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More reliable methods are needed to uncover novel biomarkers associated with atrial
fibrillation (AF). Our objective is to identify significant network modules and newly AF-
associated genes by integrative genetic analysis approaches. The single nucleotide
polymorphisms with nominal relevance significance from the AF-associated genome-
wide association study (GWAS) data were converted into the GWAS discovery set using
ProxyGeneLD, followed by merging with significant network modules constructed by
weighted gene coexpression network analysis (WGCNA) from one expression profile
data set, composed of left and right atrial appendages (LAA and RAA). In LAA,
two distinct network modules were identified (blue: p = 0.0076; yellow: p = 0.023).
Five AF-associated biomarkers were identified (ERBB2, HERC4, MYH7, MYPN, and
PBXIP1), combined with the GWAS test set. In RAA, three distinct network modules
were identified and only one AF-associated gene LOXL1 was determined. Using
human LAA tissues by real-time quantitative polymerase chain reaction, the differentially
expressive results of ERBB2, MYH7, and MYPN were observed (p < 0.05). This
study first demonstrated the feasibility of fusing GWAS with expression profile data
by ProxyGeneLD and WGCNA to explore AF-associated genes. In particular, two
newly identified genes ERBB2 and MYPN via this approach contribute to further
understanding the occurrence and development of AF, thereby offering preliminary data
for subsequent studies.

Keywords: atrial fibrillation, genome-wide association study, single nucleotide polymorphism, systems biology,
transcriptome
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INTRODUCTION

Atrial fibrillation (AF), manifesting as irregular AF, is the most
common arrhythmia in clinical practice and leads to many
serious complications such as stroke, heart failure, ventricular
arrhythmias, and peripheral arterial embolism (Barrios et al.,
2012). Epidemiological investigations have reported that the
prevalence of AF dramatically increases with age (Bapat et al.,
2018). AF causes a high risk of disability and death (Acciarresi
et al., 2017), which places a heavy burden on individuals
and the healthcare system. It has been reported that the
underlying mechanisms of the occurrence and maintenance of
AF are regulated by genetic factors, particularly single nucleotide
polymorphisms (SNPs) (He et al., 2018; Lin et al., 2019).
Therefore, the accurate identification of SNPs is essential for the
investigation of AF-associated genes.

To date, genome-wide association study (GWAS) has been
the most popular method for SNP identification and has been
widely used in the study of various complex diseases due
to its high throughput and cost-effectiveness. In particular,
some mutations associated with AF have been identified using
GWAS by setting a standard threshold p-value > 5E–08 (Jannot
et al., 2015; Christophersen et al., 2017; Nielsen et al., 2018;
Roselli et al., 2018). However, this arbitrary threshold discards
many mutations with subtle effects but potential biological
significance (p > 5E–08), which in turn leads to a partial loss
of heritability (Jia et al., 2012). Thus, network analysis methods,
such as pathway enrichment analysis, are required to solve the
missing heritability problem (Askland et al., 2009; Elbers et al.,
2009).

Gene ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG), two representative enrichment analysis
approaches, are designed based on hypergeometric distribution.
They function by comparing the number of interesting genes
enriched in a special term or pathway with the number of random
background genes. Although these methods are user-friendly,
their statistical efficiency is limited since expressive information
of genes is not taken into account (Farber, 2013). Therefore, the
more powerful gene-set enrichment analysis (GSEA), combined
with the signal strength of gene expression, was applied for
pathway analysis of genes in this study.

Studies have demonstrated that the weighted gene
coexpression network analysis (WGCNA), another pathway
analysis software, has the characteristics of reliable robustness
and repeatability for expression profile data, and can obtain
the interconnections between genes and find the network
modules relative to diseases using gene expression values (Zhang
et al., 2017; Kong et al., 2019; Wang et al., 2019). It is reported
that one network-integrated approach combining GWAS
with expression profile data by WGCNA possesses significant
advantages in mining hidden disease-associated pathways and
functional genes, compared with other existing approaches.
Farber (2013) used this analysis method to repeat the previous
functional pathways from osteoporosis-associated GWAS and
transcriptome data, and identify newly functional genes. Chen
et al. (2016) validated the potential ability of this method by
exploring the hidden biological functions in a larger data set

associated with osteoporosis. The joint method, however, has not
been applied for AF-associated studies.

In this study, we converted SNPs with nominal relevance
significance from the AF-associated GWAS data into the
GWAS discovery set using ProxyGeneLD, followed by merging
with the AF-associated modules constructed by WGCNA, and
finally obtained two newly AF-associated biomarkers ERBB2
and MYPN. This study offers a systemic analytical method
for revealing hidden AF-associated genes from GWAS and
expression profile data.

MATERIALS AND METHODS

Software Used
All analyses were conducted based on Cytoscape 3.7.2 (Shannon
et al., 2003), GSEA 4.0.2 (Subramanian et al., 2005), LD score
regression (LDSC) 1.0.1 (Bulik-Sullivan et al., 2015; Finucane
et al., 2015), ProxyGeneLD (Hong et al., 2009), and R-related
packages (R 3.6.1, 2019).

Pre-processing of GWAS Data
The keyword “atrial fibrillation” was used for the GWAS catalog
database and retrieved 24 data sets, in which GCST006414
(Nielsen et al., 2018) were pre-processed as the GWAS discovery
set, followed by merging with expressive profile data. The data
set included 1,030,836 European individuals and 34,740,186 SNPs
with precomputed p-values. The raw data for the test set came
from FinnGen research project Freeze 3 (Finngen_r3_I9_AF1),
which included 86,200 European individuals and 16,932,622
SNPs with precomputed p-values. Either total heritability of the
two GWAS summary_statistic datasets was calculated by LDSC.
Please refer to the following detailed steps, https://github.com/
bulik/ldsc/wiki/Heritability-and-Genetic-Correlation.

Based on linkage disequilibrium (LD), gene length, and
variant locus density, the p-values of SNPs from the GCST006414
were converted into the adjusted p-values (adj p) of genes by
ProxyGeneLD, whose reference genome was set to the genome
reference consortium human genome build 37 (GRCh37).
LD patterns were determined using HapMap LD data set
hg19_2009.04_rel27 from CEU (Utah residents with Northern
and Western European ancestry from the CEPH collection). LD
threshold (R2) was set to a default value (>0.8), and the 5′ and
3′ ends of each gene sequence were recognized and extended
by 2,000 and 1,000 bp, respectively. The correction of p-values
was based on the false discovery rate (FDR). The ultimately
retained genes made up the GWAS discovery set (adj pdis < 0.05)
and the GWAS test set (adj ptest < 0.05), respectively, for the
following analysis.

Pre-processing of Expression Profile
Data
The keyword “atrial fibrillation” was used to retrieve the
GEO database, and three data sets (GSE79768, GSE115574,

1https://console.cloud.google.com/storage/browser/finngen-public-data-r3/
summary_stats/
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and GSE128188) from individuals with the paired LAA and
RAA samples were obtained. Considering that the races of the
samples from GSE79768 and GSE115574 are not consistent
with the GWAS data sets and that the relevant literature of
GSE115574 has not yet been published, they were discarded.
The GSE128188 selected is produced by next-generation RNA
sequencing (Illumina NextSeq 500) and contains 10-paired LAA
and RAA samples from five male patients in sinus rhythm (SR)
(average age: 62.4 ± 6.87 years) and 5 male patients in AF
(average age: 73.6 ± 5.12 years), of European descent. The two
data sets were normalized to build up the LAA- and RAA-
normalized express lists by the DESeq function of DESeq2
package in R environment. To determine whether there were
outlier samples, the “plotPCA” function was used for principal
component analysis (PCA).

Constructing Network Modules by
WGCNA
The correlation between each pair of the top 5,000 genes
with high SDs in each of LAA- and RAA-normalized express
lists was calculated to gain a correlation matrix, and then
one adjacency matrix was obtained using a soft threshold
(power index) instead of an arbitrarily hard threshold in
an unsupervised manner. The power index was used to
minimize the weaker connections and amplify the stronger
connections between nodes in the matrix. The adjacency
matrix was eventually used to calculate a topological overlap
measure (TOM), and one dissimilarity matrix was obtained
by 1 – TOM. The one-step network construction function
“BlockwiseModules,” provided by the WGCNA package
(Langfelder and Horvath, 2008), was applied to the construction
of WGCNA cluster trees. Different branches of cluster tree
represent different gene modules and are shown in different
colors. The parameter “minModuleSize” was set to 30 to avoid
modules with very few genes, and the “mergeCutHeight”
parameter was set to 0.25 to combine genes with lower values.
For details of the procedure, please refer to the website:
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/.

Description of Network-Related
Parameters for WGCNA
Weighted gene coexpression network analysis generates multiple
parameter metrics. Module eigengene (ME) represents the
expression value of all genes in one module after dimensionality
reduction by the first PCA, and it can be used to determine the
biological significance of the module combined with external
phenotypes. In this study, the correlation between ME and
AF was determined by the contingency coefficient (CC), which
was calculated from the ME-dichotomized values around the
median by the assocstats function (Liu et al., 2015a,b), given
that the disease status (AF or SR) is a dichotomous variable.
Gene significance (GS) was defined as minus log 10 of the
p-value obtained by the DESeq function, measuring differential
expression between AF and SR groups, for individual genes
among all modules (Farber, 2010). In addition, the association

between GS and module membership (MM) was used to verify
the relationship between ME and AF (Farber, 2013), and the
threshold for significance is set to p < 0.05 and R > 0.3. MM
was defined as the correlation of ME in one module and gene
expression values. For example, the blue MMi = cor(xi, MEblue)
measures how correlated the expression value of one gene i is to
the blue ME. The blue MMi measures the membership of the
i-th gene as regards the blue module. If the blue MMi is close
to 0, then the i-th gene is not part of the blue module. But if
the blue MMi is close to 1 or –1, it is highly associated with the
blue module genes.

Gene-Set Enrichment Analysis
Gene-set enrichment analysis v4.0.3 was applied to obtain
the AF-associated pathways. The four human gene sets
(c5.bp/cc/mf.v7.0.symbols.gmt and c2.cp.kegg.v7.0.symbols.gmt)
from the Molecular Signatures Database (MsigDB, a collection of
annotated gene sets for use with GSEA software) were chosen.
In addition, the value of parameter “Permutation type” was set
to “gene sets,” and the other parameters were set by default. The
corrected p-value (FDR) for the screening criteria of function
pathways is set to FDR < 0.25.

Application of Cytoscape Software and
Vennerable Package
First, two gene lists (GS > 2) are generated from AF-associated
network modules constructed from LAA- and RAA-normalized
express lists, respectively, which are taken as input data sets
of the venn.diagram function in Vennerable package. The
result image returned by this function can show the different
distribution of coexpression pattern genes between LAA and
RAA. Furthermore, according to weights between genes (>0.15),
the two gene lists are input into Cytoscape for visualization to
determine core genes under the conditions of adj pdis < 0.05
and GS > 2, which are then validated by the GWAS test set (adj
ptest < 0.05).

Patient Samples
All 30 patients with valvular heart diseases who received
cardiac surgery at Zhengzhou No. 7 People’s Hospital were
enrolled and classified into permanent AF (n = 12) and SR
(n = 18) groups. Written informed consents were obtained
from all participants. AF rhythm status was documented
by electrocardiogram for >3 months. Patients with mitral
valve or mitral valve combined other valve disease, who had
coronary heart disease and hypertension, were included. Patients
with other arrhythmia or other diseases such as pulmonary
disease, diabetes mellitus, hyperthyroidism, rheumatic disease,
autoimmune disease, congenital heart disease, and myocardial
bridge were excluded. The data of all patients are shown in
Table 1. The LAA tissues of patients were snap frozen in liquid
nitrogen and kept at –80◦C until RNA extraction. All procedures
with human were in accordance with the Declaration of Helsinki.
The experimental scheme was approved by the ethics committee
of Zhengzhou No. 7 People’s Hospital (Approval No. 20190804).
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TABLE 1 | Clinical characteristics of AF and SR groups.

Clinical
characteristics

AF (n = 12) SR (n = 18) OR P-value 95% CI

Sex (male/female) 5:7 9:9 0.72 0.722 0.12, 3.90

Age (years) 61.42
± 8.76

61.5
± 8.17

– 0.979 –6.50, 6.67

Smoking (yes/no) 4/8 6/12 1 1 0.15, 5.97

Drinking (yes/no) 3/9 6/12 0.68 0.70 0.09, 4.30

MV/MV + OV 3/9 5/13 0.87 1 0.11, 5.92

CAD (yes/no) 12/0 18/0 – – –

HP (yes/no) 12/0 18/0 – – –

DM (yes/no) 0/12 0/18 – – –

AF, atrial fibrillation; CAD, coronary artery disease; DM, diabetes mellitus; HP,
hypertension; MV, mitral valve disease; MV + OV, mitral valve disease combined
the other valve disease; SR, sinus rhythm.

Validation of Real-Time Quantitative
Polymerase Chain Reaction
The differential expression genes using data-mining were
validated in human LAA by real-time quantitative polymerase
chain reaction (RT-qPCR). All primers are shown in
Supplementary File 1. The expression level of each gene
was detected by SYBR GREEN method using the StepOnePlus
system (Applied Biosystems, Foster City, CA, United States), with
the housekeeping GAPDH as the internal reference gene. The
reaction system volume was 20 µl, and the reaction conditions
were 95◦C 60 s, then 95◦C 5 s and 60◦C 40 s, lasting 40 cycles.
The Ct value is the cycle number reflecting to reach the detection
threshold of fluorescence signal. Relative gene expression levels
were calculated by 2−11Ct . Mann–Whitney U-tests were used
for significance difference analysis by 11Ct values, and the data
were reported as mean ± SE. Amplifications were performed in
triplicate for each sample.

RESULTS

Overviews of GWAS Data Sets and
Network Modules Constructed
We calculated the total heritability/SE/intercept of two GWAS
datasets in this study by LDSC and observed that there was
little difference in heritability between the two microarrays
(GCST006414: 0.0236/0.0022/1.0503 and Finngen_r3_I9_AF:
0.0485/0.0087/1.0324). Although their intercept values are close
to 1, more data are needed to confirm how close they are to the
true heritability because there are few variables available from
the GWAS summary_statistic datasets such as environmental
factors. The GWAS discovery and test sets were constructed
by ProxyGeneLD, composed of 2,676 and 1,142 genes with adj
p < 0.05, respectively (showed in red in the first and second
histogram tracks of Figure 1), and the GS values of first 5,000
genes with high standard deviations from the LAA and RAA of
GSE128188 are shown in the third and four histogram tracks of
Figure 1. There were no outlier values observed in the expression
sets of LAA and RAA (Figures 2A,B). Both WGCNA networks

of LAA and RAA were constructed, and the power indexes β

were confirmed as 18 using the “pickSoftThreshold” function
(Figures 2C,D). Ten and 12 distinct gene modules were identified
in LAA and RAA, respectively. A unique color was assigned to
each module, and the ranges of the gene number of modules from
LAA and RAA were from 101 (magenta) to 1,642 (turquoise),
and from 159 (green yellow) to 1,066 (turquoise). Two gray
modules with 448 and 634 genes represented the background
color (Figures 2E,F).

Discovery of the Modules With Best
Biological Implications
Module eigengene metrics corresponds to the first principal
component of a given module and is considered as the most
representative gene expression in module. The correlation
between ME and AF was estimated by CC metrics. Significant
results were displayed in the blue (CC = 0.51, p = 0.0076) and
yellow (CC = 0.51, p = 0.023) modules of LAA, and in the yellow
(CC = 0.51, p = 0.0099), brown (CC = 0.71, p = 0.0099), and
magenta (CC = 0.51, p = 0.014) modules of RAA (Figures 3A,B).

To incorporate the AF trait into the network modules, we
introduced GS measure. Theoretically, an increased GS value
of the i-th gene leads to enhanced biological significance of
the i-th gene. GS metrics captures the difference between
AF and SR groups for each gene by p-values of hypothesis
testing. MM measures how tightly a special gene fits into its
module and thus reflects the module cohesiveness. Furthermore,
the relationship between GS and MM verifies the biological
significance of module. As shown in Figures 4A,B, significantly
positive correlations were observed in the blue (R = 0.44,
p = 2.2E–16) and yellow (R = 0.55, p = 2.2E–16) modules of
LAA, and likewise showed in the yellow (R = 0.48, p = 2.2E–16),
brown (R = 0.48, p = 2.2E–16), and magenta (R = 0.58, p = 2.2E–
16) modules of RAA, suggesting that the modules were strongly
associated with AF.

Differential Expression Profiles and
Enrichment Pathways of LAA and RAA
The Venn plot constructed by five modules associated with AF
showed 429 and 304 genes with high propensity to aggregate,
respectively, in LAA and RAA (Figure 5). However, only 137
genes were overlapped between LAA and RAA, suggesting the
difference of expression profiles of left and right hearts for AF.
In addition, in LAA, GSEA showed that the transcriptome data
were enriched in the pathways such as calcium signaling pathway
(p = 0, FDR = 0.017), collagen containing extracellular matrix
(p = 0, FDR = 0.2), mitochondrial respiratory chain complex
(p = 0.002, FDR = 0.01), and potassium channel activity (p = 0,
FDR = 0.02) (Figure 6A). In RAA, data demonstrated that
the pathways such as cardiac muscle cell contraction (p = 0,
FDR = 0.002), collagen containing extracellular matrix (p = 0,
FDR = 0.0005), extracellular structure organization (p = 0,
FDR = 0.17), and oxidative phosphorylation (p = 0, FDR = 0)
were enriched (Figure 6B). These results suggest that the
pathogenesis of AF is related to the factors such as the increase
of atrial fibrosis, the decrease of channel protein function, and
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FIGURE 1 | The circos diagram for GWAS and expression data sets. Two outermost tracks represent the chromosome text and banding positions. From the outside
to the inside, the first and second histogram tracks represent the GWAS discovery and test sets, respectively. The red abundance value along the vertical axis
represents the genes with adj p < 0.05, the first 20 of which are displayed in the first and second text tracks, and the green represents the genes with adj p > 0.05.
The third and four histogram tracks represent the GS values of the expression sets of LAA and RAA, respectively. The red abundance value along the vertical axis
represents the genes with GS > 2, the first 20 of which are displayed in the third and four text tracks, and the green represents the genes with GS < 2. GS, gene
significance; LAA, left atrial appendage; RAA, right atrial appendage.

mitochondrial dysfunction. All GSEA-related data are included
in Supplementary File 2.

Determination of Newly AF-Associated
Biomarkers
One of the advantages of Cytoscape is the ability to intuitively and
visually demonstrate connections between genes with association

evidence by TOM. In LAA, the edge file “Blueyellow.edges”
(Supplementary File 3) reflecting the weight relationships
between the blue plus yellow module genes was obtained by the
“exportNetworkToCytoscape” function in WGNNA package and
was as an input file of Cytoscape. Setting the weight cutoff value
of the edge to 0.15, we observed 130 genes crosslinked with each
other in the network, and 22 core genes (the octagon nodes) are
presented in Figure 7A. By the GWAS test set, the AF-associated
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FIGURE 2 | The principal component analysis, the calculation of power indexes, and the generation of module cluster trees on expression data sets. (A) The PCA
plot is shown for determination of outlier samples in LAA. (B) The PCA plot is shown for determination of outlier samples in RAA. (C) Analysis of network topology for
various soft-thresholding powers in LAA. The y-axis of the left panel represents the scale-free fit index while the x-axis indicates the soft-thresholding power. The
y-axis of the right panel displays the mean connectivity and the x-axis also represents the soft-thresholding power. (D) Analysis of network topology for various
soft-thresholding powers in RAA. (E) The construction of module cluster tree in LAA. In the picture, branches correspond to the coexpression modules with highly
interconnected groups of genes. (F) The construction of module cluster tree in RAA. LAA, left atrial appendage; PCA, principal component analysis; RAA, right atrial
appendage.

gene MYH7 (adj pdis = 7.6E–6, adj ptest = 0.014, GS = 3.95)
confirmed in previous studies was identified, while four novel
biomarkers associated with AF were determined, including
ERBB2 (adj pdis = 5.1E–7, adj ptest = 0.013, GS = 3.34),HERC4 (adj
pdis = 6E–6, adj ptest = 0.0042, GS = 3.0), MYPN (adj pdis = 0.0004,
adj ptest = 0.02, GS = 2.07), and PBXIP1 (adj pdis = 0.00036, adj

ptest = 0.0002, GS = 3.3). Following the same steps mentioned
previously (the edge file “Yellowbrowmagenta.edges” seen in
Supplementary File 4), we just obtained eight core genes and
eventually get one AF-associated gene LOXL1 (adj pdis = 0.047,
adj ptest = 0.07, GS = 3.0) in RAA (Figure 7B). Taken together,
these results could indicate that the triggering and maintenance
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FIGURE 3 | The module–trait associations of networks. (A) Module–trait associations in LAA. Row represents a module eigengene, column indicates disease
status – AF or SR. Each cell contained the corresponding correlation and p-value. The table was color-coded by p-value according to the color legend.
(B) Module–trait associations in RAA. LAA, left atrial appendage; RAA, right atrial appendage.

FIGURE 4 | The correlation between MM and GS. (A) The correlation between MM and GS for each of two AF-associated modules in LAA. MM for each module is
plotted against GS. (B) The correlation between MM and GS for each of three AF-associated modules in RAA. GS, gene significance; LAA, left atrial appendage;
RAA, right atrial appendage.

of AF is incline to the left atrium. Subsequently, the six AF-
associated loci were verified from the LAA of 30 clinical patients
by RT-qPCR, and the data showed that the expression of ERBB2,
MYH7, and MYPN in AF group had significant change compared
with that in SR group, while that of HERC4, LOXL1, and PBXIP1
had no change (Figure 8).

FIGURE 5 | The Venn plot constructed by two AF-associated modules in LAA
and three AF-associated modules in RAA (GS > 2). GS, gene significance;
LAA, left atrial appendage; RAA, right atrial appendage.

DISCUSSION

In the present study, we first combined GWAS with gene
expression profile data from the LAA and RAA of patients to dig
newly AF-associated biomarkers by ProxyGeneLD and WGCNA.
In LAA and RAA, five AF-associated modules were identified
and were verified by the relationships between MM and GS. In
the GWAS discovery set, 30 core genes which exhibited GWAS
nominal evidence for AF associations (adj pdis < 0.05) were
visually shown in the network constructed by Cytoscape, and six
AF-associated genes were determined (LAA: 5 and RAA: 1) by the
GWAS test set. Using RT-qPCR, two novel genes associated with
AF ERBB2 and MYPN are eventually identified. The scheme of
this study is shown in Figure 9 and other WGCNA-related data
in this study are illustrated in Supplementary File 5.

In recent years, some biomarkers associated with AF have
been successfully identified by GWAS. However, the genetics of
AF risk is still not fully elucidated, particularly the subtle-effect
genes associated with AF (p > 5E–08). Although network-based
analyses such as GO and KEGG can be applied to identify subtle-
effect genes, they do not consider the mutual interconnection
between genes (Ritchie, 2009; Torkamani and Schork, 2009).
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FIGURE 6 | The enrichment pathways from GSEA. (A) The enrichment pathways from GSEA in LAA. (B) The enrichment pathways from GSEA in RAA. LAA, left
atrial appendage; RAA, right atrial appendage.

FIGURE 7 | The Network view from Cytoscape. (A) The Network view from Cytoscape in LAA. (B) Network view from Cytoscape in RAA. The module edge > 0.15.
Green color represents downregulated genes with GS > 2, red color represents upregulated genes with GS > 2, and gray color represents the genes with GS < 2.
Octagon nodes represent core genes. GS, gene significance; LAA, left atrial appendage; RAA, right atrial appendage.

Farber (2013) combined GWAS with WGCNA to explore
network modules and new biomarkers relative to osteoporosis,
which inspired the implementation of the analysis for AF, with
some modification. In this study, we applied the combination
of GWAS with expression profile data on AF and obtained
useful network modules and core genes by taking into account
unsupervised clustering, flexible soft thresholds, the connections
between genes, and the reduced dimensionality of thousands
of expressed genes. The combination of ProxyGeneLD and
WGCNA may provide a new perspective for revealing more
hidden biomarkers associated with AF.

Using WGCNA, our results repeated most of the differentially
expressed genes in the original literature (Thomas et al.,
2019) (the upregulated/downregulated in LAA: KCNJ2 and
PRKAR1A/FGFR2 and PTPRU, the upregulated/downregulated
in RAA: COL12A1 and RPL3L/CADM2 and COG5, and the
simultaneously expressed in LAA and RAA: the GPR22,
PPP1R1A, and RGS6). Similarly, the results of pathway analysis
were also reproduced in the original literature, such as
cation channel and plasma membrane in LAA, and collagen-,
extracellular matrix-, clathrin-, and Golgi-related pathways in
RAA. The aforementioned data suggest the reliability and
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FIGURE 8 | The RT-qPCR results for six genes. Data are shown as mean ± SE, and each sample is in triplicate. AF, atrial fibrillation; SR, sinus rhythm. *P < 0.05.

repeatability of WGCNA and GSEA. Besides, our results showed
that multiple pathways related to AF were not present in the
original text, including calcium signaling pathway, collagen-
containing extracellular matrix, mitochondrial respiratory chain
complex, and potassium channel activity in LAA, most of which
are complicated in either atrial structural or electrical remodeling
(Jalife and Kaur, 2015), suggesting that GSEA taking into account
gene expression values could have an advantage over classic
enrichment pathway software such as GO or KEGG.

Based on the study protocol published by Farber (2013), with
small modifications, we mined potential AF-associated genes
using GWAS and transcriptome expression profile data on left–
right atrial appendages, and the six confirmed and newly AF-
associated biomarkers were identified and validated. Previous
studies have reported that in atrium the upregulated MYH7, a
ventricular-myosin heavy chain isoform, are associated with AF,
which might improve economy of contraction by the increase in
metabolic demand of AF (Barth et al., 2005). In our study, the
significant expression elevation was observed for this gene, not
only in our data-mining process using bioinformatics but also
in our experimental verification using RT-qPCR. Although the
adj ptest value of LOXL1, as the only candidate marker of RAA
associated with AF in this study, is greater than 0.05, it plays
a key role in extracellular matrix homeostasis and remodeling,
family members of which participate in heart failure, myocardial

infarction, cardiac hypertrophy, dilated cardiomyopathy, and AF
(Philp et al., 2018; Rodriguez and Martinez-Gonzalez, 2019). It
was not observed that the expression of this gene changed in
human LAA by RT-qPCR, similar to our data-mining result.
However, whether the gene is differentially expressed in human
RAA still needs to be further verified by subsequent experiments.

In this study, the four AF markers, ERBB2, HERC4, MYPN,
and PBXIP1, have not been reported in previous studies.
ERBB2, associated with heart failure, can improve mammalian
heart regeneration, and promote cardiomyocyte dedifferentiation
and proliferation (D’Uva et al., 2015). Belmonte et al. (2015)
reported that its overexpression can upregulate antioxidant
enzymes, reduce basal levels of reactive oxygen species, and thus
protect the myocardium. Our data mining and RT-qPCR results
showed that the expression level of ERBB2 is downregulated,
indicating that the gene may increase reactive oxygen species,
decrease antioxidant enzymes, and diminish the ability of
cardiomyocytes to regenerate, and thus that it could be one
of AF remodeling substrates. MYPN as a messenger gene links
structural and gene regulatory molecules to the nucleus in
cardiomyocyte by translocation from the I-bands or Z-disk. It
is clear that numerous mutation loci in the gene are associated
with hypertrophic, dilated, and restrictive cardiomyopathy (Chen
et al., 2017). One study demonstrated that MYPN knockout mice
exhibited a 48% reduction in myofiber cross-sectional area and

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 696591

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-696591 June 28, 2021 Time: 17:22 # 10

Meng et al. Identifying Atrial Fibrillation-Associated Genes

FIGURE 9 | The design scheme of this study. GS, gene significance; LAA, left atrial appendage; ME, module eigengene; MM, module membership; PCA, principal
component analysis; RAA, right atrial appendage.

significantly increased fiber number, compared with wild-type
controls (Filomena et al., 2020). Our results showed that this
gene is upregulated, suggesting that it may induce abnormal
atrial myocardial fibrosis and therefore be associated with the
occurrence of AF. Furthermore, our data from RT-qPCR showed
that HERC4 as a tumor suppressor (Xu et al., 2019) and PBXIP1
(Arrington et al., 2012) contributing to tumor cell growth and
migration are not related to AF, and further studies are needed.

Because there is only a small amount of genome-wide
expression profile data available for AF in public databases,
especially containing both LAA and RAA of individuals, the
statistical efficacy may be limited in this study. However, studies
using WGCNA to analyze small sample data are comparatively
abundant, and convincing results have been obtained from
previous studies (Gargalovic et al., 2006; Gong et al., 2007; Farber,
2013), and our data-mining results were confirmed by RT-qPCR.
In addition, although no stratification of clinic types of AF was
conducted in our study, we expected that this problem be solved
using a larger sample in the future. Furthermore, the lack of
RAA samples limits our verification of AF markers in RAA,
which will be improved in subsequent studies. However, as a
powerful bioinformatic method, coexpressed nodes of WGCNA
may have interdependent mechanistic relationships that are not
yet appreciated, which may lead to the co-identification of genes
in associated studies (Liu et al., 2015a). Of note, the present study
did not identify all the genes that were known in the previous

GWAS, as it was only a supplementary work for exploring
biomarkers related to AF.

CONCLUSION

In summary, we revealed effectively two newly AF-associated
genes ERBB2 and MYPN by integrating GWAS with expression
profile data using theories and methods of systems biology, and
based our hypothesis on the missing heritability generated by
GWAS data. These findings highlight the value of the network
approach in the acquisition of newly AF-associated genes and
provide insights into the pathological mechanisms of AF.
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