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Abstract We demonstrate a combined experimental and computational approach for the

quantitative characterization of lateral interactions between membrane-associated proteins. In

particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to

supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster

Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are

intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and

trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been

hindered by a lack of experimental approaches capable of detecting and quantifying lateral

interactions between proteins on membranes. Here single-molecule intermolecular FRET

measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations

demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on

lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are

quantitatively and independently determined, demonstrating an approach that is generalizable for

other interacting proteins.

Introduction
The quantitative characterization of protein interactions on membranes and at buried interfaces,

including the measurement of binding constants, is a major challenge due to the limited experimen-

tal approaches capable of interrogating molecular interactions in these environments. While it is

common to study interactions between extracellular regions of membrane proteins in solution, such

experiments are imperfect proxies for measuring actual membrane protein interactions. Apart from

the potential impact of domain isolation on protein folding and function, functionally important pro-

tein interactions and oligomerization may arise specifically due to constraints imposed by two- or

three-dimensional confinement (Różycki et al., 2010; Weikl et al., 2009). Notably, the immunologi-

cal synapse is characterized by the spatial and temporal organization of proteins in the gaps

between the surface of an antigen presenting cell and a T-cell (Grakoui et al., 1999; Monks et al.,

1998). This organization is attributed in part to the steric segregation of proteins of different sizes

and to cytoskeletal interactions (Qi et al., 2001; Schmid et al., 2016); the understanding of the role

of lateral protein interactions in this protein assembly remains incomplete (Kaitao et al., 2019). In

addition to cadherins, nectins represent another class of membrane proteins whose lateral clusters

mediate cell-cell adhesion (Rikitake et al., 2012). Distinct lateral (cis) and trans- (adhesive)
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interactions between the four members of the nectin family are associated with differentiation and

tissue organization. Although it is possible to quantify trans- (adhesive) interactions (Chesla et al.,

1998; Chien et al., 2008; Wu et al., 2008), measurements of lateral interactions underlying protein

clustering have been inaccessible.

In this context, cadherins pose a particular challenge. Cadherins are transmembrane proteins that

mediate cell-to-cell adhesion in all tissues and regulate a range of biological processes, such as tis-

sue rearrangement and formation, cell motility, proliferation, and signaling (Gumbiner, 1996;

Gumbiner, 2005; Niessen et al., 2011; Pla et al., 2001; Takeichi, 1995). Cadherins mediate inter-

cellular adhesion by binding other cadherins on an adjacent cell surface. Notably, cadherins assem-

ble into dense clusters at these adhesive sites, which are important for regulating the permeability

of barrier tissues such as the intestinal epithelium (Brieher et al., 1996; Harrison et al., 2011;

Wu et al., 2015). The molecular basis underlying cadherin cluster assembly is therefore of great

interest because of its importance for tissue functions.

Experimental evidence supports the postulate that cadherin-mediated adhesion and clustering

involves both cis- (lateral) and trans-interactions (adhesive) between cadherin molecules on cell surfa-

ces (Brieher et al., 1996; Harrison et al., 2011; Wu et al., 2015). Early comparisons of cadherin

extracellular domain adhesive activity suggested that the protein functions as a cis-dimer, and crystal

structures suggested a plausible cis-binding interface (Brieher et al., 1996; Harrison et al., 2011).

Moreover, mutating one or two key amino acids in the postulated cadherin cis-binding interface

results in impaired intercellular adhesion and reduced cadherin clustering at cell-cell contacts

(Erami et al., 2015; Harrison et al., 2011; Shashikanth et al., 2016; Wu et al., 2015). However,

despite experimental evidence for the importance of cis-interactions in cell adhesion, they have

been difficult to investigate directly (Brieher et al., 1996; du Roure et al., 2006; Harrison et al.,

2011; Hong et al., 2013; Indra et al., 2018; Klingelhöfer et al., 2002; Leckband and Sivasankar,

2012; Leckband and de Rooij, 2014; Shapiro et al., 1995; Troyanovsky et al., 2015;

Troyanovsky et al., 2007; Troyanovsky et al., 2003; Wu et al., 2015; Yap et al., 1997; Yap et al.,

1998; Zhu et al., 2003). Due to the relatively weak nature of cis-interactions, traditional solution-

phase studies have failed to detect them, even at high protein concentrations (Häussinger et al.,

2004; Koch et al., 1999). Furthermore, attempts to stabilize weak cis-interactions through chemical

crosslinking in solution were unsuccessful (Zhang et al., 2009).

Computational models of cadherin binding subsequently suggested that the reduction of configu-

rational and orientational entropy under two- and three-dimensional confinement could potentiate

cis-interactions. Specifically, the models predicted that tethering cadherin extracellular domains to a

two-dimensional (2D) surface, such as a supported lipid bilayer or cell membrane would increase the

effective binding affinities of both cis-and trans-interactions (Harrison et al., 2011; Wu et al., 2010;

Wu et al., 2011). Unfortunately, measurements based on analyses of photon counting histograms

were unable to detect cis-interactions between E-cad extracellular domains on supported bilayers

independent of trans-interactions, likely due to the modest cadherin surface concentrations studied

(Biswas et al., 2015). However, the prediction that membrane-tethered cadherins can form clusters

under 2D confinement was recently confirmed indirectly via single-molecule tracking, based on

measurements of the diffusion of E-cadherin extracellular domains on supported lipid bilayers, over

a very large range of cadherin surface coverage (Thompson et al., 2019). Comparisons of wild-type

and cis-mutants confirmed that a specific cis-binding interface mediated clustering in the absence of

trans interactions. Importantly, the diffusion coefficient served as a very sensitive proxy for cis-inter-

actions, because clusters diffuse more slowly than monomers. These findings suggested that cis-

interactions between E-cad extracellular domains can result in the formation of large clusters, in the

absence of trans-interactions, for cadherin surface coverage above a threshold of ~1,100 E-cad/m

m2(Thompson et al., 2019). However, a quantitative understanding of cis-interaction contributions

to the assembly of adhesive junctions has been hindered by the lack of approaches capable of iden-

tifying and quantifying relevant binding interactions.

Here we used intermolecular single-molecule Förster Resonance Energy Transfer (FRET) micros-

copy to characterize the dynamic interactions between E-cad extracellular domains tethered to

mobile supported lipid bilayers, while simultaneously tracking the motion of E-cad monomers and

clusters to determine their diffusion coefficients, and thereby infer their hydrodynamic diameters. By

comparing the behavior of wild-type E-cad to that of a mutant that is incapable of specific cis-inter-

actions, we identified two distinct types of lateral interactions, which we attributed to nonspecific
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(i.e. not through the specific cis-interface observed in the crystal structure) interactions (present for

both wild-type and mutant E-cad) and specific interactions (present only for wild-type E-cad). The

specific interactions were significantly stronger, resulting in longer intermolecular associations and a

steady-state cluster distribution with a larger characteristic cluster size. Complementary off-lattice

kinetic Monte Carlo simulations were performed under conditions designed to mimic the experi-

ments. The kinetic parameters associated with the simulations were constrained by experimental val-

ues when applicable; the remaining parameters were optimized so that the steady state cluster size

distributions matched those observed experimentally. The experiments and simulations were inter-

nally consistent, with a single set of parameters for all experimental conditions. These simulation

results suggested that the dissociation rate for specific cis-interactions was approximately 10x slower

than for nonspecific interactions under the conditions of the experiments. Thus, while associations

due to nonspecific interactions were significantly weaker than cis-interactions, they were substantial

and could not be ignored. The simulations also suggested that associations due to cis-interactions

were more efficient and likely to occur, than nonspecific interactions. Importantly, the methods

developed and employed here can be generally applied to study the dynamics of specific and non-

specific lateral interactions between a wide range of membrane proteins.

Results

Nonspecific and specific cis-Interactions are present in E-cad clusters
In order to study E-cad lateral interactions under 2D confinement, donor (Alexa 555) labeled, accep-

tor (Alexa 647) labeled, and unlabeled E-cad extracellular domains were simultaneously bound to a

supported lipid bilayer via hexahistidine-NTA associations and imaged using a prism-based total

internal reflection fluorescence (TIRF) microscope. This allowed the observation of a large number of

single molecule trajectories at high or intermediate protein surface coverage. Two discrete popula-

tions were observed corresponding to negligible energy transfer (low-FRET) and complete energy

transfer (high-FRET) (Figure 1A and Figure 1—figure supplement 1). Figure 1A shows a represen-

tative FRET heat map showing two distinct populations at high and low FRET efficiency. Each molec-

ular observation within each trajectory was then classified as either a high-FRET or low-FRET

efficiency state (where high-FRET corresponds to a putative cis-association) based on the donor and

acceptor intensities using an algorithm described previously, allowing the identification of high-FRET

and low-FRET time intervals (Figure 1A and Figure 1—figure supplement 1; Chaparro Sosa et al.,

2018). Previously, the high-FRET state has been shown to indicate binding (Kastantin et al., 2017;

Langdon et al., 2015; Langdon et al., 2014; Monserud et al., 2016; Monserud and Schwartz,

2016; Traeger et al., 2019; Traeger and Schwartz, 2017; Traeger and Schwartz, 2020). In order

to distinguish the effects of specific cis-interactions, E-cad extracellular domain constructs of wild-

type E-cad and the cis-binding mutant L175D were used in separate experiments; this particular

point mutant was previously shown to be incapable of interacting through the cis-interface

(Harrison et al., 2011; Thompson et al., 2019). Therefore, at similar surface coverage, any differ-

ence in apparent interactions between the wild-type and this mutant should primarily be due to the

presence or absence of specific cis-interactions.

Three conditions were studied: high-coverage wild-type (~1,400 E-cad/mm2), high-coverage

mutant (~1,300 E-cad/mm2), and intermediate-coverage wild-type (~1,000 E-cad/mm2), where these

coverage values were chosen based on previous experiments, which demonstrated the onset of sig-

nificant clustering at surface coverages above ~1,100 E-cad/mm2 (Thompson et al., 2019). Quantify-

ing cis-interactions independent of trans-interactions at these high surface coverage values is

directly physiologically relevant, as cell-cell junctions consist of both adhesive and nonadhesive clus-

ters, and can reach a maximum local surface coverage of ~49,000 E-cad/mm2 (Indra et al., 2018;

Wu et al., 2015). A total of ~4000 trajectories were observed, of which ~750 exhibited FRET events,

consisting of ~85,000 total molecular observations at each of the three experimental conditions

employed. Supplementary file 1a contains the exact number of total trajectories, trajectories exhib-

iting FRET association, and total number of displacements for each experimental condition. To per-

mit single molecule localization, the donor-labeled E-cad concentration was kept very low as

described in the Materials and methods section. The acceptor-labeled E-cad concentration was

much larger than that of the donor, allowing the observation of a large number of FRET events and
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ensuring that multiple acceptors were present in clusters. Due to limitations in acceptor

Figure 1. Observation of cis-interactions via single-molecule FRET. (A) Representative heat map of donor and

acceptor intensities showing two populations at high and low FRET efficiency indicated by the asterisks. The black

line represents the threshold between the two states used to assign each observation to the high or low-FRET

state. (B, E, H) Donor and acceptor trajectories for a FRET pair throughout representative trajectories, which are

used to determine if the donor E-cad molecule is in a high-FRET or low-FRET state. (C, F, I) X and Y Cartesian

coordinates for the donor or acceptor molecule over the length of the trajectory. (D, G, J) Two dimensional

trajectory plots of the same trajectories, where the symbol color corresponds to the assigned FRET-state. The

background of the trajectory time traces for intensity and position indicate the assigned FRET-state.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Heat maps showing binned acceptor and donor intensities using all molecular

observations.

Figure supplement 2. Overall complementary cumulative distributions of squared displacement calculated using

only trajectories from a single movie for all three experimental conditions.

Figure supplement 3. Complementary cumulative association time (high-FRET state dwell time) distributions

calculated using only trajectories from a single movie for each of the three experimental conditions.

Figure supplement 4. Fluorescence recovery after photobleaching (FRAP) analysis indicates the formation of a

continuous, fluid supported lipid bilayer.

Figure supplement 5. All localized and tracked trajectories two frames and longer from the 30 s high surface

coverage wild-type movie clip included as Video 1 (left).

Figure supplement 6. Representative histogram of positional localization uncertainties for all molecular

observations for the high surface coverage wild-type condition indicating a significant number of observations with

a large position uncertainty comparable to the size of a pixel (0.43 mm).

Figure supplement 7. Trajectory median donor intensity histograms showing the 60th percentile cutoff as a

vertical red line used to remove bright contaminants, donor E-cad aggregates, and donor E-cad labeled with

multiple fluorophores.
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concentration caused by the need to avoid excess background that results from direct excitation of

the acceptor, unlabeled E-cad was added to reach sufficiently high surface coverages required for

cluster formation.

In some trajectories, transitions between FRET states were observed, presumably indicating asso-

ciation and dissociation events between donor and acceptor labeled E-cad. However, many trajecto-

ries showed no FRET-state transitions, where a trajectory began by either adsorption or diffusion

into the field of view in a given state and remained in that state until the trajectory ended through

desorption, diffusion out of the frame, or photobleaching. Representative trajectories illustrating

these different situations are shown in Figure 1B–J. For example, in trajectory one, the donor E-cad

begins in the low-FRET state and appears to be diffusing quickly, based upon the large positional

fluctuations. After ~0.33 s, a transition from low to high FRET-state indicates the association of the

donor E-cad with a cluster. This FRET transition coincides with a significant decrease in the positional

fluctuations, consistent with the motion of a large cluster. In contrast, representative trajectory two

exhibits no apparent FRET-state transitions. The trajectory begins in the high-FRET state and

remains in this state throughout the entire trajectory. The position fluctuations are small, and the

molecule remains in a small, confined, region. This behavior suggests that the donor E-cad is associ-

ated with a large cluster that contains one or more acceptor E-cad molecules. Lastly, trajectory three

remains in the low-FRET state throughout the entire trajectory, and exhibits large positional fluctua-

tions, consistent within an unassociated monomer of donor E-cad.

As is apparent from Figure 1B–J, transport properties are often coupled to the FRET-state of a

molecule. This is because the FRET-state reflects the oligomeric state of an E-cad molecule, and

large oligomers diffuse slower than a monomer due to increased protein-lipid interactions, which is

the primary source of drag (Cai et al., 2016). In order to assess this hypothesis and confirm that the

high-FRET state does in fact correlate with protein clusters involving a donor and one or more

acceptors, the average short-time diffusion coefficient (Dshort) was determined for the high and low

FRET-state populations independently. This was done by constructing complementary cumulative

squared displacement distributions (CCSDDs) for each state, under each experimental condition,

and then fitting these distributions to a Gaussian mixture model containing three terms (See Materi-

als and methods section for more details on distribution calculations, fitting, and Dshort calculation).

Dshort represents the average instantaneous molecular diffusion coefficient at the shortest experi-

mentally accessible time scale and is especially useful for systems where molecules change FRET

states within a trajectory (Chaparro Sosa et al., 2020; Chaparro Sosa et al., 2018; Langdon et al.,

2015). Additionally, overall CCSDDs were constructed, in order to determine overall values of Dshort

under each experimental condition. Overall CCSDDs and Gaussian mixture model fits are shown in

Figure 2—figure supplement 1. Figure 2A–C shows the CCSDDs for both FRET-states (at each of

the three experimental conditions) with the respective Gaussian mixture model fits. The FRET-state

CCSDDs (Figure 2A–C) indicate that the probability of a large displacement is significantly smaller

for E-cad in the high-FRET state for all conditions. Figure 2D shows the resulting values of Dshort

determined from the fit parameters. Supplementary file 1b shows all CCSDD fit parameters.

Most importantly, Figure 2D shows that the values of Dshort are significantly smaller for the high-

FRET state relative to the low-FRET state. This behavior is consistent with the interpretation that the

high-FRET state corresponds to E-cad in an associated state, where it diffuses as an oligomer or

large cluster. Of course, due to the presence of unlabeled E-cad, it is possible for an E-cad donor

molecule to be associated with a cluster but remain in a low-FRET state. The low-FRET state popula-

tion comprises a combination of unassociated donor E-cad and donor E-cad that is associated with

unlabeled E-cad; consequently, this population is more complicated to interpret. Nevertheless, the

inclusion of monomers in the low-FRET state (and not the high-FRET state) is expected to result in

larger values of Dshort for the low-FRET state, as observed for all three experimental conditions, even

for the mutant that cannot interact through the cis-interface. Importantly, the observation that the

mutant also exhibits decreased diffusion in a high-FRET state (from 0:569� 0:008 �m2=s to

0:44� 0:01 �m2=s) suggests that the proteins can associate by nonspecific interactions in addition to

the specific cis-binding interface expected for wild-type E-cad.

As shown in Figure 2D, the average protein diffusion associated with both of the FRET states is

slowest at the higher surface coverage of wild-type E-cad. This observation is consistent with the

presence of more large protein clusters than at lower surface concentrations or in the absence of
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specific cis-interactions. The formation of these large clusters is presumably supported by a large

number of nonspecific interactions, in combination with frequent cis-interactions at the higher con-

centration. Interestingly, wild-type E-cad at lower surface concentration and mutant E-cad at higher

concentration exhibit similar diffusion constants for both FRET-state populations, suggesting that

the average cluster sizes are comparable in these two systems, due to a balance between the

strength and frequency of nonspecific and specific interactions. This is consistent with previous find-

ings that specific cis-interactions between wild-type E-cad proteins primarily affected diffusion only

at surface coverages above ~1,100 E-cad/mm2, while nonspecific interactions between mutant E-cad

did not cause significant slowing even above this threshold (Thompson et al., 2019). Additionally,

the overall Dshort values (Supplementary file 1b) show that effective total diffusion was slowest for

high surface coverage wild-type E-cad, and that the overall diffusion for mutant E-cad and intermedi-

ate coverage wild-type E-cad was similar. To better understand the relationship of nonspecific and

specific lateral interactions between E-cad extracellular domains, a detailed investigation of interac-

tion dissociation kinetics was performed as described below.

Nonspecific Cis-Interactions dissociate faster than specific Cis-
Interactions
Classifying each observed trajectory into the high-FRET or low-FRET state provides information

about the time intervals spent in each state (dwell time), in addition to the state-dependent

Figure 2. E-cad diffusion depends on FRET state and interaction capability. (A–C) Complementary cumulative

squared displacement distributions in the high-FRET and low-FRET states for the mutant and two wild-type E-cad

conditions, along with the respective Gaussian mixture model fits. Error bars correspond to the standard deviation

of CCSDDs calculated using 100 samples using a bootstrap method with replacement and are generally smaller

than the data points, except in the ‘tail’ of the high-FRET state distributions. (D) Dshort in the high-FRET and low-

FRET states for the mutant and two wild-type conditions. Error bars represent the standard deviation of fitting 100

samples using a bootstrap method with replacement.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Overall CCSDDs, using all displacements from both high and low-FRET states, for the

mutant and two wild-type E-cad conditions.

Figure supplement 2. Displacement-based trajectory filtering results in short-time diffusion expected for

supported lipid bilayers.
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transport properties discussed previously. The dwell times in each state contain direct information

about the nature and energies of interactions. These data can be used in tandem with the transport

information, which provides indirect information about clustering. High-FRET state dwell time distri-

butions are shown as Figure 3—figure supplement 1 and generally indicate longer dwell times for

wild-type compared to mutant E-cad, and that dwell time generally increases with surface coverage.

In particular, inspection of the dwell time distributions (Figure 3—figure supplement 1), in conjunc-

tion with the high-FRET surface residence time distributions (Figure 3—figure supplement 2), sug-

gests that the higher probability of long dwell times for wild-type E-cad are due to stronger

interactions. However, it is challenging to extract quantitative information directly from the dwell

time distributions for a number of reasons, such as: heterogeneity in the number of fluorescent

labels per E-cad, differences in labeling efficiency between the wild-type and mutant, and the

Figure 3. Average dissociation rate constants (�kd) for the mutant and two wild-type conditions resulting from

modeling interactions using a Markov model. Error bars were estimated as the square root of the Cramèr-Rao

lower bound.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Complementary cumulative association time (high-FRET state dwell time) distributions

calculated for each of the three high surface coverage experimental conditions and the low coverage control.

Figure supplement 2. High-FRET and low-FRET complementary cumulative surface residence time (observation

time) distributions for mutant E-cad and two concentrations of wild-type E-cad.

Figure supplement 3. Complementary cumulative state dwell time distributions for the high and low-FRET states

for the mutant and two wild-type E-cad conditions, compared to the predicted state dwell time distributions

based upon the three-state, heterogeneous Markov model maximum likelihood estimate with beta-distributed

transition probabilities.

Figure supplement 4. Probability density functions for the state transition rates between the high and low-FRET

states for the mutant and wild-type conditions determined based upon the Markov model estimated, beta-

distributed transition probabilities.

Figure supplement 5. Low-FRET state complementary cumulative dwell time distributions for the mutant and two

wild-type conditions.

Figure supplement 6. Beta distributions of state transition probabilities between the high and low-FRET states for

the mutant and two wild-type conditions corresponding to the Markov model maximum likelihood estimated beta

distribution parameters.
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convolution of photobleaching and desorption with the dwell times. Therefore, in order to rigorously

extract quantitative dissociation rates, it was advantageous to employ a three-state Markov model

that accounted for trajectory observation times, as described in detail below.

A three-state Markov model that has previously been used to model protein conformations based

on intramolecular FRET time series data (Kienle et al., 2018) was used to quantitatively model inter-

molecular FRET time series data associated with E-cad interactions in this system. This model incor-

porated three states: high-FRET, low-FRET, and off, where the off-state corresponded to the end of

a trajectory due to photobleaching, desorption from the surface, or diffusion out of the field of view.

To account for heterogeneity in protein interactions, a beta distribution of state transition probabili-

ties between the high-FRET and low-FRET states was incorporated into the model. This heterogene-

ity reflects the diversity of local environments, including various cluster sizes, shapes, etc. A

maximum likelihood estimate of the beta distribution parameters was iteratively generated based on

the previously assigned sequence of states for each trajectory, and the average interaction rates for

transitions from the low-FRET state to the high-FRET state and vice versa were determined. Here,

the average interaction rate for transition from the high-FRET state to the low-FRET state was equiv-

alent to the average dissociation rate constant (�kd) for this system due to the concentration indepen-

dence of the dissociation reaction rate. For additional details of the model, see the Materials and

methods section and the previous application of this model to protein conformational changes

(Kienle et al., 2018). To confirm the accuracy of modeling the observed interactions, complemen-

tary cumulative dwell time distributions were generated for comparison with measured distributions,

by using the maximum likelihood estimated transition probabilities; they are presented as Figure 3—

figure supplement 3.

As shown in Figure 3, �kd varied significantly between wild-type and mutant E-cad, and also

between wild-type E-cad at high and intermediate surface coverage. The values of �kd were

1:40� 0:04 s�1, 1:04� 0:03 s�1, and 3:17� 0:06 s�1 for the mutant, at high wild-type surface cover-

age, and at intermediate wild-type surface coverage, respectively. Thus, wild-type E-cad at high sur-

face coverage exhibited the slowest dissociation (i.e., the most stable clusters), consistent with

expectations from the FRET-state diffusion analysis. This is plausible, since larger clusters at higher

surface concentrations were expected to enable both long-lived multivalent nonspecific interactions

as well as a significant number of longer-lasting specific cis-interactions. For mutant E-cad at high

coverage, the value of �kd was larger than for wild-type E-cad at high surface coverage, but signifi-

cantly smaller than for wild-type E-cad at intermediate surface coverage. This was presumably due

to the relatively high effective strength of nonspecific interactions, at high surface coverage, due to

avidity and trapping effects. Finally, the largest value of �kd (i.e., the least stable clusters) was

observed for wild-type E-cad at intermediate surface coverage, due mainly to the frequent and

short-lived nonspecific interactions. This is consistent with previous observations and suggests that

specific cis-interactions were infrequent at this intermediate surface coverage.

Overall, an additional interesting result from the modeling of the FRET time-series data was that

E-cad interactions were highly heterogeneous under all conditions, as indicated by the distributions

of dissociation rates (Figure 3—figure supplement 4), presumably due to the wide variety of cluster

sizes and shape, the presence of trapping and avidity effects, and the complex combination of spe-

cific and nonspecific interactions. The mutant E-cad interactions, which included only nonspecific

associations, were also heterogeneous; perhaps reflecting the potential for multivalency in these

associations. Nonspecific interactions also appear to be surface coverage dependent, suggesting

increasing effective strength with increasing surface coverage likely due to binding avidity within

large protein clusters and the prevalence of steric effects such as trapping within cluster interiors,

consistent with previous observations (Langdon et al., 2014). Moreover, the presence of both non-

specific and specific interactions creates many complex scenarios, including the potential for specific

cis-interactions to form via an initial nonspecific ‘encounter complex’ that transitions to the specific

cis-interaction through orientational changes. To capture this complexity directly, explicit kinetic

Monte Carlo simulations were performed, as described below.
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Heterogeneous kMC simulations differentiate specific and nonspecific
interactions
The single molecule FRET results provided novel insights into the qualitative overall behavior of lat-

eral interactions between E-cad extracellular domains tethered to a supported bilayer. They also

enabled quantitative characterization of the dissociation kinetics due to specific and/or nonspecific

interactions. Nevertheless, gaps remained in the understanding of the physical basis of the observa-

tions. In particular, as discussed above, it was difficult to unambiguously distinguish association

events. Additionally, single molecule FRET permitted the assignment of only two states: low-FRET

and high-FRET (associated). Therefore, for a system in which intrinsically different (and highly hetero-

geneous) interactions are expected, these experimental observations could not distinguish between

the different types of interactions underlying clustering. Nor could we quantitatively extract the inde-

pendent contributions and kinetics of each interaction. To address these experimental limitations,

kinetic Monte Carlo (kMC) simulations were performed. Importantly, these simulations incorporated

both the nonspecific and specific interactions revealed by the FRET data.

To model specific interactions, each wild-type E-cad molecule had one cis-donor site and one cis-

acceptor site located on opposing sides of the molecule (see Figure 4A), in order to incorporate the

specific orientational constraint associated with specific cadherin cis-interactions (Harrison et al.,

2011). This allowed each E-cad molecule to participate in a maximum of two specific cis-interactions

and mandated the formation of flexible linear oligomers. The inclusion of nonspecific interactions

was then accomplished by allowing additional interactions in all directions, within a specified dis-

tance constraint. By allowing molecules to form both nonspecific and specific interactions, associa-

tion and dissociation rate constants could be tuned independently for both interactions.

Figure 4. A coarse-grained model was constructed to simulate the spatial-temporal process of E-cad clustering.

(A) E-cad extracellular domains (orange), nonspecific and specific cis-interactions. Cis-donor sites are labeled in

purple, and cis-acceptor sites are labeled in red. A structural model of the E-cad is shown on the right side.

Ectodomain structure with EC domains 1–5 numbered from the N-terminus. (B) Top view of initial configuration in

the simulations. The number of E-cad molecules is equal to 200. (C) Top view of final configuration in the mutant

system. (D) Top view of final configuration in the wild-type system.
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We computationally simulated the clustering of E-cad on supported lipid-bilayers, using a

domain-based, coarse-grained model (Figure 4A). After random initial placement, all molecules and

clusters stochastically diffused off-lattice, using periodic boundary conditions. The average cluster

size was monitored throughout the simulation period. Simulations were run until the average cluster

size did not change significantly. This implied that equilibrium was reached, analogous to the experi-

ments. A total of 50 simulations were run at three different surface coverages (312.5 E-cad/mm2, 625

E-cad/mm2, and 1,250 E-cad/mm2) for both wild-type and mutant E-cad. Simulations with wild-type

E-cad included both nonspecific and specific interactions, but simulations of cis-mutants allowed the

proteins to associate only by nonspecific interactions. Simulations also used different combinations

of binding rates within a biologically relevant range. For additional details on kMC simulations, see

the Materials and methods section.

For each set of simulation parameters, multiple independent trajectories were generated to

assure that the computational data were statistically meaningful. Detailed strategies of the sensitivity

analysis are summarized in the Materials and methods section. At the end of the simulations, the

cluster size distributions were calculated by averaging from all the trajectories in the systems. In

Figure 5. Specific and nonspecific interactions can cause E-cad clustering. (A–B) Representative experimental

cluster size probability distribution functions for wild-type and mutant E-cad at low, intermediate, and high surface

coverages. Error bars correspond to the standard deviation of cluster size probability distribution functions

calculated using 100 samples using a bootstrap method with replacement. (C–D) The comparison of experimental

and simulated cluster size distributions for mutant and wild-type E-cad. The solid lines indicate the single

exponential fitting.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distributions of mutant E-cad cluster size for different combinations of nonspecific

interaction on/off rate.

Figure supplement 2. Distributions of wild-type E-cad cluster size for different combinations of specific

interaction on/off rate.

Figure supplement 3. E-cad is primarily bound to a single lipid.

Figure supplement 4. Trajectory averaged friction factor probability distributions for wild-type (top) and mutant

(bottom) E-cad at high, intermediate, and low E-cad surface coverage.

Figure supplement 5. Distribution of cluster size for wild-type and mutant E-cad at a surface density of 312.5

E-cad/mm2, 625 E-cad/mm2, and 1,250 E-cad/mm2, respectively.
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order to directly compare the cluster size distributions from simulations with the experimental distri-

butions, similar surface coverages were considered between the simulation and experimental

systems.

To allow direct comparison of kMC simulations to experimental results, E-cad cluster size proba-

bility distributions were calculated using raw trajectory friction factor data adapted from

Thompson et al., 2019, as described in the Materials and methods section. Resulting experimental

cluster size probability distributions are shown as Figure 5A–B, for both wild-type and mutant E-cad

at high, intermediate, and low surface coverages corresponding to ~39,000 E-cad/mm2, ~1,000

E-cad/mm2, and ~0.6 E-cad/mm2, respectively. However, due to the dynamic nature of cis-interactions

and the trajectory filtering method, the relative change in cluster size distributions with coverage

and between wild-type and mutant is most relevant. For mutant E-cad, the change in the cluster size

distribution with increasing surface coverage is subtle, and mainly visible in the small cluster regime,

where the peak present at low surface coverage at ~20 E-cad shifts to a modestly larger cluster size

of ~40 E-cad. This change is presumably due to weak nonspecific interactions between the mutants

that support cluster formation at elevated surface coverage. The cluster size distributions of wild-

type E-cad exhibit a more dramatic change with increasing surface coverage, particularly in the tails

of the distributions. For example, at high and intermediate surface coverage the probability of

observing a large cluster (~40 to ~160 E-cad) is significantly increased. This change with increasing

surface coverage for wild-type E-cad is likely due to a combination of nonspecific and specific inter-

actions that cause large cluster formation, relative to the cluster formation observed for the mutant.

For kMC simulations, we first turn off specific cis-interactions, so that E-cad can form clusters only

through nonspecific lateral interactions. This simulation is used to mimic the system in which the

mutant is employed to eliminate specific cis-interactions. The final configuration from a representa-

tive simulated trajectory is shown in Figure 4C. In addition to E-cad monomers, homogeneously dis-

tributed compact clusters formed through nonspecific cis-interactions between mutant E-cad

proteins. Figure 5—figure supplement 1 further shows the cluster size distributions under different

on/off rate combinations of the nonspecific interactions. Cluster size distributions can be fitted by a

single exponential function f ðNÞ ¼ Ae�N=N0 where N0 corresponds to the characteristic cluster size.

Figure 5—figure supplement 1 indicates that the characteristic cluster size is closely related to the

Figure 6. The comparison of experimental and simulated complementary cumulative association time

distributions for mutant and wild-type E-cad.
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values of the on and off rates. The simulated on and off rates were therefore optimized so that the

cluster size distribution from simulations (red) agreed with the experimental distribution (black) for

the cis-mutant (Figure 5D). The value of the characteristic cluster size in the experiment was ~29

E-cad, which is equal to the computational characteristic cluster size of ~29 E-cad, within experimen-

tal uncertainty. The on and off rates of the nonspecific interaction used to generate the distribution

in the simulation are 2 � 105 s�1 and 103 s�1, respectively (Supplementary file 1h). These on/off

rates correspond to the effective rate constants of konffi1.1 � 106 M�1s�1 and koffffi1 � 103 s�1,

based on the calculation developed in our previous studies (Wang et al., 2018). These rates corre-

spond to an effective binding affinity in the mM range, for nonspecific cis-interactions.

Subsequently, we carried out simulations in which the specific cis-interaction was turned on. Dif-

ferent combinations of on/off rates for the specific interaction were systematically tested, while the

rates of the nonspecific interactions were fixed at the values determined for the cis-mutant. The final

configuration from one of these simulations is shown in Figure 4D. Relative to the homogeneous

and compact clusters observed in the simulations associated with E-cad mutant, the clusters formed

when both nonspecific and specific cis-interactions were switched on exhibited extended (linear)

configurations. These one-dimensional linear clusters are derived from the polarized cis-binding

interface, which is inferred from the x-ray crystal structure of wild-type E-cad (Harrison et al., 2011).

Cluster size distributions associated with different combinations of on and off rates for specific inter-

actions are shown in Figure 5—figure supplement 2. Again, we identified an appropriate combina-

tion of specific cis on/off rates that resulted in a similar characteristic cluster size as was observed

experimentally for wild-type E-cad, as shown in Figure 5C. The value of the characteristic cluster size

for the experiment is ~33 E-cad, which is very similar to the computational value of ~34 E-cad from

simulations. The on and off rates of the specific interaction that were used to generate the distribu-

tion in the simulation are 108 s�1 and 102 s�1, respectively (Supplementary file 1h). These on/off

rates for the specific cis-interaction correspond to the effective rate constants of konffi2.7 � 106

M�1s�1 and koffffi1 � 102 s�1, and to a binding affinity of approximately 10 mM. Comparisons of the

specific and nonspecific interactions suggest that the specific cis-binding rate is slightly faster than

that of the nonspecific interaction, and the specific cis-interaction is stronger by approximately an

order of magnitude.

Finally, in addition to comparisons of cluster size distributions, association time distributions

extracted from the simulations were also calculated and qualitatively compared to the experimental

association time distributions discussed in the previous section. This ensured that the simulations

captured the experimental behavior. Figure 6 shows the comparison of experimental and simulated

association time distributions for mutant and wild-type E-cad. In both simulations and experimental

measurements, the association time of E-cad increases when in the presence of specific cis-interac-

tions (wild-type vs. cis-mutant), demonstrating qualitative consistency. We note that the dwell-time

distributions from simulations are not necessarily expected to agree quantitatively with experimental

measurements, due in part to the difference between the experimental acquisition time (50 ms) and

simulation time step (0.01 ns). Notably, the long-time asymptotic behavior of experimental and simu-

lated dwell times have similar behavior (i.e. the slopes of the distribution tails in Figure 6), indicating

that the simulations accurately capture the salient experimental behavior. Furthermore, experimental

phenomena such as desorption, photobleaching, and supported lipid bilayer defects and heteroge-

neity are not accounted for in the simulations and may limit quantitative comparisons of association

times. Overall, these simulation results are qualitatively consistent with longer-lived wild-type E-cad

interactions. This is due to specific cis-interactions, as well as to the potential interplay between non-

specific and specific interactions.

Discussion
An important advance of this research involves the development of a combined experimental and

theoretical framework that enables the quantification of lateral binding interactions between pro-

teins confined to fluid, 2D membrane bilayers. The single molecule FRET measurements revealed

that both specific and nonspecific cis-interactions contribute to wild-type E-cadherin clustering at a

physiologically relevant surface coverage. Complementary kMC simulations provided important

insights into the molecular events underlying the FRET distributions, and further extracted rate con-

stants for both specific and nonspecific lateral interactions between the cadherin extracellular
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domains. Moreover, these results successfully demonstrated directly that E-cadherin extracellular

domains associate through cis-interactions. Prior experimental data supported the role of specific

cis-interactions in the assembly of cadherin clusters, both at intercellular adhesions and on sup-

ported lipid bilayers at high surface densities (Harrison et al., 2011; Thompson et al., 2019). How-

ever, until recently, direct characterization of E-cad cis-interactions was not possible by traditional

methods, due to the weak binding affinity.

Notably, we find that both specific and nonspecific interactions control E-cad clustering on mem-

branes at high surface coverage, and that nonspecific interactions contribute to both mutant E-cad

and wild-type E-cad lateral interactions at surface concentrations below the surface coverage thresh-

old for cis-clustering. Although these nonspecific interactions are weaker than specific cis-interac-

tions, they are more frequent, and hence dominate at low concentrations. The conditions employed

in these measurements isolated the effects of specific and nonspecific interactions, and they enabled

quantitative comparisons with kMC simulations. For both the mutant and wild-type E-cadherin at

intermediate surface coverage, where the intermolecular interactions are primarily due to nonspe-

cific interactions, the high-FRET state corresponds to slower diffusion than the low-FRET state. The

latter behavior is a result of small, short lived, cluster formation, and was only observable due to the

ability to isolate high-FRET objects. However, if one were only able to compare the overall average

diffusion of all objects, then the slight decrease in the diffusion coefficient of mutant E-cad at high

concentration would not be observable, as previously reported (Thompson et al., 2019). We have

also shown that for wild-type E-cad, the combination of specific and nonspecific cis-interactions

results in the formation of clusters in the range of ~40 to ~160 E-cad, and for the mutant, nonspecific

cis-interactions result in an increasing probability of ~40 E-cad clusters. Cell studies have previously

reported the formation of clusters of comparable size, independent of trans-interactions. However,

we observe larger median cluster size values (Wu et al., 2015). This discrepancy could be explained

by differences in membrane viscosity, E-cad surface coverage, and/or the dynamic range of cluster

size determination techniques.

It was necessary to include both nonspecific and specific interactions in the kMC simulations, in

order to accurately reproduce the experimental cluster size distributions. This agreement confirmed

the interpretation of the single-molecule FRET data. The rate constants associated with each of

these distinct lateral interactions further show that, despite the 10-fold slower dissociation rate of

specific cis-bonds, the nonspecific interactions must be taken into account.

The influence of nonspecific interactions on mutant E-cad has not previously been reported.

Indeed, it was necessary to combine highly sensitive single-molecule FRET with computational simu-

lations, and to explicitly compare wild-type and cis-mutant E-cad, in order to characterize these

weak interactions. Moreover, as these results demonstrate, nonspecific interactions are dynamic and

short lived, and would not likely be detected by alternative methods, such as ensemble averaged

FRET or photon counting (Biswas et al., 2015; Zhang et al., 2009). Although nonspecific steric

(repulsive) interactions have been invoked to account for membrane protein organization

(Albersdörfer et al., 1997; Paszek et al., 2014; Qi et al., 2001; Schmid et al., 2016), the potential

significance of nonspecific attractive interactions was not fully appreciated prior to this study.

E-cadherin represents a special, and particularly demanding test case for characterizing lateral

protein interactions tethered to lipid bilayers, because the cis-bonds have very low affinity and are

not detectable in solution. This combination of single molecule FRET and kMC simulations can be

extended to other proteins such as nectins that likely interact through higher affinity cis-bonds

(Rikitake et al., 2012). Although there are approaches for quantifying the 2D trans- (adhesive) affini-

ties and binding rates of membrane receptors, until now, few measurements were able to quantify

lateral binding affinities (Chen et al., 2010; Chesla et al., 1998; Chien et al., 2008;

Sarabipour et al., 2015; Wu et al., 2008; Zhu et al., 2007), and there are no prior reports of mea-

sured off rates. Interestingly, theoretical models of cadherin binding predict cooperativity between

trans-binding between opposing cadherins and cis-interactions (Wu et al., 2010). The approach

described in this study lays the groundwork for directly testing that hypothesis, by comparing cis-

binding rates, for example, between cadherins on free membranes versus within adhesion zones.

These findings provided new insights regarding the physical interactions underlying E-cadherin

clustering. They also raise the possibility that nonspecific interactions could similarly influence the

oligomerization of other membrane proteins. Conversely, the methods described in this study also
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open the possibility of quantifying the impact of other factors such as crowding, confinement, or

even membrane topography on protein interactions.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Cell line (human) HEK293T ATCC, Dr. Keith Johnson,
University of Nebraska,
Lincoln

CRL-3216
(RRID:CVCL_0063)

authenticated using STR-PCR and
tested negative for mycoplasma

Transfected construct
(human)

CEP 4.2 plasmid Dr. Lawrence Shapiro,
Columbia University

Encoding hexahistidine-tagged
wild-type E-cad and L175D mutant

Commercial assay or kit Alexa Fluor 555
NHS-ester antibody
labelling kit

Invitrogen A20187 Labeling E-cad

Commercial assay or kit Alexa Fluor 647
NHS-ester antibody
labelling kit

Invitrogen A20186 Labeling E-cad

Chemical compound, drug DOPC Sigma-Aldrich P6354

Chemical compound, drug DGS-NTA(Ni) Avanti Polar Lipids 790404

Chemical compound, drug DOPE-LR Avanti Polar Lipids 810150

Software, algorithm Custom Matlab-based
software

10.1021/acsmacrolett.8b00004;
10.1021/acsnano.8b02956;
10.1021/acs.jpclett.9b00004

Image analysis

Software, algorithm simjFRAP 10.1038/srep11655 Image analysis

FRET sample preparation
CEP 4.2 plasmids encoding the hexahistidine-tagged wild-type E-cad and L175D mutant were

obtained from Dr. Lawrence Shapiro (Columbia University, NY). The Human Embryonic Kidney 293T

(HEK293T) cell line (authenticated using STR-PCR and tested negative for mycoplasma) was from Dr.

Keith Johnson (University of Nebraska, Lincoln), where they were purchased from the American Type

Culture Collection (Manassas, VA). Cells were cultured in Dulbecco’s Minimum Eagle Medium

(DMEM) containing 10% fetal bovine serum (FBS) (Life Technologies, Carlsbad, CA) under 5% CO2

atmosphere at 37˚C. Cell lines that stably expressed the soluble proteins were generated, by trans-

fecting HEK293T cells with the mutant construct, using Lipofectamine 2000 (Invitrogen, Grand Island,

NY) according to the manufacturer’s instructions.

HEK293T cell lines that stably expressed hexahistidine-tagged, soluble E-cadherin ectodomains

were selected with 200 mg/mL Hygromycin B (Invitrogen). Western blots of the culture medium con-

firmed protein expression by individual colonies. The colonies that expressed the highest levels of

soluble protein were pooled for further protein production. Secreted, hexahistidine-tagged cadherin

was then purified from filtered culture medium, by affinity chromatography with an Affigel NTA affin-

ity column, followed by ion-exchange chromatography (Aktapure). Protein purity was assessed by

SDS polyacrylamide gel electrophoresis, and the adhesive function was confirmed with bead aggre-

gation assays (Brieher et al., 1996).

Purified E-cad extracellular domains with C-terminal 6xHis tags were randomly labeled using an

Alexa Fluor 555 (AF555) NHS-ester antibody labeling kit, and both wild-type and L175D mutant

were labeled using an Alexa 647 (AF647) NHS-ester antibody labeling kit (succinimidyl ester; Invitro-

gen, Carlsbad, CA). Protein was reacted with the dye for 1 hr in buffer (25 mM HEPES, 100 mM

NaCl, 10 mM KCl, 2 mM CaCl2, 0.05 mM NiSO4, pH 8) at room temperature. Unreacted dye was

removed via spin column. Based on absorbance measurements, using extinction coefficients of

150,000 cm�1 M�1 for the AF555, 239,000 cm�1 M�1 for the AF647, and 59,860 cm�1 M�1 for the

protein, the labeling stoichiometry was ~1.3 for AF555 labeling of wild-type E-cad and ~2.3 and~1.3

for AF647 labeling of wild-type and mutant E-cad, respectively. A random labeling procedure was

selected over a site-specific labeling method so that interactions not necessarily involving the known
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cis-interaction interface would still be observed. Functionality of wild-type and mutant E-cad was

retained after labeling as indicated by bead aggregation assays (Brieher et al., 1996).

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Millipore Sigma (Burling-

ton, MA). 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel

salt) (DGS-NTA(Ni)) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B

sulfonyl) (ammonium salt) (DOPE-LR) were purchased from Avanti Polar Lipids (Alabaster, Alabama).

DOPC and DGS-NTA(Ni) were dissolved in chloroform in the molar ratio of 19:1 in a glass culture

tube. Following solvent evaporation under a stream of nitrogen, a thin film of lipids was formed on

the side of the tube. This lipid film was then hydrated with buffer so the total lipid concentration was

3 mM. This suspension was mixed via vortex and sonicated for 0.5 hr. The vesicles were then

extruded through a 50 nm filter membrane (Whatman, Maidstone, UK) 21 times to form unilamellar

vesicles with a homogeneous size distribution.

Glass coverslips (Fisher Scientific, Hampton, NH) and fused silica wafers (Mark Optics, Santa Ana,

CA) were cleaned with piranha solution for 2 hr and treated by UV-ozone for 0.25 hr. Following sur-

face treatment, the wafers were placed in a custom built flow cell that had been cleaned using

Micro-90 detergent solution (International Product Corp., Burlington, NJ). To form supported lipid

bilayers, a dispersion of unilamellar vesicles (3 mM total lipid concentration) was carefully injected

into the flow cell in order to avoid air bubble formation. Following a 1 hr incubation period, vesicles

spontaneously formed a fluid supported lipid bilayer via vesicle fusion (Cremer and Boxer, 1999;

Gizeli and Glad, 2004; Richter et al., 2006). Following formation, the bilayer was rinsed with buffer

to remove excess vesicles and incubated with 100 mM NiSO4 for 0.5 hr to ensure complete chelation

of DGS-NTA(Ni) lipids (Gizeli and Glad, 2004; Nye and Groves, 2008). The supported lipid bilayer

was then exchanged into buffer before injecting 300 mL of a protein buffer solution containing

AF555 labeled wild-type E-cad and either AF647 labeled wild-type E-cad and unlabeled wild-type

E-cad or AF647 labeled mutant E-cad and unlabeled mutant E-cad, permitting the binding of hexa-

histidine-tagged E-cad to the DGS-NTA lipids. In this configuration, the AF555 labeled E-cad served

as the FRET donor and the AF647 labeled E-cad served as the FRET acceptor. Two different total

wild-type E-cad solution concentrations of 3 � 10�7 M and 5 � 10�7 M and one total mutant E-cad

solution concentration of 5 � 10�7 M were studied. Supplementary file 1c summarizes the donor

and acceptor solution concentrations for the three conditions. The donor concentration was adjusted

to allow for single molecule resolution, and the acceptor concentration was optimized to allow for a

large number of FRET events, but an insignificant amount of direct excitation of the acceptor. The

resulting average donor surface density was ~0.003 E-cad/mm2 for all three experimental conditions.

Using the optimized donor and acceptor concentrations, donor bleed-through into the acceptor

channel and direct excitation of the acceptor were both determined to be insignificant by imaging

control samples containing either donor and unlabeled E-cad or acceptor and unlabeled E-cad and

checking for significant emission in the acceptor

channel. These control experiments indicated

that the FRET signal observed in samples with

both donor and acceptor represented physical

donor-acceptor interactions. The addition of

unlabeled E-cad was necessary in order to reach

a surface coverage high enough, such that signifi-

cant cluster formation had occurred

(Thompson et al., 2019). This resulted in a large

number of high-FRET events, indicated by an

acceptor intensity greater than that of the donor.

This high surface coverage could not be achieved

by only binding donor and acceptor E-cad to the

bilayer as this required an extremely high concen-

tration of acceptor, which would result in exces-

sive background emission in the acceptor channel

due to direct acceptor excitation by the donor

excitation source. All samples were imaged in 25

mM HEPES, 100 mM NaCl, 10 mM KCl, 2 mM

CaCl2, 0.05 mM NiSO4, pH eight buffer under

Video 1. High-coverage wild-type E-cad movie segment.

https://elifesciences.org/articles/59035#video1
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high calcium conditions. An oxygen scavenging system was deemed unnecessary by checking for

photo-induced complications in displacement distributions and association time distributions as a

function of imaging time (Figure 1—figure supplements 2–3).

Control experiments using DOPC/DGS-NTA bilayers without added E-cad and DOPC/DGS-NTA

bilayers containing a small fraction of DOPE-LR fluorescent probes were performed to characterize

bilayer contamination and lipid diffusion within the supported lipid bilayer, respectively. A low cover-

age control condition was also tested using wild-type E-cad, where the donor and acceptor concen-

trations used were the same as the mutant condition, but no unlabeled E-cad was added to confirm

that at higher coverage, the FRET signal represented surface coverage dependent interactions. The

resulting surface coverage was ~0.2 E-cad/mm2, and the apparent average dissociation rate constant

was 17.5 ± 0.6 s�1, nearly an order of magnitude faster than the average dissociation rate constants

seen for the high surface coverage conditions. Consistently, the high-FRET dwell times observed at

low coverage were drastically shorter than the dwell times observed at higher surface coverages

(Figure 3—figure supplement 1).

Single-molecule TIRFM FRET imaging
Imaging of the samples was accomplished using a custom-built prism-based TIRF microscope (Nikon

TE-2000 base, 60x water-immersion objective, Nikon, Melville, NY). Custom-built flow cells were

mounted on the microscope stage and a 532 nm 50 mW diode-pumped solid state laser (Samba,

Cobolt, Solna, Sweden) was used as an excitation source, incident through a hemispherical prism in

contact with the wafer on the top of the flow cell. This resulted in an exponentially decaying TIRF

field propagating into solution, selectively exciting donor fluorophores at the lipid bilayer-water

interface. Fluorescent emissions from the donor and acceptor were separated using an Optosplit III

beam splitter (Cairn Research, Faversham, UK) containing a dichroic mirror with a separation wave-

length of 610 nm (Chroma, Bellows Falls, VT). Fluorescence from the donor and acceptor were fur-

ther filtered using a 585/29 bandpass filter and 685/40 bandpass filter (Semrock, Rochester, NY),

respectively. The donor and acceptor channels were then projected onto different regions of an

Andor iXon3 888 EMCCD camera (Oxford Instruments, Abingdon, UK) maintained at �95˚C. An

acquisition time of 50 ms was used to capture 12 or 13 image sequences (i.e. movies) of each sam-

ple. Three movies were 5 min long and the remaining 9 or 10 movies were 3 min long (see Videos 1–

5 for raw movie segments). Additionally, to allow for accurate donor and acceptor colocalization,

the donor and acceptor channels were aligned using images of a glass slide that had been scratched

with sand paper, resulting in an irregular alignment image. The details of this image alignment pro-

cess are described previously (Faulón Marruecos et al., 2018). DOPE-LR lipid control experiments

were imaged using the same setup for E-cad FRET imaging, except the beam splitter was not neces-

sary and the field of view was allowed to photobleach until the number of DOPE-LR objects was con-

ducive for single-molecule tracking if necessary. Five movies, 5 min in length, were captured for

DOPE-LR control experiments using a 50 ms acquisition time.

Fluorescence recovery after photobleaching (FRAP)
DOPC unilamellar vesicles containing 0.5% DOPE-LR were prepared and used to form a supported

lipid bilayer as described previously. SLB incorporated DOPE-LR was bleached by illuminating a cir-

cular area of radius ~5 mm with a 532 nm 50 mW diode-pumped solid state laser (Samba, Cobolt,

Solna, Sweden) for 4.85 s. After bleaching, DOPE-LR was excited using an Intensilight C-HGFIE lamp

(Nikon, Melville, NY). Excitation and emission was separated and filtered using a 532/640 nm TIRF fil-

ter cube set (Chroma). The fluorescent emission of DOPE-LR was captured with a Hamamatsu

CMOS (ORCA-flash 4.0) camera at an acquisition time of 50 ms. Fluorescent recovery curves were

obtained using the ImageJ plug-in simFRAP (Blumenthal et al., 2015). Figure 1—figure supple-

ment 4 shows FRAP recovery snapshots and the FRAP recovery curve, indicating essentially com-

plete recovery and a mobile fraction greater than 0.95.

Image analysis
All single-molecule movie analysis was performed using custom Matlab-based software, where the

methods and algorithms for determining object positions and intensities and linking trajectories

have been described elsewhere (Faulón Marruecos et al., 2018; Kienle et al., 2018). The tracking
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software uses established algorithms for localiza-

tion and tracking, but allows for efficient, inte-

grated analyses of high throughput data, while

combining tracking and FRET methods. To briefly

summarize, objects that were detected in conse-

cutive frames that were within a user-defined

tracking radius (3 pixels or 1.29 mm, for this analy-

sis) were linked into trajectories that could be fur-

ther analyzed. Object identification was

determined using an automated thresholding

function that has been described previously

(Kienle and Schwartz, 2019). This automatic

thresholding software allowed for a user-defined

number of noise-objects per frame to be identi-

fied, as well as the use of a user-defined object

radius (0.05 and 1 pixel for this work, respec-

tively). All localized and tracked trajectories lon-

ger than two frames from Video 1 are shown as

Figure 1—figure supplement 5. Objects that

were identified within two pixels in separate

channels were identified as a donor-acceptor pair

undergoing FRET. A two pixel colocalization distance was selected to allow for potential colocaliza-

tion between observations with a large position uncertainty, while also allowing for registration error.

Figure 1—figure supplement 6 shows a histogram of position uncertainties for the high surface cov-

erage wild-type condition. As indicated by the distribution, most observations have a position uncer-

tainty well below one pixel (0.43 mm), however the tail of the distribution shows a number of

observations with a position uncertainty of approximately one pixel. Therefore, the colocalization

distance was set to two pixels and is only applicable when objects were observed within this distance

in both channels. Furthermore, the FRET maps (Figure 1—figure supplement 1) show two popula-

tion peaks, both centered around either zero donor intensity or zero acceptor intensity, indicating

that colocalization is rare and molecules either exhibit complete energy transfer or zero energy

transfer. If the colocalization distance of 2 pixels were too large, resulting in erroneous FRET pair

assignment, one would expect to see significant peaks centered around high acceptor and donor

intensities. The position of the FRET pair was determined using the object with the greatest signal-

to-noise ratio. The FRET state of each object at

Video 2. High-coverage mutant E-cad movie segment.

https://elifesciences.org/articles/59035#video2

Video 3. Intermediate-coverage wild-type E-cad movie

segment.

https://elifesciences.org/articles/59035#video3

Video 4. Low-coverage wild-type E-cad control movie

segment.

https://elifesciences.org/articles/59035#video4
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every frame was assigned using a method and

algorithm described elsewhere (Chaparro Sosa

et al., 2018). To summarize, two-dimensional

heat maps showing the donor intensity (ID) versus

acceptor intensity (IA) were constructed. It was

apparent that two populations were present at

high and low FRET efficiency (Figure 1—figure

supplement 1). A linear threshold dividing these

two populations was calculated by determining

the slope and intercept that minimized the inte-

grated heat map values along the dividing line

(Figure 1—figure supplement 1).

By imaging samples without labeled E-cad, it

was apparent that a small number of contami-

nants were present in the supported lipid bilayer

only in the donor channel. These contaminants

were generally bright and immobile. Further-

more, due to inherent defects in supported lipid

bilayers, a permanently immobile (or highly confined) population was observed in the donor channel

(Knight et al., 2010). Traditionally, a displacement-based trajectory filtering procedure or photo-

bleaching is applied to remove these slowly diffusing trajectories in lipid bilayer studies (Cai et al.,

2016; Chaparro Sosa et al., 2018; Chung et al., 2016; Knight and Falke, 2009; Knight et al.,

2010; Ziemba and Falke, 2013). However, we opted to instead use a median donor intensity trajec-

tory exclusion criterion, as this removed many bright contaminants, donor aggregates, and donor

E-cad labeled with multiple fluorophores, but did not accidentally remove slowly diffusing E-cad

clusters. A 60th percentile median donor intensity maximum cutoff was selected as this was deter-

mined to include single donor E-cad with one fluorophore, while excluding many anomalous trajec-

tories, described above, that were represented by the tail of the median donor intensity

distributions (Figure 1—figure supplement 7). Intensity-based filtering criteria are frequently used

in single-molecule analysis (Knight and Falke, 2009; Knight et al., 2010). Not using a displace-

ment-based filtering procedure allowed the observation of diffusion over an extremely large

dynamic range, which was important here to observe both large clusters and monomers. However,

this results in lower than expected average diffusion coefficients, as a small number of apparently

immobile trajectories will bypass the intensity exclusion. Because of this, we focus on relative differ-

ences in diffusion and do not base any major scientific conclusions on the absolute values of the

average diffusion coefficients. To show that our bilayers do in fact exhibit diffusion consistent with

previous reports, we have included a short-time diffusion analysis using a displacement-based trajec-

tory filtering procedure (Figure 2—figure supplement 2). When this more conventional filtering pro-

cedure is applied, we measure average short-time diffusion coefficients within the range seen for

supported lipid bilayers for both E-cad and lipids in the bilayer (Rose et al., 2015).

For short-time diffusion coefficient determination, only trajectories with a total surface residence

time of at least 0.71 s were included, to allow for significant statistical analysis. This surface residence

time minimum of 0.71 s was not required for the dissociation rate estimations. Therefore, all trajecto-

ries longer than 0.1 s (two frames) were included. Also, trajectories that were observed in the first or

last frame were excluded from dwell time and surface residence time analyses to avoid misestimat-

ing the time spent in a given state. Lastly, trajectories that lasted longer than 1000 frames were

assumed to be contaminants and were removed.

Surface coverage estimation
The surface coverage in terms of # of E-cad/mm2 was estimated according to:

�¼
nDþ nA� nD;AC

RDAD

(1)

where � is the surface coverage in terms of # of E-cad/mm2, nD is the number of fluorescent mole-

cules in the donor channel, nA is the number of fluorescent molecules in the donor channel, nD;AC is

Video 5. Lipid tracer control movie segment.

https://elifesciences.org/articles/59035#video5
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the apparent number of fluorescent molecules in the donor channel for an acceptor control sample

that did not contain any donor labeled E-cad, AD is the area of the donor channel, and RD is the ratio

of donor-labeled protein to total protein. Subtracting the apparent number of fluorescent molecules

in the donor channel for a sample without any donor labeled E-cad allowed for the exclusion of con-

tamination in the donor channel, as well as any fluorescence in the donor channel from direct excita-

tion of the acceptor. This estimate assumes a one-to-one transfer of energy from donor to acceptor,

complete transfer of energy from donor to acceptor, minimal apparent objects in the acceptor chan-

nel that were not actually FRET acceptors, and that labeled and unlabeled E-cad are equally capable

of binding to the bilayer. These assumptions were appropriate for these experiments, primarily

because the number of objects in the donor channel was much greater than the number of objects

in the acceptor channel and because intermediate FRET-states were not significant. Even so, the

resulting surface coverage values should be treated as estimates. The fractional surface coverage

was averaged over only the first ten frames of each movie to minimize the underestimation of sur-

face coverage due to photobleaching. To further improve estimates, only objects that were tracked

for three frames or more were included in surface coverage calculations. This greatly reduced the

inclusion of false noise objects that were observed only for one or two frames. These surface cover-

age values were converted to a fractional areal surface coverage by multiplying by the cross-sec-

tional area of an E-cad extracellular domain, ~9 nm2, assuming the proteins were in an extended

conformation due to the presence of calcium (Lambert et al., 2005; Nagar et al., 1996). Surface

coverage estimates are included in Supplementary file 1d, both in terms of # of E-cad/mm2 and

fractional surface coverage by area, for the three protein solution conditions.

Average short-time diffusion coefficient determination
All molecular displacements between consecutive frames were separated based on FRET state, and

complementary cumulative squared displacement distributions were calculated using histograms of

all squared displacements in each of the two states (high and low FRET efficiency), where the

squared displacement was defined as the square of the Euclidean distance traveled from frame to

frame. Additional distributions were constructed using all molecular displacements from both FRET-

states. These distributions were then fitted to a Gaussian mixture model:

P R2 � r2;Dt
� �

¼
X

M

i¼1

cie
�r2=4DtDi (2)

where r is the Euclidean displacement between frames, Dt is the time between frames (0.05 s), ci is

the fraction of displacements fitted by the ith Gaussian term, Di is the diffusion coefficient for the ith

term, and M is the number of terms included in the model. These data were satisfactorily modeled

by M ¼ 3 based upon residual analysis. A three-term Gaussian mixture model was selected because

the ability of this model to serve as a robust fitting function to extract an accurate average short-

time diffusion coefficient under all conditions, and interpretation of the three diffusive states is

strictly avoided. Using the Gaussian mixture model parameters determined from nonlinear fitting, an

average short-time diffusion coefficient (Dshort) was calculated for both FRET-states and overall:

Dshort

X

M

i¼1

ciDi (3)

where Dshort represented the average diffusion coefficient on the shortest experimentally accessible

time-scale.

Surface residence time distributions
Complementary cumulative residence time (observation time) distributions were constructed for

both the high and low-FRET states by separating all trajectories into high-FRET and low-FRET trajec-

tories, where a high-FRET trajectory was defined as any trajectory where the molecule was in the

high-FRET state for at least one frame. After trajectory classification, the fraction of molecules that

remained on the bilayer a given time after their initial observation (ts) was calculated for both high-

FRET and low-FRET trajectories. Figure 3—figure supplement 2 shows the resulting complementary

cumulative surface residence time distributions for the mutant and two wild-type conditions.
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FRET-state dwell time distributions and transition rate determination
Complementary cumulative dwell time distributions were calculated for the two FRET states, corre-

sponding to high and low FRET efficiency, where the apparent dwell time (t) was defined as the

number of consecutive frames a trajectory spent in a given state multiplied by the acquisition time,

where the FRET state was determined as described above (Figure 3—figure supplement 5 and Fig-

ure 3—figure supplement 1). For these distributions, all dwell times were used, not only dwell times

bounded by transitions.

Furthermore, E-cad interactions were modeled using a 3-state Markov model that has been previ-

ously used to model protein conformation changes (Kienle et al., 2018). To summarize, this model

allowed for three states: high-FRET, low-FRET, or off. Therefore, the transition probability matrix

had the form:

TR¼

1� pLH � poff pLH poff

pHL 1� pHL � poff poff

0 0 1

2

6

4

3

7

5
(4)

Where pLH , pHL, and poff are the probabilities for a transition from the low-FRET state to the high-

FRET state, from the high-FRET state to the low-FRET state, and for a trajectory to terminate via

photobleaching or desorption, respectively. The value of poff was determined independently by fit-

ting the surface residence times to an exponential distribution. In order to determine the transition

probabilities, a maximum likelihood estimate was used based on all trajectory FRET state sequences

(assigned as described above). To describe the heterogeneity in these transition probabilities, a like-

lihood function was defined to allow for beta-distributed transition probabilities. The resulting likeli-

hood function was:

LF SjaLH ;bLH ;aHL;bHLð Þ

¼
Y

k

B aLH þNLH;k;bLH þNLL;k

� �

B aHLþNHL;k;bHLþNHH;k

� �

B aLH ;bLHð ÞB aHL;bHLð Þ
p
Noff ;k

off 1� poff
� �NLL;kþNLH;kþNHH;kþNHL;k

� �

(5)

Where S is the sequence of observed FRET states for the kth trajectory, B is the beta function,

and NHL;k, NLH;k, NHH;k, Noff ;k, and are the number of times within the kth trajectory the molecule tran-

sitions from the high-FRET state to the low-FRET state, transitions from low-FRET state to the high-

FRET state, remains in the low-FRET state, remains in the high-FRET state, and ends, respectively.

The model is parameterized by aLH , bLH , aHL, and bHL, which are the parameters defining the beta

distribution of pLH and pHL, respectively. The log of this likelihood function was maximized by itera-

tively changing the parameters defining the beta distributions describing the transition probabilities

between the high and low-FRET states. The average transition rates were then estimated by:

rLH ¼�  bLHð Þ� aLH þ bLHð Þð Þ=Dt (6)

rHL ¼�  bHLð Þ� aHLþ bHLð Þð Þ=Dt (7)

where Dt is the experimental acquisition time,  is the digamma function, and rLH and rHL are the

average transition rates from the low-FRET state to the high-FRET state and from the high-FRET

state to the low-FRET state, respectively. Additionally, for transition from the high-FRET state to the

low-FRET state, the average transition rate is equivalent to the average dissociation rate constant

(kd), since dissociation is a unimolecular reaction. This is not the case for transition from the low-

FRET state to the high-FRET state. Resulting beta distributions of state transition probabilities are

shown as Figure 3—figure supplement 6, and the corresponding probability density functions for

state transition rates are shown as Figure 3—figure supplement 4. The values of the average transi-

tion rates are included in Supplementary file 1e. After determining the most likely beta distribution

parameters for the transition probabilities, trajectories were simulated using these transition proba-

bility distributions and complementary cumulative dwell time distributions were constructed after

truncating the simulated trajectories by sampling from the experimental trajectory surface residence

time distributions. These theoretical dwell time distributions were compared to the experimental dis-

tributions to check for model consistency (Figure 3—figure supplement 3).
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Single-molecule TIRFM cluster size distributions
In order to calculate E-cad cluster size distributions, raw trajectory friction factor data were adapted

from Thompson, et al. and subjected to further analysis (Thompson et al., 2019). Mobility was

selected as a means to infer cluster sizes as this allows determination of cluster sizes over a large

dynamic range (i.e. greater than two orders of magnitude in diffusion coefficients). Briefly describing

the methods used to generate these raw friction factor data: TIRFM was used to observe single

AF555 labeled E-cad molecules diffusing on DOPC supported lipid bilayers containing 5% DGS-NTA

(Ni) as a function of increasing E-cad surface coverage. Single molecule trajectories were extracted

and an effective diffusion coefficient (DT ) was calculated for each trajectory according to:

DT ¼
1

4T

X

T

i¼1

xi� xi�1ð Þ2 þ yi� yi�1ð Þ2
h i

(8)

where T is the duration of the trajectory and xi and yi are the Cartesian position coordinates of the

trajectory after time i. The effective diffusion coefficient was then related to the trajectory friction

factor (f) by the Einstein relation (Edward, 1970):

f

kBT
¼

1

DT

(9)

where kB is the Boltzmann constant, T is temperature, and DT is the effective diffusion coefficient for

a single trajectory. For a more detailed explanation of experimental methods or trajectory friction

factor calculations, see Thompson et al., 2019.

Considering that mutant E-cad tethered to the bilayer diffuses the same as a single lipid at all sur-

face coverages (Figure 5—figure supplement 3 and Thompson et al., 2019), we can extract the

effective size of E-cad clusters assuming additive friction factor contributions from each E-cad mole-

cule in the cluster (Cai et al., 2016; Knight et al., 2010; Thompson et al., 2019; Ziemba and Falke,

2013). The apparent trajectory friction factor, f, can be expanded as:

f ¼
X

N

i¼1

fi (10)

where fi is the friction factor contribution due to each E-cad molecule in the cluster and N is the

number of protein molecules in the cluster. The friction factor contribution of each protein in the

cluster is equal to the friction factor of a lipid in the free-draining limit, assuming bound lipids are

well separated and each E-cad molecule tightly binds a single lipid and has minimal contact with

additional lipids, all of which are generally true for this system after filtering trajectories

(Knight et al., 2010). The lipid separation distance for this system should be equal to the diameter

of an E-cad extracellular domain, which is approximately 3.4 nm (Lambert et al., 2005; Nagar et al.,

1996). This separation distance is large enough to assume lipid motion is not correlated

(Knight et al., 2010). Therefore, the trajectory friction factor becomes:

f ¼NfL (11)

Where fL is the friction factor of an individual lipid. The friction factor of a lipid can be extracted

from E-cad trajectory friction factor distributions recognizing that the large peak in the low friction

factor limit corresponds to E-cad monomer diffusion. It was determined that fL = 0.5 s/mm2 corre-

sponded to the friction factor of a lipid (Figure 5—figure supplement 4). The apparent cluster size

was calculated for each trajectory, and a probability distribution was constructed for each experi-

mental condition.

Ensemble-time-averaged mean squared displacement
The E-cad trajectory data adapted from Thompson, et al. mentioned above was further compared

to trajectory data for fluorescent lipid tracers also from Thompson, et al. to corroborate the claim

that E-cad is monovalently bound to a single lipid (Thompson et al., 2019). This was done by com-

paring ensemble-time-averaged mean squared displacement curves between wild-type and mutant

E-cad and a lipid in the bilayer. Ensemble-time-averaged mean squared displacement calculation
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and fitting for E-cad has been described previously (Thompson et al., 2019). Using the raw lipid tra-

jectory data, the ensemble-time-averaged mean squared displacement ( d2 t ; Tð Þ

 �

) was calculated as

a function of lag time, t, according to :

d
2
t ;Tð Þ


 �

¼
1

N

X

N

i¼1

Dt

T � t

X

T�t

Dt

n¼0

xi;nDtþt

� xi;nDt
� �2

þ yi;nDtþt

� yi;nDt
� �2

h i

(12)

where N is the number of trajectories, xi;t and yi;t represent the Cartesian position coordinates after

time t ; Dt, is the time between frames (0.06 s), T is the duration of the trajectory, and d
2
t ;Tð Þ is the

time-averaged mean squared displacement of a single trajectory. Only trajectories longer than six

frames (0.36 s) were used in mean squared displacement (MSD) calculations and trajectories were

truncated at six frames for d
2
t ;Tð Þ


 �

calculations. Additionally, d
2
t ;Tð Þ


 �

was only evaluated for lag

times where t�t

Dt
was greater than three frames. The d

2
t ;Tð Þ


 �

lipid curve was then fitted to the Brow-

nian diffusion model (Meroz and Sokolov, 2015):

d
2
t ;Tð Þ


 �

¼ 4DTAt (13)

where DTA represents the time-averaged diffusion coefficient. Figure 5—figure supplement 3

shows d
2
t ;Tð Þ


 �

comparisons between wild-type and mutant E-cad at high, intermediate, and low

surface coverage values and the resulting values of DTA, confirming that E-cad is monovalently

bound to a single lipid.

kMC simulations
Construction of a domain-based coarse-grained model
Considering the E-cad extracellular regions consisting of five domains (EC1-EC5) (Harrison et al.,

2011), we constructed a domain-based coarse-grained model to describe the structural arrange-

ment of E-cad proteins. Each E-cad extracellular domain is coarse-grained into a rigid body with a

radius of 1.5 nm, and the rigid bodies are spatially aligned into a rod-like shape (Figure 4A). These

E-cad extracellular domains are further distributed on the plasma membrane, which is represented

by the bottom surface of a three-dimensional simulation box. The space above the plasma mem-

brane represents the extracellular region. The extracellular regions of E-cad can form clusters

through cis-interactions. Two different types of cis-interactions are considered in the model. The first

is the polarized interactions that were observed in the crystal structure. To implement this interac-

tion, we assigned a cis-donor site (purple dots) on the surface of each E-cad N-terminal domain, so

that it can bind to a cis-acceptor (red dots) site on the other E-cad. As a result, two adjacent E-cad

proteins can be laterally connected through these specific cis-binding interfaces (Figure 4A). In addi-

tion to the polarized specific interaction, a nonspecific interaction between two E-cads was also con-

sidered in the simulation system. As shown in the figure, this interaction can be formed by any pair

of two E-cad within a certain distance cutoff. Therefore, it is non-polarized.

Implementation of the kMC simulation algorithm
Given the surface density of E-cad, an initial configuration is constructed by randomly distributing

molecules on the plasma membrane, as shown in Figure 4B. Starting from this initial configuration,

simulation of the dynamic system is then guided by a kinetic Monte-Carlo algorithm. The algorithm

follows a standard diffusion-reaction protocol, as we developed earlier (Xie et al., 2014a). Within

each simulation time step, stochastic diffusions are first selected for randomly selected E-cad mole-

cules. Translational and rotational movements of the molecules are confined on the surface at the

bottom of the simulation box. The amplitude of these movements within each simulation step is

determined by the diffusion coefficients of E-cad on a membrane surface. Periodic boundary condi-

tions are implemented such that any E-cad that passes through one side of the cell surface reap-

pears on the opposite side.

In conjunction with diffusion, the reaction associated with nonspecific and specific interactions is

triggered stochastically if the binding criteria are satisfied between two E-cad molecules. The spe-

cific cis-interactions are triggered by two criteria: (1) the distance between a cis-donor site and a cis-
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acceptor site of two molecules is below 1.2 nm cutoff (bond length), and (2) the orientation angles

between two monomers are less than 30˚, relative to the original configuration of the native E-cad

dimer. Nonspecific interactions are triggered by one criterion: the distance between the center of

mass of EC1 domains of two E-cad molecules is below 3.2 nm cutoff.

The probability of association is directly calculated by multiplying the on rate of the reaction with

the length of the simulation time step. At the same time, dissociations are triggered for any ran-

domly selected interaction with the probability that is calculated by multiplying the off rate of the

corresponding reaction with the length of the simulation time step. If an E-cad molecule or E-cad

cluster binds to another E-cad, or E-cad cluster through specific or nonspecific binding, they connect

and move together subsequently on the surface of the plasma membrane. Finally, the above proce-

dure is iterated until the system evolves into equilibrium patterns in both configurational and compo-

sitional spaces.

Parameter determination in the coarse-grained simulations
The basic simulation parameters, including time step and binding criteria, were adopted from our

previous work (Wang et al., 2018). The values of these parameters were determined based on

benchmark tests in order to optimize the balance between simulation accuracy and computational

efficiency. The two-dimensional translational diffusion constant of a single E-cad protein on a lipid

bilayer is taken as 10 mm2/s and the rotational coefficient as 1˚ per ns. The values of these parame-

ters were derived from our previous all-atom molecular dynamic simulation results for the diffusions

of a cell-surface protein on the lipid bilayer (Xie et al., 2014b).

The reaction parameters, including the on and off rates of binding, were chosen from the range

that is typical for protein-protein interactions, but at the same time make the simulations computa-

tionally accessible. As shown in the next section, the on rates for nonspecific and specific interactions

are chosen from the range 108 s�1 and 104 s�1, corresponding to effective rate constants ranging

from 104 M�1s�1 to 108 M�1s�1. This is a typical range for diffusion-limited rate constants, in which

association is guided by complementary electrostatic surfaces at binding interfaces (Zhou and

Bates, 2013). A wide range of off rates, from 104 s�1 and 10 s�1, are used to model dissociation of

both specific and nonspecific cis-interactions. Therefore, our tests cover the wide range of dissocia-

tion constants from milliMolar (mM) to nanoMolar (nM), which is within the typical range for binding

of cadherin or other membrane receptors on cell surfaces.

Sensitivity analysis
To evaluate the sensitivity of different parameters on E-cad clustering, we first performed kMC simu-

lations at different E-cad concentrations (Supplementary file 1f). In order to exclude other factors,

the on rate and off rates were fixed for nonspecific interactions at 2 � 10�5 s�1 and 103 s�1, respec-

tively, for both mutant and wild-type systems, and the on rate and off rate for specific interactions

were fixed at 108 s�1 and 102 s�1, respectively, for wild-type systems. To build up the initial struc-

ture, we assign positions and orientations to 50, 100, 200 E-cad molecules on the membrane surface.

The length of each side of the square plasma membrane surface is 400 nm, along both X and Y

directions, which gives a total area of 0.16 mm2, leading to surface densities of 313 E-cad/mm2, 625

E-cad/mm2, 1,250 E-cad/mm2, respectively. At each concentration, we employed 50 independent

replica simulations with random initial seeds. The simulations were extended to 0.8–1.3 s until the

average cluster size reached equilibrium, and the final frames of trajectories were used for cluster

size analysis. Figure 5—figure supplement 5 shows resulting cluster size distributions at different

concentrations. The solid lines represent one-term exponential fitting for each concentration. For

comparison between experimental and simulated characteristic cluster size values, fitting was per-

formed after removal of the data point corresponding to the bin at the smallest cluster size. The pos-

itive values of fitted characteristic cluster size (negative slope on semi-logarithmic plot), suggest that

small cluster sizes are more favorable than large cluster sizes across the concentration range of 313

E-cad/mm2 to 1,250 E-cad/mm2. Meanwhile, our results show that large cluster sizes become more

populated at higher E-cad concentration for both mutant and wild-type E-cad. This is consistent with

experimental results showing that the characteristic cluster size increases with elevating E-cad con-

centration. Specifically, the characteristic cluster size for the cluster size distribution at 1,250 E-cad/m

m2 is ~29 E-cad, which is nearly the same for the experimental distribution at a concentration of
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1,280 E-cad/mm2 (~29 E-cad). These results indicate the robustness of our kMC simulation, suggest-

ing that the clustering configuration generated from the model is sensitive to the total surface cover-

age of E-cad.

In order to further explore the sensitivity of the model to different binding parameters, we per-

formed smaller kMC simulations involving various on- and off- rates of binding (Supplementary file

1g). To fix the surface density at 1,250 E-cad/mm2 and accelerate computing speed, we assigned

only 50 E-cad molecules on a 100 � 100 nm2 membrane surface. For nonspecific interactions in

mutant systems, the on rate values tested were 2 � 106 s�1, 2 � 105 s�1, and 2 � 104 s�1, while the

off rate values tested were 104 s�1, 103 s�1, and 102 s�1. For specific interactions in wild-type sys-

tems, the on rate values tested were 108 s�1, 107 s�1, and 106 s�1, and the off rate values tested

were 103 s�1, 102 s�1, and 10 s�1, respectively. Simulations were carried out for all different combi-

nations of on/off rates in the mutant system. At each on/off rate, we employed 10 or 20 independent

runs with random initial seeds. The simulations were extended to 2 to 4 s, and the final 1 s trajecto-

ries were used for cluster size analysis. Figure 5—figure supplement 1 shows the effects of on/off

rate on mutant E-cad cluster size distributions. In each panel, the solid red line represents a single

exponential fit, and the values of the characteristic cluster sizes are shown in red. The panels with dif-

ferent on/off ratios have distinct characteristic cluster sizes, while the panels with the same on/off

ratio (same binding affinity) have approximately the same characteristic cluster sizes. By comparing

simulated and experimental characteristic cluster size values for the mutant, appropriate candidates

of nonspecific on/off rates were identified. The optimum nonspecific on and off rates were 2 � 105

s�1 and 103 s�1, respectively. Using these nonspecific on/off rates, the wild-type system was simu-

lated using all combinations of specific interaction on/off rates described above. Similarly, Figure 5—

figure supplement 2 shows the effects of specific interaction on/off rates on wild-type E-cad cluster

size distributions. In each panel, the solid red line represents the single exponential fit, and the char-

acteristic cluster size value is shown in red. The panels with different on/off rate ratios have distinct

characteristic cluster sizes. Finally, analysis of simulated association time distributions can be utilized

to select the best candidate from the combinations of specific on/off rates with the same ratio by

comparing association time distributions for simulated and experimental trajectories. The selected

on/off rates for nonspecific and specific interactions were the only combination of rates that resulted

in qualitative agreement between simulated and experimental association time distributions.

Acknowledgements
This work was supported by the National Institute of General Medical Sciences of the National Insti-

tutes of Health under award number 1R01GM117104.

Additional information

Funding

Funder Grant reference number Author

National Institute of General
Medical Sciences

1R01GM117104 Connor J Thompson
Zhaoqian Su
Vinh H Vu
Yinghao Wu
Deborah E Leckband
Daniel K Schwartz

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Connor J Thompson, Zhaoqian Su, Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Writing - original draft, Writing - review and editing; Vinh H Vu, Resources; Yinghao

Wu, Deborah E Leckband, Daniel K Schwartz, Conceptualization, Formal analysis, Supervision, Fund-

ing acquisition, Investigation, Methodology, Writing - review and editing

Thompson et al. eLife 2020;9:e59035. DOI: https://doi.org/10.7554/eLife.59035 24 of 28

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.59035


Author ORCIDs

Connor J Thompson https://orcid.org/0000-0001-6226-7171

Zhaoqian Su http://orcid.org/0000-0002-8369-0697

Yinghao Wu http://orcid.org/0000-0003-1181-5670

Daniel K Schwartz https://orcid.org/0000-0001-5397-7200

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.59035.sa1

Author response https://doi.org/10.7554/eLife.59035.sa2

Additional files
Supplementary files
. Supplementary file 1. Additional tables showing experimental parameters, simulation parameters,

and sample size values.

. Transparent reporting form

Data availability

All data generated or analyzed in this work are included in the main text, figure supplements, and

Supplementary File 1.

References
Albersdörfer A, Feder T, Sackmann E. 1997. Adhesion-induced domain formation by interplay of long-range
repulsion and short-range attraction force: a model membrane study. Biophysical Journal 73:245–257.
DOI: https://doi.org/10.1016/S0006-3495(97)78065-2, PMID: 9199789

Biswas KH, Hartman KL, Yu CH, Harrison OJ, Song H, Smith AW, Huang WY, Lin WC, Guo Z, Padmanabhan A,
Troyanovsky SM, Dustin ML, Shapiro L, Honig B, Zaidel-Bar R, Groves JT. 2015. E-cadherin junction formation
involves an active kinetic nucleation process. PNAS 112:10932–10937. DOI: https://doi.org/10.1073/pnas.
1513775112, PMID: 26290581

Blumenthal D, Goldstien L, Edidin M, Gheber LA. 2015. Universal approach to FRAP analysis of arbitrary
bleaching patterns. Scientific Reports 5:11655. DOI: https://doi.org/10.1038/srep11655, PMID: 26108191

Brieher WM, Yap AS, Gumbiner BM. 1996. Lateral dimerization is required for the homophilic binding activity of
C-cadherin. The Journal of Cell Biology 135:487–496. DOI: https://doi.org/10.1083/jcb.135.2.487, PMID:
8896604

Cai Y, Shashikanth N, Leckband DE, Schwartz DK. 2016. Cadherin diffusion in supported lipid bilayers exhibits
Calcium-Dependent dynamic heterogeneity. Biophysical Journal 111:2658–2665. DOI: https://doi.org/10.1016/
j.bpj.2016.10.037, PMID: 28002742

Chaparro Sosa AF, Kienle DF, Falatach RM, Flanagan J, Kaar JL, Schwartz DK. 2018. Stabilization of immobilized
enzymes via the Chaperone-Like activity of mixed lipid bilayers. ACS Applied Materials & Interfaces 10:19504–
19513. DOI: https://doi.org/10.1021/acsami.8b05523, PMID: 29767959

Chaparro Sosa AF, Black KJ, Kienle DF, Kaar JL, Schwartz DK. 2020. Engineering the composition of
heterogeneous lipid bilayers to stabilize tethered enzymes. Advanced Materials Interfaces 87:2000533.
DOI: https://doi.org/10.1002/admi.202000533

Chen L, Novicky L, Merzlyakov M, Hristov T, Hristova K. 2010. Measuring the energetics of membrane protein
dimerization in mammalian membranes. Journal of the American Chemical Society 132:3628–3635.
DOI: https://doi.org/10.1021/ja910692u, PMID: 20158179

Chesla SE, Selvaraj P, Zhu C. 1998. Measuring two-dimensional receptor-ligand binding kinetics by micropipette.
Biophysical Journal 75:1553–1572. DOI: https://doi.org/10.1016/S0006-3495(98)74074-3, PMID: 9726957

Chien YH, Jiang N, Li F, Zhang F, Zhu C, Leckband D. 2008. Two stage cadherin kinetics require multiple
extracellular domains but not the cytoplasmic region. Journal of Biological Chemistry 283:1848–1856.
DOI: https://doi.org/10.1074/jbc.M708044200, PMID: 17999960

Chung JK, Lee YK, Lam HY, Groves JT. 2016. Covalent ras dimerization on membrane surfaces through
photosensitized oxidation. Journal of the American Chemical Society 138:1800–1803. DOI: https://doi.org/10.
1021/jacs.5b12648, PMID: 26812279

Cremer PS, Boxer SG. 1999. Formation and spreading of lipid bilayers on planar glass supports. The Journal of
Physical Chemistry B 103:2554–2559. DOI: https://doi.org/10.1021/jp983996x

du Roure O, Buguin A, Feracci H, Silberzan P. 2006. Homophilic interactions between cadherin fragments at the
single molecule level: an AFM study. Langmuir 22:4680–4684. DOI: https://doi.org/10.1021/la0531852,
PMID: 16649782

Thompson et al. eLife 2020;9:e59035. DOI: https://doi.org/10.7554/eLife.59035 25 of 28

Research article Structural Biology and Molecular Biophysics

https://orcid.org/0000-0001-6226-7171
http://orcid.org/0000-0002-8369-0697
http://orcid.org/0000-0003-1181-5670
https://orcid.org/0000-0001-5397-7200
https://doi.org/10.7554/eLife.59035.sa1
https://doi.org/10.7554/eLife.59035.sa2
https://doi.org/10.1016/S0006-3495(97)78065-2
http://www.ncbi.nlm.nih.gov/pubmed/9199789
https://doi.org/10.1073/pnas.1513775112
https://doi.org/10.1073/pnas.1513775112
http://www.ncbi.nlm.nih.gov/pubmed/26290581
https://doi.org/10.1038/srep11655
http://www.ncbi.nlm.nih.gov/pubmed/26108191
https://doi.org/10.1083/jcb.135.2.487
http://www.ncbi.nlm.nih.gov/pubmed/8896604
https://doi.org/10.1016/j.bpj.2016.10.037
https://doi.org/10.1016/j.bpj.2016.10.037
http://www.ncbi.nlm.nih.gov/pubmed/28002742
https://doi.org/10.1021/acsami.8b05523
http://www.ncbi.nlm.nih.gov/pubmed/29767959
https://doi.org/10.1002/admi.202000533
https://doi.org/10.1021/ja910692u
http://www.ncbi.nlm.nih.gov/pubmed/20158179
https://doi.org/10.1016/S0006-3495(98)74074-3
http://www.ncbi.nlm.nih.gov/pubmed/9726957
https://doi.org/10.1074/jbc.M708044200
http://www.ncbi.nlm.nih.gov/pubmed/17999960
https://doi.org/10.1021/jacs.5b12648
https://doi.org/10.1021/jacs.5b12648
http://www.ncbi.nlm.nih.gov/pubmed/26812279
https://doi.org/10.1021/jp983996x
https://doi.org/10.1021/la0531852
http://www.ncbi.nlm.nih.gov/pubmed/16649782
https://doi.org/10.7554/eLife.59035


Edward JT. 1970. Molecular volumes and the Stokes-Einstein equation. Journal of Chemical Education 47:261.
DOI: https://doi.org/10.1021/ed047p261

Erami Z, Timpson P, Yao W, Zaidel-Bar R, Anderson KI. 2015. There are four dynamically and functionally distinct
populations of E-cadherin in cell junctions. Biology Open 4:1481–1489. DOI: https://doi.org/10.1242/bio.
014159, PMID: 26471767

Faulón Marruecos D, Kienle DF, Kaar JL, Schwartz DK. 2018. Grafting density impacts local nanoscale
hydrophobicity in poly(ethylene glycol) Brushes. ACS Macro Letters 7:498–503. DOI: https://doi.org/10.1021/
acsmacrolett.8b00004

Gizeli E, Glad J. 2004. Single-step formation of a biorecognition layer for assaying histidine-tagged proteins.
Analytical Chemistry 76:3995–4001. DOI: https://doi.org/10.1021/ac034855g, PMID: 15253634

Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. 1999. The immunological synapse:
a molecular machine controlling T cell activation. Science 285:221–227. DOI: https://doi.org/10.1126/science.
285.5425.221, PMID: 10398592

Gumbiner BM. 1996. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–
357. DOI: https://doi.org/10.1016/S0092-8674(00)81279-9, PMID: 8608588

Gumbiner BM. 2005. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Reviews Molecular
Cell Biology 6:622–634. DOI: https://doi.org/10.1038/nrm1699, PMID: 16025097

Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM,
Troyanovsky RB, Ben-Shaul A, Frank J, Troyanovsky SM, Shapiro L, Honig B. 2011. The extracellular architecture
of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256. DOI: https://doi.
org/10.1016/j.str.2010.11.016, PMID: 21300292
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Różycki B, Lipowsky R, Weikl TR. 2010. Segregation of receptor–ligand complexes in cell adhesion zones: phase
diagrams and the role of thermal membrane roughness. New Journal of Physics 12:095003. DOI: https://doi.
org/10.1088/1367-2630/12/9/095003

Sarabipour S, Del Piccolo N, Hristova K. 2015. Characterization of membrane protein interactions in plasma
membrane derived vesicles with quantitative imaging förster resonance energy transfer. Accounts of Chemical
Research 48:2262–2269. DOI: https://doi.org/10.1021/acs.accounts.5b00238, PMID: 26244699

Schmid EM, Bakalar MH, Choudhuri K, Weichsel J, Ann H, Geissler PL, Dustin ML, Fletcher DA. 2016. Size-
dependent protein segregation at membrane interfaces. Nature Physics 12:704–711. DOI: https://doi.org/10.
1038/nphys3678, PMID: 27980602

Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grübel G, Legrand JF, Als-Nielsen J, Colman DR,
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