associated gene modules indicated organ injury
specificity, with the liver being most affected by thioacetamide. The most activated
liver gene modules were those associated with inflammatory cell infiltration and fibrosis.
Previous studies on thioacetamide toxicity and our histological analyses supported these
results, signifying the potential of gene expression data to identify organ injuries.

Keywords: predictive toxicology, RNA-seq, thioacetamide, toxicogenomics, fibrosis, necrosis

INTRODUCTION

The risk of being exposed to toxic chemicals (i.e., toxicants) that cause acute and long-term adverse
health effects is increasing worldwide. Tens of thousands of chemicals already exist, and hundreds
more are introduced each year for consumer use (Allen, 2013). Yet, most of these chemicals
will never be adequately tested for toxicity because of the resource- and time-intensive nature of
animal-based (in vivo) toxicological studies. An effective approach is needed to identify appropriate
countermeasures for mitigating or avoiding permanent organ damage from exposure to toxicants.
A key requirement for achieving this aim is early detection of toxicant-induced biological changes
(Rossi et al., 2007; Parkes et al., 2012). Systems toxicology offers a promising approach to address
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this issue. It assumes that toxicity is accompanied by altered
expression of either a single gene or a set of genes (Hamadeh et al.,
2002; Sutherland et al., 2017). Predictive systems toxicology is
based on the hypothesis that treatments inducing similar changes
in gene expression will lead to the same endpoint (Afshari
et al., 2011). Recent predictive models, which build on this
assumption by hypothesizing that treatments leading to the same
endpoint cause similar changes in gene expression, have led to
a deeper mechanistic understanding of toxicological effects and
improved predictions of responses to chemicals (Steiner et al.,
2004; Sutherland et al., 2017).

Several toxicogenomics studies have used data on expressed or
co-expressed genes to identify genes specific to a certain chemical
insult or disease (e.g., cancer, cholestasis, steatosis) (Segal et al.,
2004; Sahini et al., 2014; Parmentier et al., 2017), or to repurpose
drugs by using an already existing drug to treat a different
disease (Iskar et al., 2013). Co-expressed genes participate in a
biological process, but are not necessarily co-regulated. A toxicity
pathway is a set of co-expressed genes that are differentially
activated in response to an injury condition. Computational
methods, such as bi-clustering (Pontes et al., 2015), are used
to create co-expressed gene sets, which consist of genes whose
expression pattern is correlated across a set of chemical exposure
conditions. In our initial efforts, we used the Iterative Signature
Algorithm (Bergmann et al., 2003) to identify co-expressed
gene sets (modules) associated with molecular toxicity pathways
and link them to specific injuries in the liver and kidney
(Tawa et al., 2014; AbdulHameed et al., 2016). Our injury
modules were selectively activated by chemical insults. However,
the selection of injury-specific modules was partly based on
biological information and the presence of known biomarkers.
Recently, we developed an unbiased protocol to assign injury
modules to specific histopathological injuries in the liver and
kidney based on gene co-expression profiles (Te et al., 2016).
This protocol is applicable for any organ and has an advantage
over, e.g., gene signatures, in that no biological or mechanistic
information is needed as input other than gene expression data.
Gene expression data may exhibit high study-variability, due to
limitations in experimental techniques and the complexity of
biological systems, which makes identifying gene signatures for
specific pathologies a challenge. With the use of our co-expressed
injury modules, we can reduce this inherent noise and make
predictions more robust. Using only gene expression data, from
the Open Toxicogenomics Project-Genomics Assisted Toxicity
Evaluation System (TG-GATEs) database, which contains data
from Sprague-Dawley rats exposed to different chemicals for
4–29 days (Igarashi et al., 2015), our protocol identified 8 and 11
chemical-induced organ injury modules for the liver and kidney,
respectively, associated with the relevant histopathological injury
phenotypes from the TG-GATEs database.

In the current study, we tested the ability of our previously
developed liver and kidney injury modules to predict liver and
kidney injuries in rats at early time points after exposure to a
toxicant (8 and 24 h). Our aim is to show that the activation score
of the injury modules correlate with known injury phenotypes
and that our injury modules are advantageous compared to
using differentially expressed genes (DEGs) or KEGG pathways

to identify injury phenotypes. We selected thioacetamide, an
organosulfur compound extensively used in animal studies as a
hepatotoxin and carcinogen (Ledda-Columbano et al., 1991; Li
et al., 2002; Yeh et al., 2004; Okuyama et al., 2005), for its ability
to cause acute liver damage (Li et al., 2002; Okuyama et al., 2005).
Thioacetamide is highly toxic because it is rapidly metabolized
by cytochrome P450 and flavin-containing monooxygenases to
reactive metabolites (thioacetamide-S-oxide and reactive oxygen
species) (Hajovsky et al., 2012). To validate our organ injury
modules, we treated 30 Sprague-Dawley rats with saline solution
(control), 25 mg/kg (low dose), and 100 mg/kg (high dose) to
produce different degrees of injury. We determined the doses
based on the dose response curve for thioacetamide in Sprague-
Dawley rats. RNA samples for gene expression analysis were
collected from the liver, kidney, and heart at 8 and 24 h. Although
thioacetamide mainly causes liver injury, we used kidney samples
to test for organ specificity and heart samples for a control.
We then validated the injury module predictions by identifying
known injury phenotypes in liver and kidney tissues.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats at 10 weeks of age were purchased
from Charles River Laboratories (Wilmington, MA,
United States). They were fed with Formulab Diet 5001
(Purina LabDiet; Purina Miles, Richmond, IN, United States)
and given water ad libitum in an environmentally controlled
room on a 12:12-h light-dark cycle, with the temperature set
at 23◦C. All experiments were conducted in accordance with
the Guide for the Care and Use of Laboratory Animals of
the United States Department of Agriculture, the Vanderbilt
University Institutional Animal Care and Use Committee, and
the U.S. Army Medical Research and Materiel Command Animal
Care and Use Review Office.

Experimental Design
The surgery for implanting the catheters was performed 7 days
before each experiment, as previously described (Shiota, 2012).
Rats were anesthetized with isoflurane. For studies to determine
the appropriate dose and time after exposure and for studies to
measure changes in gene expression, the right external jugular
vein was cannulated using a sterile silicone catheter with an inner
diameter of 0.51 mm and an outer diameter of 0.94 mm. The free
end of the catheter was passed subcutaneously to the back of the
neck where it was fixed. Each catheter was occluded with a metal
plug following a flush of heparinized saline (200 U heparin/ml).
After the surgery, rats were housed individually.

Studies for Optimization of Dose and
Time After Exposure
Two days before each study, animals were moved from their
regular housing cage to a metabolic cage (Harvard Apparatus,
Holliston, MA, United States). To determine the appropriate dose
of thioacetamide and time after exposure, animals were divided
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FIGURE 1 | Protocol to determine thioacetamide dose and time after
exposure in Sprague-Dawley rats. Schedule for intraperitoneal (ip) injection of
thioacetamide, collection of blood, accumulation of urine, and collection of
tissue samples.

into six groups of three, treated with either vehicle (3 ml/kg of
saline) or thioacetamide (25, 50, 100, 200, or 300 mg/kg, injected
intraperitoneally at 6 am). Blood (100 µl)from the jugular
vein catheter and accumulated urine samples were collected
just before, as well as 3, 6, 9, 12, 24, 27, 30, 33, and 36 h
after, the dosing treatment (Figure 1). Right after the first
blood and urine collection at 6 am of the first day, either the
vehicle or thioacetamide was administered. After the last blood
collection, rats were euthanized by intravenous administration
of sodium pentobarbital (120 mg/kg) through the jugular vein,
and liver, kidney, and heart were harvested. We measured typical
biomarkers of liver, kidney and heart injury in blood and urine.
Liver, kidney, and heart injuries were directly diagnosed by
histological analysis of collected tissues.

Studies for Measuring Changes in Gene
Expression
Based on the results of studies to optimize the dose and time
after exposure, we chose 25 and 100 mg/kg as the low and high
doses, respectively, and 8 and 24 h as the time elapsed (T1, short;
T2, long) after thioacetamide exposure (Figure 2). At the start
of the T1 study, rats were transferred into a new housing cage
and allowed access to water ad libitum, but no food. Blood was
collected, then rats were given intraperitoneally at 9 am either
vehicle (n = 5 rats) or thioacetamide (25 or 100 mg/kg; n = 5 rats
per dose). For the T2 study, rats were placed into a new housing
cage and allowed access to water and food ad libitum for the first
18 h after treatment, then food was removed for the last 8 h (9
am to 5 pm, Day 2). For T2 rats, at the start of the study, blood
was collected, then rats were given intraperitoneally at 5 pm (Day
1) either vehicle or thioacetamide (25 or 100 mg/kg; n = 5 rats
per dose). For both T1 and T2 rats, following blood collection
at 5 pm, animals were anesthetized by intravenous injection
of sodium pentobarbital through the jugular vein catheter and
immediately subjected to a laparotomy. Urine was collected from
bladder directly. The liver, kidney, and heart were dissected and
frozen using Wollenberger tongs precooled in liquid nitrogen.
The collected plasma, urine, and organs were kept in a –80◦C
freezer until needed for analyses.

FIGURE 2 | Protocol for exposing Sprague-Dawley rats to thioacetamide.

Measurement of Tissue Injury Markers in
Blood and Urine
Activities of plasma alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) were measured using ALT
and AST activity assay kits (Sigma-Aldrich, St Louis, MO,
United States), respectively. The kidney injury marker-1 was
measured using the KIM-1 Rat ELISA kit (Abcam Inc.,
Cambridge, MA, United States).

RNA Isolation and Sequencing
Frozen whole kidney and heart samples were powdered in liquid
nitrogen, since these organs are histologically heterogeneous.
Total RNA was isolated from liver, powdered kidney, and
powdered heart, using TRIzol Reagent (Thermo Fisher Scientific,
Waltham, MA, United States) and the direct-zol RNA MiniPrep
kit (Zymo Research, Irvine, CA, United States). The isolated
RNA samples were then submitted to the Vanderbilt University
Medical Center VANTAGE Core (Nashville, TN, United States)
for RNA quality determination and sequencing. Total RNA
quality was assessed using a 2100 Bioanalyzer (Agilent, Santa
Clara, CA, United States). At least 200 ng of DNase-treated
total RNA with high RNA integrity was used to generate
poly-A-enriched mRNA libraries, using KAPA Stranded mRNA
sample kits with indexed adaptors (Roche, Indianapolis, IN,
United States). Library quality was assessed using the 2100
Bioanalyzer (Agilent), and libraries were quantitated using
KAPA library Quantification kits (Roche). Pooled libraries were
subjected to 75-bp paired-end sequencing according to the
manufacturer’s protocol (Illumina HiSeq3000, San Diego, CA,
United States). Bcl2fastq2 Conversion Software (Illumina) was
used to generate de-multiplexed Fastq files.
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Analysis of RNA-seq Data
We used the RNA-seq data analyzing tool Kallisto for read
alignment and quantification (Bray et al., 2016). Kallisto pseudo-
aligns the reads to a reference, producing a list of transcripts
that are compatible with each read while avoiding alignment
of individual bases. In this study, we pseudo-aligned the reads
to the Rattus norvegicus transcriptome (Rnor_6.0) downloaded
from the Ensembl website (Zerbino et al., 2018). Kallisto achieves
a level of accuracy similar to that of other competing methods,
but is orders of magnitude faster than alternative methods. Its
speed allows for the use of a bootstrapping technique to calculate
uncertainties of transcript abundance estimates by repeating
the analyses after resampling with replacement. In this study,
we employed this technique to repeat the analysis 100 times.
The files from RNA-seq analysis have been deposited in NCBI’s
Gene Expression Omnibus with GEO Series accession number
GSE120195.

To identify DEGs from transcript abundance data, we used
Kallisto’s companion analysis tool Sleuth. Sleuth uses the results
of the bootstrap analysis during transcript quantification to
directly estimate the technical gene variance for each sample
(Pimentel et al., 2017).

KEGG Pathway Analysis
To understand the biological significance of the alterations in
gene expression levels induced by thioacetamide, we used the
aggregated fold change (AFC) method to calculate significantly
enriched KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways (Kanehisa and Goto, 2000). Detailed descriptions and
performance characteristics of the AFC method can be found
in the original literature (Ackermann and Strimmer, 2009; Yu
et al., 2017). In the AFC method, we first calculate the mean
fold change for each gene (i.e., the difference between the
mean log-transformed gene expression values for treatments and
controls) and define the KEGG pathway score as the average
mean fold change of all genes in the pathway. We then use the
pathway scores to perform null hypothesis tests and estimate each
pathway’s significance by its p-value, defined as the probability
that the pathway score for a random data set is greater than
the score from the actual data. The sign of the pathway score
represents the direction of regulation: the pathway is defined
as up-regulated if the gene expression level after treatment is
increased relative to control, and down-regulated if it is instead
reduced.

Module Activation Score
We developed a method, called aggregate absolute fold change
(AAFC), to calculate module activation scores. This method
identifies gene sets (e.g., modules) that are significantly changed.
The AAFC method first calculates the fold-change value for
each gene (i.e., the difference between the mean log-transformed
gene expression values for samples in the treatment and control
cohorts). The significance of this fold-change value was assessed
by Student’s t-test (n = 5 for both treatment and control cohorts).
The AAFC method then calculated the absolute value of each
gene’s log-transformed fold-change value, as well as the average

(µ0) and standard deviation (σ) of this value for all genes. For
a gene set (e.g., module or pathway) the average score X̄ of the
absolute values was calculated. The significance of a gene set was
estimated by its p-value, i.e., the probability of having a gene set
score more extreme than the calculated (X̄). According to the
Central Limit Theorem, the probability distribution of an average
value is approximately normal with parameters µ0 and σ/

√
n

[i.e., N
(
µ0, σ/

√
n

)
]where n is the number of genes in the gene

set, and the p-value can be calculated as the upper tail of this
distribution. The z-score transform of X̄ is then given by

z =
(
X̄ − µ0

)
σ/
√

n
(1)

and will have the standard normal probability distribution,
N (0, 1).

RESULTS

Studies to Determine Optimal Doses of
Thioacetamide
The median (LD50) and lethal doses of thioacetamide from
a single intraperitoneal (ip) injection are approximately 300
and 600 mg/kg, respectively. Koblihová et al. (2014) reported
that in Wistar and Lewis rats, a single ip administration of
thioacetamide at 175 mg/kg increased plasma levels of ALT,
bilirubin, and NH3 within 24 h. In Sprague-Dawley rats, 24 h after
ip injection of thioacetamide at 300 mg/kg, the liver exhibited
severe centrilobular necrosis, which was accompanied by a dense
inflammatory infiltrate of polymorphonuclear cells and a sixty-
fold increase in the hepatic apoptosis score (Ackerman et al.,
2015). All rats survived during the first 36 h with treatments of
175 or 300 mg/kg (Koblihová et al., 2014; Ackerman et al., 2015).
Based on these observations, we proceeded to determine a low
and a high thioacetamide dose and time after exposure, by giving
an ip injection of either vehicle (3 ml/kg of saline; n = 3 rats) or
thioacetamide (25, 50, 100, 200, or 300 mg/kg; n = 3 rats per dose)
to male Sprague-Dawley rats.

We monitored changes in injury markers for liver (plasma
ALT and AST) and kidney (urine KIM-1) for 36 h (Figure 3).
The rise of ALT and AST levels was observed between 6 and
9 h after exposure in the groups treated with thioacetamide
at 200 and 300 mg/kg. Twelve hours after exposure, ALT and
AST levels increased in the groups treated with 50, 100, and
200 mg/kg. Urine KIM-1 levels started to increase 9 h after
exposure in groups treated with thioacetamide. Plasma ALT and
AST levels increased in a dose-dependent manner and linearly
from 6 h after dosing. The urine levels of KIM-1 also increased
dose-dependently and linearly from 12 h after dosing.

Hepatocellular damage was also assessed in hematoxylin- and
eosin-stained liver sections by light microscopy (Figure 4).
Pathological changes occurred predominantly in the
centrilobular regions of hepatic lobules. When rats were
administered 25 mg/kg of thioacetamide, the affected regions
were limited to the vicinity of the central vein. Hepatocytes
in the affected regions were less intensely eosinophilic, with
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FIGURE 3 | Measurements of tissue injury markers. Changes in plasma ALT
and AST levels, as well as urine KIM-1 levels, in rats exposed to
thioacetamide.

rarefaction, karyorrhexis (destructive fragmentation of the
nucleus in dying cells), and neutrophilic infiltrates. As the
dose increased, the affected regions expanded, with increased
severity of degenerative changes (e.g., necrosis, karyorrhexis, and
neutrophilic infiltrates). Damaged hepatocytes were replaced by

FIGURE 4 | Histopathology images of liver. Representative photomicrographs
of liver sections stained by hematoxylin and eosin, 33 h after thioacetamide
administration. Vehicle treatment showed unaffected liver sections. Liver
histology after thioacetamide administration of 25 mg/kg showed mild pallor in
hepatocytes in the centrilobular region (two of three animals). Liver histology
after thioacetamide administration of 100 and 300 mg/kg showed
centrilobular bridging hepatocellular necrosis with abundant inflammation (all
six animals).

aggregates containing a mixture of macrophages and neutrophils,
whose presence can lead to chronic inflammation and fibrosis
(Selders et al., 2017). Additionally, at a dose of 300 mg/kg, many
periportal regions exhibited mild infiltration of neutrophils
sequestered around the bile ducts.

Neither kidney nor heart tissue exhibited any pathological
changes during this fairly short period after exposure (Figure 5).

Based on these results, we chose the doses, 0 (vehicle), 25, and
100 mg/kg, and two sample collection times (8 and 24 h post-
dosing; animals were divided into six groups of n = 5). The low-
dose was the highest dose that might lead to mild or no organ
injury. The high-dose was the minimum dose of thioacetamide
that could result in organ injury.

Differentially Expressed Genes (DEGs)
Induced by Exposure to Thioacetamide
RNA-seq analysis was performed to identify DEGs by comparing
transcript abundance levels between organ tissue samples
exposed or not exposed to thioacetamide. We isolated RNA
samples from liver, kidney, and heart tissues 8 or 24 h after they
were exposed to a low (25 mg/kg) or high (100 mg/kg) dose
of thioacetamide. Table 1 summarizes the numbers of DEGs
identified by using a false discovery rate adjusted p-value (q-
value) of no more than 0.01 and a minimum gene expression
effect size of 0.60 as the criteria for differential expression.
The effect size is defined as the natural logarithm of the fold
change. The 0.60 cutoff-value was determined based on the
null hypothesis that gene expression is unchanged with 95%

Frontiers in Pharmacology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 1272

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01272 November 3, 2018 Time: 16:7 # 6

Schyman et al. Systems Toxicology of Exposure to Thioacetamide

FIGURE 5 | Histopathology images of kidney and heart. Representative photomicrographs of the kidney (A) and heart (B), 33 h after thioacetamide administration.
No histological injury was observed in either kidney or heart sections.

confidence. This derived cutoff-value corresponds to a fold-
change value of 1.8, which is close to the commonly used
fold-change value of metricconverterProductID1.5 in1.5 in the
literature. Although the log fold-change value of a gene and
the effect size are not equivalent, the directionality of the gene
expression change (i.e., if a gene is up- or down-regulated) and
ranking should be the same. All DEGs can be found in the
Supplementary Material.

The number of DEGs identified in all organ tissue samples
strongly depended on the thioacetamide dose (Table 1).
Interestingly, the high-dose treatment increased the number of
DEGs with the time after exposure to thioacetamide for all
organs, whereas the low-dose treatment reduced the number of
DEGs with time after exposure in liver and kidney samples. In
the heart, there were too few DEGs with low-dose treatment to
make any general conclusions: two DEGs 8 h after exposure, and
six after 24 h. A possible explanation of the decreased number of
DEGs in the liver and kidney for the low dose with a long time
after exposure could be that thioacetamide have been cleared or
metabolized into less toxic compounds, allowing the rats to begin
to recover from the insult.

Table 2 shows the overlap matrix of DEGs between different
treatments and organs 24 h after thioacetamide exposure (see

TABLE 1 | Number of differentially expressed genes (DEGs) in liver, kidney, and
heart samples after low-dose or high-dose treatment with thioacetamide.

Low dose High dose

8 h 24 h 8 h 24 h

Liver 1436 629 2709 2618

Kidney 87 79 339 760

Heart 2 6 66 209

Supplementary Table S1 for the 8 h study). Within each
organ, more than 80% of the DEGs identified after low-dose
treatment are also differentially expressed following the high-
dose treatment. Interestingly, although the overlap between
DEGs in different organs is fairly large for the high-dose
treatment (30–40%), only a few are common to all three organs
(Figure 6). A comparison of the numbers of DEGs between
organs indicates the organ most affected by thioacetamide, and
that each organ responds differently to the same insult.

KEGG Pathway Analyses
To identify enriched/activated pathways we used the aggregated
fold-change method (AFC) (Ackermann and Strimmer, 2009).
This method performs well compared to other popular pathway
analysis methods, such as GSEA (Yu et al., 2017). The AFC
procedure uses all of the genes in a pathway to calculate the
average fold-change value and compare it to the average fold-
change value of randomly selected genes (gene label sampling).
For our analysis, we used the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database (Kanehisa and Goto, 2000).

TABLE 2 | Overlap matrix of DEGs in liver, kidney, and heart samples 24 h after
exposure to a high dose (HD) or low dose (LD) of thioacetamide.

Liver Kidney Heart

HD LD HD LD HD LD

Liver HD 2618 579 263 29 81 2

LD 629 54 11 18 2

Kidney HD 760 64 65 2

LD 79 3 0

Heart HD 209 5

LD 6
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FIGURE 6 | Venn diagrams showing number of overlapping and
non-overlapping differentially expressed genes in the liver, kidney, and heart of
rats exposed to a low or high dose of thioacetamide.

Figure 7 shows all KEGG pathways exhibiting either significantly
(p-value < 0.01) increased or decreased gene expression levels in
at least one of the treatment conditions in the liver, kidney, or
heart.

As expected, both low- and high-dose thioacetamide
treatments significantly altered many pathways in the liver.
This is reasonable because the liver – the primary organ
affected by thioacetamide toxicity – is central for metabolizing
thioacetamide (Rees et al., 1966). Thioacetamide-induced liver
toxicity is accompanied by activation of multiple pathways
involved in cellular function, signaling, inflammation, and
immune responses. Compared to the liver, fewer pathways
showed significantly altered expression levels in the kidney and
heart. Nonetheless, most of the pathways activated in the kidney
and heart overlapped with pathways in the liver, which were
related to signaling, inflammation, and immune responses.

Toxicity Module Activation Analyses
We have developed 8 kidney and 11 liver injury modules, which
are co-expressed gene sets (modules) associated with specific
histopathological injury phenotypes in the liver and kidney (Te
et al., 2016). The number of co-expressed genes in each injury
module ranges from 8 to 126, with a total of 629 unique genes.
Some genes may appear in multiple modules, because the same
gene can respond differently under different conditions. To
determine the degree of activation of an injury module, the
average absolute log2 fold change (FC) of all co-expressed genes
in that module was calculated. Thus, a z-score and a p-value could
be assigned to each injury module. The injury module with the
largest z-score was then predicted to be expressed as the most
probable injury phenotype, and injury modules with a p-value
of greater than 0.01 were not considered significantly activated.
Tables 3, 4 show the liver and kidney modules, respectively,
which were significantly activated (p-values < 0.01, in bold). As
noted in Section 2.9, the significance of the fold-change value
was assessed by Student’s t-test (n = 5 for both treatment and
control cohorts). Genes with a t-test p-value of more than 0.05
were discarded from further analysis.

Module Activation in the Liver
Eight hours after thioacetamide treatment, gene expression data
from the liver sample did not reveal any significantly activated

(p-value < 0.01) injury module regardless of the dose (Table 3).
However, after 24 h, several injury modules were activated
for both low- and high-dose treatments. It is not necessarily
implausible for a model to predict multiple injury phenotypes,
because an organ injury often involves multiple processes. The
injury modules significantly activated after both low- and high-
dose treatments were mostly the same. It is encouraging that
some injury signatures were also seen 24 h after exposure
to the low-dose treatment, as this signifies the potential of
this approach for early detection of organ injury. Additionally,
the z-score showed both dose and time dependence, being
greater for the high dose than for the low dose. This is in
qualitative agreement with our histology observations – as the
dose increased, the degenerative regions expanded with increased
severity.

Module Activation in the Kidney
In the case of the kidney, thioacetamide distinctively activated
genes in the necrosis module with all treatments; in addition,
after 24 h it led to activation of the dilation module as a
possible response to inflammation due to necrosis (Table 4).
Some injury modules were missing data as a result of genes
failing to pass the significance threshold of the Student’s t-test.
Such missing data introduce some uncertainty into the injury
module activation score, which is then determined by only a few
genes. However, the activation score showed dose dependence,
being greater with high-dose treatments. In addition, activation
increased with time after exposure for the high dose; however,
for the low dose, activation of the necrosis module was reduced
24 h after thioacetamide exposure relative to that of 8 h. This
low-dose trend is consistent with our observations in analyzing
DEGs.

Organ Specificity of Injury Modules
To test for organ specificity, we calculated the activation scores
for the liver injury modules using the kidney gene expression
data and vice versa. Furthermore, to investigate whether we
would observe a different pattern of injury module activation
in an organ not severely injured by thioacetamide, we tested
our liver and kidney injury modules using the gene expression
data from heart tissue samples. Table 5 shows the module
activation scores after 24 h of high-dose treatment in the liver,
kidney, and heart. The liver injury modules did not identify any
significantly activated modules in the kidney or heart samples.
When we used the gene expression data from the liver sample
to calculate the kidney injury module z-scores, necrosis was the
top ranking injury, which is not surprising given that the genes
responsible for necrosis should be common between the liver
and kidney (and hence not specific to any organ). The kidney
modules hyaline cast and degeneration were also activated in the
liver sample, but with lower z-score values than the top-ranking
liver modules. In the heart, only the kidney injury module for
cellular infiltration was significantly activated, which suggests
the occurrence of inflammatory responses. In summary, injury
modules show organ specificity, especially when compared with
a non-injured organ.
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FIGURE 7 | KEGG pathways activated using gene expression data after thioacetamide exposures. Significantly (p-value < 0.01) up- and down-regulated pathways
are indicated with red and green colors, respectively. ∗ indicates key pathways directly or indirectly involved in fibrosis.
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TABLE 3 | Activation of liver injury modules after exposure to thioacetamide.

Low dose High dose

8 h 24 h 8 h 24 h

Cellular infiltration 0.71a Cellular infiltration 5.29 Hematopoiesis 1.63 Cellular infiltration 7.17

Bile duct proliferation 0.60 Fibrosis 3.02 Single cell necrosis 1.27 Fibrosis 5.07

Hematopoiesis 0.52 Bile duct proliferation 2.77 Anisonucleosis 0.59 Cellular foci 4.03

Single cell necrosis 0.51 Anisonucleosis 2.71 Cellular infiltration 0.32 Single cell necrosis 2.36

Oval cell proliferation 0.42 Cellular foci 2.45 Bile duct proliferation 0.03 Bile duct proliferation 1.40

Cellular foci 0.07 Single cell necrosis 2.23 Cytoplasmic alteration −0.19 Anisonucleosis 0.88

Fibrosis 0.00 Oval cell proliferation 0.28 Oval cell proliferation −0.30 Hematopoiesis 0.19

Anisonucleosis −0.33 Hematopoiesis −0.45 Cellular foci −0.33 Granular degeneration −0.55

Cytoplasmic alteration −0.88 Granular degeneration −0.95 Fibrosis −0.41 Oval cell proliferation −0.74

Granular degeneration −1.19 Cytoplasmic alteration −2.72 Granular degeneration −1.39 Cytoplasmic alteration −1.99

Nuclear alteration −1.92 Nuclear alteration −3.11 Nuclear alteration −2.28 Nuclear alteration −2.76

az-score, bold values indicate significantly activated modules (p-value < 0.01).

TABLE 4 | Activation of kidney injury modules after exposure to thioacetamide.

Low dose High dose

8 h 24 h 8 h 24 h

Necrosis 3.24a Dilatation 3.93 Necrosis 5.99 Necrosis 7.05

Dilatation 0.95 Necrosis 2.33 Degeneration 1.89 Dilatation 3.58

Degeneration 0.12 Degeneration 1.63 Hyaline cast 0.32 Degeneration 2.15

Intracytoplasmic −1.05 Hypertrophy 0.40 Intracytoplasmic −0.16 Hyaline cast 1.75

inclusion body inclusion body

Cellular infiltration −1.13 Cellular infiltration −0.59 Cellular infiltration −0.37 Cellular infiltration 0.64

Hyaline cast − Hyaline cast −0.65 Hypertrophy −0.68 Hypertrophy −0.09

Fibrosis − Fibrosis −1.07 Dilatation −0.69 Intracytoplasmic inclusion body −1.54

Hypertrophy − Intracytoplasmic inclusion body − Fibrosis −1.36 Fibrosis −1.92

az-score, bold values indicate significantly activated modules (p-value < 0.01).

DISCUSSION

Given the large number of DEGs, it is almost impossible to
identify individual genes indicative of a specific organ injury
phenotype because most phenotypes are polygenic. A detailed
analysis of DEGs is also prone to false discoveries due to noise
in the data from high-throughput experiments. However, if
pathways or modules associated with an injury phenotype could
first be recognized, we might be able to search for potential
biomarkers among the DEGs.

It remains a daunting task to classify a candidate injury
phenotype based on KEGG pathways. The present study involved
92 such pathways, which were significantly activated (Figure 7).
However, knowing that thioacetamide causes fibrosis – a dynamic
and complex process involving the accumulation of extracellular
matrix (ECM) protein as a result of wound healing and repair
of chronic stimulation by viral infection, alcohol abuse, non-
alcoholic fatty liver disease (NAFLD), drug use, and toxicant
exposure – could help us identify the potential pathways involved
at different stages of this process (Bataller and Brenner, 2005;
Wynn, 2008; Liedtke et al., 2013; Elpek, 2014; Seki and Schwabe
Robert, 2015).

In the case of exposure to a toxicant, fibrosis usually
begins with toxicity-induced cell death (apoptosis or necrosis)
of hepatocytes, which releases reactive oxygen species (ROSs)
that trigger inflammation, which in turn further amplifies cell
death (Rock and Kono, 2008). For example, pathways involving
NOD-like receptors can cooperate with TOLL-like receptors
to regulate inflammatory and apoptotic responses (Rock and
Kono, 2008; Oviedo-Boyso et al., 2014), which are identified
in Figure 7 as significantly activated pathways. Inflammation
activates hematopoietic stem cells (HSCs) – i.e., stem cells
that give rise to neutrophils, macrophages, etc., – via the
hematopoietic cell lineage pathway. Inflammation also activates
hepatic stellate cells, which are involved in producing the
ECM, via myofibroblasts (Friedman, 2008; Seki and Schwabe
Robert, 2015; Higashi et al., 2017). Although many pathways
are significantly changed, many are involved in fibrosis to
some extent. KEGG pathways directly or indirectly involved in
the event leading to fibrosis are indicated with an asterisk in
Figure 7.

In contrast to KEGG pathways, which connect genes
based on mechanistic insights into a biological function, our
injury modules are specific to an injury phenotype. In our
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TABLE 5 | Liver and kidney module activation in the liver, kidney, and heart at 24 h after high-dose exposure to thioacetamide.

Liver high dose 24 h Kidney high dose 24 h Heart high dose 24 h

Liver module z-score Liver module z-score Liver module z-score

Cellular infiltration 7.17a Oval cell proliferation 1.66 Oval cell proliferation 1.02

Fibrosis 5.07 Single cell necrosis 0.66 Hematopoiesis 1.01

Cellular foci 4.03 Bile duct proliferation −0.10 Cytoplasmic alteration 0.55

Single cell necrosis 2.36 Cellular infiltration −0.36 Anisonucleosis 0.50

Bile duct proliferation 1.40 Nuclear alteration −0.43 Cellular infiltration 0.14

Anisonucleosis 0.88 Granular degeneration −0.45 Single cell necrosis −0.26

Hematopoiesis 0.19 Anisonucleosis −0.59 Bile duct proliferation −0.81

Granular degeneration −0.55 Hematopoiesis −0.63 Granular degeneration −1.21

Oval cell proliferation −0.74 Cytoplasmic alteration −0.93 Fibrosis −1.30

Cytoplasmic alteration −1.99 Cellular foci −1.90 Cellular foci −1.59

Nuclear alteration −2.76 Fibrosis −2.04 Nuclear alteration −2.42

Kidney module z-score Kidney module z-score Kidney module z-score

Necrosis 6.36 Necrosis 7.05 Cellular infiltration 2.31

Hyaline cast 3.98 Dilatation 3.58 Necrosis 1.80

Degeneration 2.62 Degeneration 2.15 Hypertrophy 1.57

Hypertrophy 2.02 Hyaline cast 1.75 Degeneration 0.91

Dilatation 1.78 Cellular infiltration 0.64 Dilatation −0.41

Cellular infiltration −0.95 Hypertrophy −0.09 Intracytoplasmic inclusion body −1.02

Intracytoplasmic inclusion body −1.15 Intracytoplasmic inclusion body −1.54 Fibrosis −1.04

Fibrosis −1.18 Fibrosis −1.92 Hyaline cast −1.33

az-score, bold values indicate significantly activated modules (p-value < 0.01).

approach, genes are selected that significantly change during
chemical-induced injury, but which may be mechanistically
unrelated and whose functional contributions may be difficult to
interpret.

Four liver injury modules in Table 3 were significantly
activated under the high-dose condition: cellular infiltration,
fibrosis, cellular foci, and single-cell necrosis. As previously
mentioned, fibrosis is a process that involves cell death (apoptosis
or necrosis) and cellular infiltration in the liver. High-dose
thioacetamide treatment activated all these processes that
promote deposition of scar tissue and lead to fibrosis. This
treatment also activated the cellular foci module, which is closely
related to the cellular infiltration phenotype. Focal inflammation
is the most frequently seen inflammatory lesion in the liver,
where the infiltrating cells are predominantly lymphocytes,
neutrophils, and macrophages, which also contribute to fibrosis
(Wynn and Barron, 2010; Xu et al., 2014; Selders et al.,
2017).

To validate the activation of injury modules, we histologically
analyzed liver, kidney, and heart tissues. The top ranking
liver injury modules in Table 3 correlated well with
known liver injuries and pathological changes caused
by thioacetamide toxicity involving cellular infiltration,
necrosis, and fibrosis. Although we identified necrosis as
a possible kidney injury (Table 4), histological analysis
revealed no kidney injury after 24 h. However, previous
work has shown that thioacetamide causes necrosis
in the kidney after 4 days (Igarashi et al., 2015). This
suggests that our injury modules potentially have the

predictive power to detect necrosis in the kidney at an early
stage.

CONCLUSION

We have successfully used our injury modules to predict
pathological changes in organs exposed to thioacetamide using
RNA-seq data. After 24 h of high-dose treatment, our modules
clearly indicated inflammatory responses (cellular infiltration and
cellular foci) and cell death, both of which were observed in
the histological analysis. Our modules also indicated fibrosis,
which was not histologically evident at the same time point.
However, aggregates of macrophages and neutrophils were
observed, suggesting that if the injury were prolonged it would
lead to fibrosis and a functionally compromised liver. Alternative
methods such as using DEGs and KEGG pathways to identify
injury phenotype show low specificity. Our results, which show
promise in making toxicity predictions not long after exposure
to a toxicant at relatively low doses, offer encouragement to
further explore toxicity predictions based on gene co-expression
modules.
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