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Abstract We demonstrate a combined experimental and computational approach for the
quantitative characterization of lateral interactions between membrane-associated proteins. In
particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to
supported lipid bilayers, were studied using a combination of dynamic single-molecule Férster
Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are
intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and
trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been
hindered by a lack of experimental approaches capable of detecting and quantifying lateral
interactions between proteins on membranes. Here single-molecule intermolecular FRET
measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations
demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on
lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are
quantitatively and independently determined, demonstrating an approach that is generalizable for
other interacting proteins.

Introduction

The quantitative characterization of protein interactions on membranes and at buried interfaces,
including the measurement of binding constants, is a major challenge due to the limited experimen-
tal approaches capable of interrogating molecular interactions in these environments. While it is
common to study interactions between extracellular regions of membrane proteins in solution, such
experiments are imperfect proxies for measuring actual membrane protein interactions. Apart from
the potential impact of domain isolation on protein folding and function, functionally important pro-
tein interactions and oligomerization may arise specifically due to constraints imposed by two- or
three-dimensional confinement (RézZycki et al., 2010; Weikl et al., 2009). Notably, the immunologi-
cal synapse is characterized by the spatial and temporal organization of proteins in the gaps
between the surface of an antigen presenting cell and a T-cell (Grakoui et al., 1999; Monks et al.,
1998). This organization is attributed in part to the steric segregation of proteins of different sizes
and to cytoskeletal interactions (Qi et al., 2001; Schmid et al., 2016); the understanding of the role
of lateral protein interactions in this protein assembly remains incomplete (Kaitao et al., 2019). In
addition to cadherins, nectins represent another class of membrane proteins whose lateral clusters
mediate cell-cell adhesion (Rikitake et al., 2012). Distinct lateral (cis) and trans- (adhesive)

Thompson et al. eLife 2020;9:e59035. DOI: https://doi.org/10.7554/eLife.59035

1 of 28


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.59035
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

e Llfe Research article

Structural Biology and Molecular Biophysics

interactions between the four members of the nectin family are associated with differentiation and
tissue organization. Although it is possible to quantify trans- (adhesive) interactions (Chesla et al.,
1998; Chien et al., 2008; Wu et al., 2008), measurements of lateral interactions underlying protein
clustering have been inaccessible.

In this context, cadherins pose a particular challenge. Cadherins are transmembrane proteins that
mediate cell-to-cell adhesion in all tissues and regulate a range of biological processes, such as tis-
sue rearrangement and formation, cell motility, proliferation, and signaling (Gumbiner, 1996;
Gumbiner, 2005; Niessen et al., 2011; Pla et al., 2001; Takeichi, 1995). Cadherins mediate inter-
cellular adhesion by binding other cadherins on an adjacent cell surface. Notably, cadherins assem-
ble into dense clusters at these adhesive sites, which are important for regulating the permeability
of barrier tissues such as the intestinal epithelium (Brieher et al., 1996; Harrison et al., 2011,
Wu et al., 2015). The molecular basis underlying cadherin cluster assembly is therefore of great
interest because of its importance for tissue functions.

Experimental evidence supports the postulate that cadherin-mediated adhesion and clustering
involves both cis- (lateral) and trans-interactions (adhesive) between cadherin molecules on cell surfa-
ces (Brieher et al., 1996; Harrison et al., 2011, Wu et al., 2015). Early comparisons of cadherin
extracellular domain adhesive activity suggested that the protein functions as a cis-dimer, and crystal
structures suggested a plausible cis-binding interface (Brieher et al., 1996; Harrison et al., 2011).
Moreover, mutating one or two key amino acids in the postulated cadherin cis-binding interface
results in impaired intercellular adhesion and reduced cadherin clustering at cell-cell contacts
(Erami et al., 2015; Harrison et al., 2011; Shashikanth et al., 2016; Wu et al., 2015). However,
despite experimental evidence for the importance of cis-interactions in cell adhesion, they have
been difficult to investigate directly (Brieher et al., 1996; du Roure et al., 2006; Harrison et al.,
2011; Hong et al., 2013; Indra et al., 2018; Klingelhéfer et al., 2002; Leckband and Sivasankar,
2012; Leckband and de Rooij 2014; Shapiro et al., 1995, Troyanovsky et al., 2015;
Troyanovsky et al., 2007, Troyanovsky et al., 2003; Wu et al., 2015; Yap et al., 1997; Yap et al.,
1998; Zhu et al., 2003). Due to the relatively weak nature of cis-interactions, traditional solution-
phase studies have failed to detect them, even at high protein concentrations (Haussinger et al.,
2004; Koch et al., 1999). Furthermore, attempts to stabilize weak cis-interactions through chemical
crosslinking in solution were unsuccessful (Zhang et al., 2009).

Computational models of cadherin binding subsequently suggested that the reduction of configu-
rational and orientational entropy under two- and three-dimensional confinement could potentiate
cis-interactions. Specifically, the models predicted that tethering cadherin extracellular domains to a
two-dimensional (2D) surface, such as a supported lipid bilayer or cell membrane would increase the
effective binding affinities of both cis-and trans-interactions (Harrison et al., 2011, Wu et al., 2010;
Wu et al., 2011). Unfortunately, measurements based on analyses of photon counting histograms
were unable to detect cis-interactions between E-cad extracellular domains on supported bilayers
independent of trans-interactions, likely due to the modest cadherin surface concentrations studied
(Biswas et al., 2015). However, the prediction that membrane-tethered cadherins can form clusters
under 2D confinement was recently confirmed indirectly via single-molecule tracking, based on
measurements of the diffusion of E-cadherin extracellular domains on supported lipid bilayers, over
a very large range of cadherin surface coverage (Thompson et al., 2019). Comparisons of wild-type
and cis-mutants confirmed that a specific cis-binding interface mediated clustering in the absence of
trans interactions. Importantly, the diffusion coefficient served as a very sensitive proxy for cis-inter-
actions, because clusters diffuse more slowly than monomers. These findings suggested that cis-
interactions between E-cad extracellular domains can result in the formation of large clusters, in the
absence of trans-interactions, for cadherin surface coverage above a threshold of ~1,100 E-cad/n
mZ(Thompson et al.,, 2019). However, a quantitative understanding of cis-interaction contributions
to the assembly of adhesive junctions has been hindered by the lack of approaches capable of iden-
tifying and quantifying relevant binding interactions.

Here we used intermolecular single-molecule Férster Resonance Energy Transfer (FRET) micros-
copy to characterize the dynamic interactions between E-cad extracellular domains tethered to
mobile supported lipid bilayers, while simultaneously tracking the motion of E-cad monomers and
clusters to determine their diffusion coefficients, and thereby infer their hydrodynamic diameters. By
comparing the behavior of wild-type E-cad to that of a mutant that is incapable of specific cis-inter-
actions, we identified two distinct types of lateral interactions, which we attributed to nonspecific
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(i.e. not through the specific cis-interface observed in the crystal structure) interactions (present for
both wild-type and mutant E-cad) and specific interactions (present only for wild-type E-cad). The
specific interactions were significantly stronger, resulting in longer intermolecular associations and a
steady-state cluster distribution with a larger characteristic cluster size. Complementary off-lattice
kinetic Monte Carlo simulations were performed under conditions designed to mimic the experi-
ments. The kinetic parameters associated with the simulations were constrained by experimental val-
ues when applicable; the remaining parameters were optimized so that the steady state cluster size
distributions matched those observed experimentally. The experiments and simulations were inter-
nally consistent, with a single set of parameters for all experimental conditions. These simulation
results suggested that the dissociation rate for specific cis-interactions was approximately 10x slower
than for nonspecific interactions under the conditions of the experiments. Thus, while associations
due to nonspecific interactions were significantly weaker than cis-interactions, they were substantial
and could not be ignored. The simulations also suggested that associations due to cis-interactions
were more efficient and likely to occur, than nonspecific interactions. Importantly, the methods
developed and employed here can be generally applied to study the dynamics of specific and non-
specific lateral interactions between a wide range of membrane proteins.

Results

Nonspecific and specific cis-Interactions are present in E-cad clusters

In order to study E-cad lateral interactions under 2D confinement, donor (Alexa 555) labeled, accep-
tor (Alexa 647) labeled, and unlabeled E-cad extracellular domains were simultaneously bound to a
supported lipid bilayer via hexahistidine-NTA associations and imaged using a prism-based total
internal reflection fluorescence (TIRF) microscope. This allowed the observation of a large number of
single molecule trajectories at high or intermediate protein surface coverage. Two discrete popula-
tions were observed corresponding to negligible energy transfer (low-FRET) and complete energy
transfer (high-FRET) (Figure 1A and Figure 1—figure supplement 1). Figure 1A shows a represen-
tative FRET heat map showing two distinct populations at high and low FRET efficiency. Each molec-
ular observation within each trajectory was then classified as either a high-FRET or low-FRET
efficiency state (where high-FRET corresponds to a putative cis-association) based on the donor and
acceptor intensities using an algorithm described previously, allowing the identification of high-FRET
and low-FRET time intervals (Figure 1A and Figure 1—figure supplement 1; Chaparro Sosa et al.,
2018). Previously, the high-FRET state has been shown to indicate binding (Kastantin et al., 2017,
Langdon et al., 2015; Langdon et al., 2014; Monserud et al., 2016; Monserud and Schwartz,
2016; Traeger et al., 2019; Traeger and Schwartz, 2017; Traeger and Schwartz, 2020). In order
to distinguish the effects of specific cis-interactions, E-cad extracellular domain constructs of wild-
type E-cad and the cis-binding mutant L175D were used in separate experiments; this particular
point mutant was previously shown to be incapable of interacting through the cis-interface
(Harrison et al., 2011; Thompson et al., 2019). Therefore, at similar surface coverage, any differ-
ence in apparent interactions between the wild-type and this mutant should primarily be due to the
presence or absence of specific cis-interactions.

Three conditions were studied: high-coverage wild-type (~1,400 E-cad/um?), high-coverage
mutant (~1,300 E-cad/um?), and intermediate-coverage wild-type (~1,000 E-cad/um?), where these
coverage values were chosen based on previous experiments, which demonstrated the onset of sig-
nificant clustering at surface coverages above ~1,100 E-cad/um? (Thompson et al., 2019). Quantify-
ing cis-interactions independent of trans-interactions at these high surface coverage values is
directly physiologically relevant, as cell-cell junctions consist of both adhesive and nonadhesive clus-
ters, and can reach a maximum local surface coverage of ~49,000 E-cad/um2 (Indra et al., 2018;
Wu et al., 2015). A total of ~4000 trajectories were observed, of which ~750 exhibited FRET events,
consisting of ~85,000 total molecular observations at each of the three experimental conditions
employed. Supplementary file 1a contains the exact number of total trajectories, trajectories exhib-
iting FRET association, and total number of displacements for each experimental condition. To per-
mit single molecule localization, the donor-labeled E-cad concentration was kept very low as
described in the Materials and methods section. The acceptor-labeled E-cad concentration was
much larger than that of the donor, allowing the observation of a large number of FRET events and
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Figure 1. Observation of cis-interactions via single-molecule FRET. (A) Representative heat map of donor and
acceptor intensities showing two populations at high and low FRET efficiency indicated by the asterisks. The black
line represents the threshold between the two states used to assign each observation to the high or low-FRET
state. (B, E, H) Donor and acceptor trajectories for a FRET pair throughout representative trajectories, which are
used to determine if the donor E-cad molecule is in a high-FRET or low-FRET state. (C, F, I) X and Y Cartesian
coordinates for the donor or acceptor molecule over the length of the trajectory. (D, G, J) Two dimensional
trajectory plots of the same trajectories, where the symbol color corresponds to the assigned FRET-state. The
background of the trajectory time traces for intensity and position indicate the assigned FRET-state.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Heat maps showing binned acceptor and donor intensities using all molecular
observations.

Figure supplement 2. Overall complementary cumulative distributions of squared displacement calculated using
only trajectories from a single movie for all three experimental conditions.

Figure supplement 3. Complementary cumulative association time (high-FRET state dwell time) distributions
calculated using only trajectories from a single movie for each of the three experimental conditions.

Figure supplement 4. Fluorescence recovery after photobleaching (FRAP) analysis indicates the formation of a
continuous, fluid supported lipid bilayer.

Figure supplement 5. All localized and tracked trajectories two frames and longer from the 30 s high surface
coverage wild-type movie clip included as Video 1 (left).

Figure supplement 6. Representative histogram of positional localization uncertainties for all molecular
observations for the high surface coverage wild-type condition indicating a significant number of observations with
a large position uncertainty comparable to the size of a pixel (0.43 um).

Figure supplement 7. Trajectory median donor intensity histograms showing the 60th percentile cutoff as a
vertical red line used to remove bright contaminants, donor E-cad aggregates, and donor E-cad labeled with
multiple fluorophores.

ensuring that multiple acceptors were present in clusters. Due to limitations in acceptor
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concentration caused by the need to avoid excess background that results from direct excitation of
the acceptor, unlabeled E-cad was added to reach sufficiently high surface coverages required for
cluster formation.

In some trajectories, transitions between FRET states were observed, presumably indicating asso-
ciation and dissociation events between donor and acceptor labeled E-cad. However, many trajecto-
ries showed no FRET-state transitions, where a trajectory began by either adsorption or diffusion
into the field of view in a given state and remained in that state until the trajectory ended through
desorption, diffusion out of the frame, or photobleaching. Representative trajectories illustrating
these different situations are shown in Figure 1B-J. For example, in trajectory one, the donor E-cad
begins in the low-FRET state and appears to be diffusing quickly, based upon the large positional
fluctuations. After ~0.33 s, a transition from low to high FRET-state indicates the association of the
donor E-cad with a cluster. This FRET transition coincides with a significant decrease in the positional
fluctuations, consistent with the motion of a large cluster. In contrast, representative trajectory two
exhibits no apparent FRET-state transitions. The trajectory begins in the high-FRET state and
remains in this state throughout the entire trajectory. The position fluctuations are small, and the
molecule remains in a small, confined, region. This behavior suggests that the donor E-cad is associ-
ated with a large cluster that contains one or more acceptor E-cad molecules. Lastly, trajectory three
remains in the low-FRET state throughout the entire trajectory, and exhibits large positional fluctua-
tions, consistent within an unassociated monomer of donor E-cad.

As is apparent from Figure 1B-J, transport properties are often coupled to the FRET-state of a
molecule. This is because the FRET-state reflects the oligomeric state of an E-cad molecule, and
large oligomers diffuse slower than a monomer due to increased protein-lipid interactions, which is
the primary source of drag (Cai et al., 2016). In order to assess this hypothesis and confirm that the
high-FRET state does in fact correlate with protein clusters involving a donor and one or more
acceptors, the average short-time diffusion coefficient (Dy,..¢) was determined for the high and low
FRET-state populations independently. This was done by constructing complementary cumulative
squared displacement distributions (CCSDDs) for each state, under each experimental condition,
and then fitting these distributions to a Gaussian mixture model containing three terms (See Materi-
als and methods section for more details on distribution calculations, fitting, and Dy, calculation).
Dot represents the average instantaneous molecular diffusion coefficient at the shortest experi-
mentally accessible time scale and is especially useful for systems where molecules change FRET
states within a trajectory (Chaparro Sosa et al., 2020; Chaparro Sosa et al., 2018; Langdon et al.,
2015). Additionally, overall CCSDDs were constructed, in order to determine overall values of Dy
under each experimental condition. Overall CCSDDs and Gaussian mixture model fits are shown in
Figure 2—figure supplement 1. Figure 2A-C shows the CCSDDs for both FRET-states (at each of
the three experimental conditions) with the respective Gaussian mixture model fits. The FRET-state
CCSDDs (Figure 2A-C) indicate that the probability of a large displacement is significantly smaller
for E-cad in the high-FRET state for all conditions. Figure 2D shows the resulting values of Do
determined from the fit parameters. Supplementary file 1b shows all CCSDD fit parameters.

Most importantly, Figure 2D shows that the values of Dg,. are significantly smaller for the high-
FRET state relative to the low-FRET state. This behavior is consistent with the interpretation that the
high-FRET state corresponds to E-cad in an associated state, where it diffuses as an oligomer or
large cluster. Of course, due to the presence of unlabeled E-cad, it is possible for an E-cad donor
molecule to be associated with a cluster but remain in a low-FRET state. The low-FRET state popula-
tion comprises a combination of unassociated donor E-cad and donor E-cad that is associated with
unlabeled E-cad; consequently, this population is more complicated to interpret. Nevertheless, the
inclusion of monomers in the low-FRET state (and not the high-FRET state) is expected to result in
larger values of Dy, for the low-FRET state, as observed for all three experimental conditions, even
for the mutant that cannot interact through the cis-interface. Importantly, the observation that the
mutant also exhibits decreased diffusion in a high-FRET state (from 0.569 £ 0.008 um?/s to
0.44 £ 0.01 um?/s) suggests that the proteins can associate by nonspecific interactions in addition to
the specific cis-binding interface expected for wild-type E-cad.

As shown in Figure 2D, the average protein diffusion associated with both of the FRET states is
slowest at the higher surface coverage of wild-type E-cad. This observation is consistent with the
presence of more large protein clusters than at lower surface concentrations or in the absence of
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Figure 2. E-cad diffusion depends on FRET state and interaction capability. (A—-C) Complementary cumulative
squared displacement distributions in the high-FRET and low-FRET states for the mutant and two wild-type E-cad
conditions, along with the respective Gaussian mixture model fits. Error bars correspond to the standard deviation
of CCSDDs calculated using 100 samples using a bootstrap method with replacement and are generally smaller
than the data points, except in the ‘tail’ of the high-FRET state distributions. (D) Do in the high-FRET and low-
FRET states for the mutant and two wild-type conditions. Error bars represent the standard deviation of fitting 100
samples using a bootstrap method with replacement.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Overall CCSDDs, using all displacements from both high and low-FRET states, for the
mutant and two wild-type E-cad conditions.

Figure supplement 2. Displacement-based trajectory filtering results in short-time diffusion expected for
supported lipid bilayers.

specific cis-interactions. The formation of these large clusters is presumably supported by a large
number of nonspecific interactions, in combination with frequent cis-interactions at the higher con-
centration. Interestingly, wild-type E-cad at lower surface concentration and mutant E-cad at higher
concentration exhibit similar diffusion constants for both FRET-state populations, suggesting that
the average cluster sizes are comparable in these two systems, due to a balance between the
strength and frequency of nonspecific and specific interactions. This is consistent with previous find-
ings that specific cis-interactions between wild-type E-cad proteins primarily affected diffusion only
at surface coverages above ~1,100 E-cad/um?, while nonspecific interactions between mutant E-cad
did not cause significant slowing even above this threshold (Thompson et al., 2019). Additionally,
the overall Dy, values (Supplementary file 1b) show that effective total diffusion was slowest for
high surface coverage wild-type E-cad, and that the overall diffusion for mutant E-cad and intermedi-
ate coverage wild-type E-cad was similar. To better understand the relationship of nonspecific and
specific lateral interactions between E-cad extracellular domains, a detailed investigation of interac-
tion dissociation kinetics was performed as described below.

Nonspecific Cis-Interactions dissociate faster than specific Cis-
Interactions

Classifying each observed trajectory into the high-FRET or low-FRET state provides information
about the time intervals spent in each state (dwell time), in addition to the state-dependent
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Figure 3. Average dissociation rate constants (kg) for the mutant and two wild-type conditions resulting from
modeling interactions using a Markov model. Error bars were estimated as the square root of the Cramér-Rao
lower bound.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Complementary cumulative association time (high-FRET state dwell time) distributions
calculated for each of the three high surface coverage experimental conditions and the low coverage control.
Figure supplement 2. High-FRET and low-FRET complementary cumulative surface residence time (observation
time) distributions for mutant E-cad and two concentrations of wild-type E-cad.

Figure supplement 3. Complementary cumulative state dwell time distributions for the high and low-FRET states
for the mutant and two wild-type E-cad conditions, compared to the predicted state dwell time distributions
based upon the three-state, heterogeneous Markov model maximum likelihood estimate with beta-distributed
transition probabilities.

Figure supplement 4. Probability density functions for the state transition rates between the high and low-FRET
states for the mutant and wild-type conditions determined based upon the Markov model estimated, beta-
distributed transition probabilities.

Figure supplement 5. Low-FRET state complementary cumulative dwell time distributions for the mutant and two
wild-type conditions.

Figure supplement 6. Beta distributions of state transition probabilities between the high and low-FRET states for
the mutant and two wild-type conditions corresponding to the Markov model maximum likelihood estimated beta
distribution parameters.

transport properties discussed previously. The dwell times in each state contain direct information
about the nature and energies of interactions. These data can be used in tandem with the transport
information, which provides indirect information about clustering. High-FRET state dwell time distri-
butions are shown as Figure 3—figure supplement 1 and generally indicate longer dwell times for
wild-type compared to mutant E-cad, and that dwell time generally increases with surface coverage.
In particular, inspection of the dwell time distributions (Figure 3—figure supplement 1), in conjunc-
tion with the high-FRET surface residence time distributions (Figure 3—figure supplement 2), sug-
gests that the higher probability of long dwell times for wild-type E-cad are due to stronger
interactions. However, it is challenging to extract quantitative information directly from the dwell
time distributions for a number of reasons, such as: heterogeneity in the number of fluorescent
labels per E-cad, differences in labeling efficiency between the wild-type and mutant, and the
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convolution of photobleaching and desorption with the dwell times. Therefore, in order to rigorously
extract quantitative dissociation rates, it was advantageous to employ a three-state Markov model
that accounted for trajectory observation times, as described in detail below.

A three-state Markov model that has previously been used to model protein conformations based
on intramolecular FRET time series data (Kienle et al., 2018) was used to quantitatively model inter-
molecular FRET time series data associated with E-cad interactions in this system. This model incor-
porated three states: high-FRET, low-FRET, and off, where the off-state corresponded to the end of
a trajectory due to photobleaching, desorption from the surface, or diffusion out of the field of view.
To account for heterogeneity in protein interactions, a beta distribution of state transition probabili-
ties between the high-FRET and low-FRET states was incorporated into the model. This heterogene-
ity reflects the diversity of local environments, including various cluster sizes, shapes, etc. A
maximum likelihood estimate of the beta distribution parameters was iteratively generated based on
the previously assigned sequence of states for each trajectory, and the average interaction rates for
transitions from the low-FRET state to the high-FRET state and vice versa were determined. Here,
the average interaction rate for transition from the high-FRET state to the low-FRET state was equiv-
alent to the average dissociation rate constant (kq) for this system due to the concentration indepen-
dence of the dissociation reaction rate. For additional details of the model, see the Materials and
methods section and the previous application of this model to protein conformational changes
(Kienle et al., 2018). To confirm the accuracy of modeling the observed interactions, complemen-
tary cumulative dwell time distributions were generated for comparison with measured distributions,
by using the maximum likelihood estimated transition probabilities; they are presented as Figure 3—
figure supplement 3.

As shown in Figure 3, kq varied significantly between wild-type and mutant E-cad, and also
between wild-type E-cad at high and intermediate surface coverage. The values of kg were
1.40 £ 0.04 s7!, 1.04£0.03 57!, and 3.17 +0.06 s! for the mutant, at high wild-type surface cover-
age, and at intermediate wild-type surface coverage, respectively. Thus, wild-type E-cad at high sur-
face coverage exhibited the slowest dissociation (i.e., the most stable clusters), consistent with
expectations from the FRET-state diffusion analysis. This is plausible, since larger clusters at higher
surface concentrations were expected to enable both long-lived multivalent nonspecific interactions
as well as a significant number of longer-lasting specific cis-interactions. For mutant E-cad at high
coverage, the value of k4 was larger than for wild-type E-cad at high surface coverage, but signifi-
cantly smaller than for wild-type E-cad at intermediate surface coverage. This was presumably due
to the relatively high effective strength of nonspecific interactions, at high surface coverage, due to
avidity and trapping effects. Finally, the largest value of kq (i.e., the least stable clusters) was
observed for wild-type E-cad at intermediate surface coverage, due mainly to the frequent and
short-lived nonspecific interactions. This is consistent with previous observations and suggests that
specific cis-interactions were infrequent at this intermediate surface coverage.

Overall, an additional interesting result from the modeling of the FRET time-series data was that
E-cad interactions were highly heterogeneous under all conditions, as indicated by the distributions
of dissociation rates (Figure 3—figure supplement 4), presumably due to the wide variety of cluster
sizes and shape, the presence of trapping and avidity effects, and the complex combination of spe-
cific and nonspecific interactions. The mutant E-cad interactions, which included only nonspecific
associations, were also heterogeneous; perhaps reflecting the potential for multivalency in these
associations. Nonspecific interactions also appear to be surface coverage dependent, suggesting
increasing effective strength with increasing surface coverage likely due to binding avidity within
large protein clusters and the prevalence of steric effects such as trapping within cluster interiors,
consistent with previous observations (Langdon et al., 2014). Moreover, the presence of both non-
specific and specific interactions creates many complex scenarios, including the potential for specific
cis-interactions to form via an initial nonspecific ‘encounter complex’ that transitions to the specific
cis-interaction through orientational changes. To capture this complexity directly, explicit kinetic
Monte Carlo simulations were performed, as described below.
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Figure 4. A coarse-grained model was constructed to simulate the spatial-temporal process of E-cad clustering.
(A) E-cad extracellular domains (orange), nonspecific and specific cis-interactions. Cis-donor sites are labeled in
purple, and cis-acceptor sites are labeled in red. A structural model of the E-cad is shown on the right side.
Ectodomain structure with EC domains 1-5 numbered from the N-terminus. (B) Top view of initial configuration in
the simulations. The number of E-cad molecules is equal to 200. (C) Top view of final configuration in the mutant
system. (D) Top view of final configuration in the wild-type system.

Heterogeneous kMC simulations differentiate specific and nonspecific
interactions

The single molecule FRET results provided novel insights into the qualitative overall behavior of lat-
eral interactions between E-cad extracellular domains tethered to a supported bilayer. They also
enabled quantitative characterization of the dissociation kinetics due to specific and/or nonspecific
interactions. Nevertheless, gaps remained in the understanding of the physical basis of the observa-
tions. In particular, as discussed above, it was difficult to unambiguously distinguish association
events. Additionally, single molecule FRET permitted the assignment of only two states: low-FRET
and high-FRET (associated). Therefore, for a system in which intrinsically different (and highly hetero-
geneous) interactions are expected, these experimental observations could not distinguish between
the different types of interactions underlying clustering. Nor could we quantitatively extract the inde-
pendent contributions and kinetics of each interaction. To address these experimental limitations,
kinetic Monte Carlo (kMC) simulations were performed. Importantly, these simulations incorporated
both the nonspecific and specific interactions revealed by the FRET data.

To model specific interactions, each wild-type E-cad molecule had one cis-donor site and one cis-
acceptor site located on opposing sides of the molecule (see Figure 4A), in order to incorporate the
specific orientational constraint associated with specific cadherin cis-interactions (Harrison et al.,
2011). This allowed each E-cad molecule to participate in a maximum of two specific cis-interactions
and mandated the formation of flexible linear oligomers. The inclusion of nonspecific interactions
was then accomplished by allowing additional interactions in all directions, within a specified dis-
tance constraint. By allowing molecules to form both nonspecific and specific interactions, associa-
tion and dissociation rate constants could be tuned independently for both interactions.
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Figure 5. Specific and nonspecific interactions can cause E-cad clustering. (A-B) Representative experimental
cluster size probability distribution functions for wild-type and mutant E-cad at low, intermediate, and high surface
coverages. Error bars correspond to the standard deviation of cluster size probability distribution functions
calculated using 100 samples using a bootstrap method with replacement. (C-D) The comparison of experimental
and simulated cluster size distributions for mutant and wild-type E-cad. The solid lines indicate the single
exponential fitting.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distributions of mutant E-cad cluster size for different combinations of nonspecific
interaction on/off rate.

Figure supplement 2. Distributions of wild-type E-cad cluster size for different combinations of specific
interaction on/off rate.

Figure supplement 3. E-cad is primarily bound to a single lipid.

Figure supplement 4. Trajectory averaged friction factor probability distributions for wild-type (top) and mutant
(bottom) E-cad at high, intermediate, and low E-cad surface coverage.

Figure supplement 5. Distribution of cluster size for wild-type and mutant E-cad at a surface density of 312.5
E—cad/umz, 625 E—cad/p.mz, and 1,250 E—cad/umz, respectively.

We computationally simulated the clustering of E-cad on supported lipid-bilayers, using a
domain-based, coarse-grained model (Figure 4A). After random initial placement, all molecules and
clusters stochastically diffused off-lattice, using periodic boundary conditions. The average cluster
size was monitored throughout the simulation period. Simulations were run until the average cluster
size did not change significantly. This implied that equilibrium was reached, analogous to the experi-
ments. A total of 50 simulations were run at three different surface coverages (312.5 E-cad/um?, 625
E-cad/um?, and 1,250 E-cad/um?) for both wild-type and mutant E-cad. Simulations with wild-type
E-cad included both nonspecific and specific interactions, but simulations of cis-mutants allowed the
proteins to associate only by nonspecific interactions. Simulations also used different combinations
of binding rates within a biologically relevant range. For additional details on kMC simulations, see
the Materials and methods section.

For each set of simulation parameters, multiple independent trajectories were generated to
assure that the computational data were statistically meaningful. Detailed strategies of the sensitivity
analysis are summarized in the Materials and methods section. At the end of the simulations, the
cluster size distributions were calculated by averaging from all the trajectories in the systems. In
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Figure 6. The comparison of experimental and simulated complementary cumulative association time
distributions for mutant and wild-type E-cad.

order to directly compare the cluster size distributions from simulations with the experimental distri-
butions, similar surface coverages were considered between the simulation and experimental
systems.

To allow direct comparison of kMC simulations to experimental results, E-cad cluster size proba-
bility distributions were calculated using raw trajectory friction factor data adapted from
Thompson et al., 2019, as described in the Materials and methods section. Resulting experimental
cluster size probability distributions are shown as Figure 5A-B, for both wild-type and mutant E-cad
at high, intermediate, and low surface coverages corresponding to ~39,000 E-cad/umz, ~1,000
E-cad/umz, and ~0.6 E-cad/umz, respectively. However, due to the dynamic nature of cis-interactions
and the trajectory filtering method, the relative change in cluster size distributions with coverage
and between wild-type and mutant is most relevant. For mutant E-cad, the change in the cluster size
distribution with increasing surface coverage is subtle, and mainly visible in the small cluster regime,
where the peak present at low surface coverage at ~20 E-cad shifts to a modestly larger cluster size
of ~40 E-cad. This change is presumably due to weak nonspecific interactions between the mutants
that support cluster formation at elevated surface coverage. The cluster size distributions of wild-
type E-cad exhibit a more dramatic change with increasing surface coverage, particularly in the tails
of the distributions. For example, at high and intermediate surface coverage the probability of
observing a large cluster (~40 to ~160 E-cad) is significantly increased. This change with increasing
surface coverage for wild-type E-cad is likely due to a combination of nonspecific and specific inter-
actions that cause large cluster formation, relative to the cluster formation observed for the mutant.

For kMC simulations, we first turn off specific cis-interactions, so that E-cad can form clusters only
through nonspecific lateral interactions. This simulation is used to mimic the system in which the
mutant is employed to eliminate specific cis-interactions. The final configuration from a representa-
tive simulated trajectory is shown in Figure 4C. In addition to E-cad monomers, homogeneously dis-
tributed compact clusters formed through nonspecific cis-interactions between mutant E-cad
proteins. Figure 5—figure supplement 1 further shows the cluster size distributions under different
on/off rate combinations of the nonspecific interactions. Cluster size distributions can be fitted by a
single exponential function f(N) = Ae ™/M where Ny corresponds to the characteristic cluster size.
Figure 5—figure supplement 1 indicates that the characteristic cluster size is closely related to the
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values of the on and off rates. The simulated on and off rates were therefore optimized so that the
cluster size distribution from simulations (red) agreed with the experimental distribution (black) for
the cis-mutant (Figure 5D). The value of the characteristic cluster size in the experiment was ~29
E-cad, which is equal to the computational characteristic cluster size of ~29 E-cad, within experimen-
tal uncertainty. The on and off rates of the nonspecific interaction used to generate the distribution
in the simulation are 2 x 10° s™" and 10® 57", respectively (Supplementary file 1h). These on/off
rates correspond to the effective rate constants of ko,21.1 x 10° M~"s™" and ko1 x 10% 577,
based on the calculation developed in our previous studies (Wang et al., 2018). These rates corre-
spond to an effective binding affinity in the mM range, for nonspecific cis-interactions.

Subsequently, we carried out simulations in which the specific cis-interaction was turned on. Dif-
ferent combinations of on/off rates for the specific interaction were systematically tested, while the
rates of the nonspecific interactions were fixed at the values determined for the cis-mutant. The final
configuration from one of these simulations is shown in Figure 4D. Relative to the homogeneous
and compact clusters observed in the simulations associated with E-cad mutant, the clusters formed
when both nonspecific and specific cis-interactions were switched on exhibited extended (linear)
configurations. These one-dimensional linear clusters are derived from the polarized cis-binding
interface, which is inferred from the x-ray crystal structure of wild-type E-cad (Harrison et al., 2011).
Cluster size distributions associated with different combinations of on and off rates for specific inter-
actions are shown in Figure 5—figure supplement 2. Again, we identified an appropriate combina-
tion of specific cis on/off rates that resulted in a similar characteristic cluster size as was observed
experimentally for wild-type E-cad, as shown in Figure 5C. The value of the characteristic cluster size
for the experiment is ~33 E-cad, which is very similar to the computational value of ~34 E-cad from
simulations. The on and off rates of the specific interaction that were used to generate the distribu-
tion in the simulation are 10° s™' and 10% s, respectively (Supplementary file 1h). These on/off
rates for the specific cis-interaction correspond to the effective rate constants of k,,222.7 x 10°
M~"'s™" and ko221 x 10% 57", and to a binding affinity of approximately 10 uM. Comparisons of the
specific and nonspecific interactions suggest that the specific cis-binding rate is slightly faster than
that of the nonspecific interaction, and the specific cis-interaction is stronger by approximately an
order of magnitude.

Finally, in addition to comparisons of cluster size distributions, association time distributions
extracted from the simulations were also calculated and qualitatively compared to the experimental
association time distributions discussed in the previous section. This ensured that the simulations
captured the experimental behavior. Figure 6 shows the comparison of experimental and simulated
association time distributions for mutant and wild-type E-cad. In both simulations and experimental
measurements, the association time of E-cad increases when in the presence of specific cis-interac-
tions (wild-type vs. cis-mutant), demonstrating qualitative consistency. We note that the dwell-time
distributions from simulations are not necessarily expected to agree quantitatively with experimental
measurements, due in part to the difference between the experimental acquisition time (50 ms) and
simulation time step (0.01 ns). Notably, the long-time asymptotic behavior of experimental and simu-
lated dwell times have similar behavior (i.e. the slopes of the distribution tails in Figure 6), indicating
that the simulations accurately capture the salient experimental behavior. Furthermore, experimental
phenomena such as desorption, photobleaching, and supported lipid bilayer defects and heteroge-
neity are not accounted for in the simulations and may limit quantitative comparisons of association
times. Overall, these simulation results are qualitatively consistent with longer-lived wild-type E-cad
interactions. This is due to specific cis-interactions, as well as to the potential interplay between non-
specific and specific interactions.

Discussion

An important advance of this research involves the development of a combined experimental and
theoretical framework that enables the quantification of lateral binding interactions between pro-
teins confined to fluid, 2D membrane bilayers. The single molecule FRET measurements revealed
that both specific and nonspecific cis-interactions contribute to wild-type E-cadherin clustering at a
physiologically relevant surface coverage. Complementary kMC simulations provided important
insights into the molecular events underlying the FRET distributions, and further extracted rate con-
stants for both specific and nonspecific lateral interactions between the cadherin extracellular
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domains. Moreover, these results successfully demonstrated directly that E-cadherin extracellular
domains associate through cis-interactions. Prior experimental data supported the role of specific
cis-interactions in the assembly of cadherin clusters, both at intercellular adhesions and on sup-
ported lipid bilayers at high surface densities (Harrison et al., 2011; Thompson et al., 2019). How-
ever, until recently, direct characterization of E-cad cis-interactions was not possible by traditional
methods, due to the weak binding affinity.

Notably, we find that both specific and nonspecific interactions control E-cad clustering on mem-
branes at high surface coverage, and that nonspecific interactions contribute to both mutant E-cad
and wild-type E-cad lateral interactions at surface concentrations below the surface coverage thresh-
old for cis-clustering. Although these nonspecific interactions are weaker than specific cis-interac-
tions, they are more frequent, and hence dominate at low concentrations. The conditions employed
in these measurements isolated the effects of specific and nonspecific interactions, and they enabled
quantitative comparisons with kMC simulations. For both the mutant and wild-type E-cadherin at
intermediate surface coverage, where the intermolecular interactions are primarily due to nonspe-
cific interactions, the high-FRET state corresponds to slower diffusion than the low-FRET state. The
latter behavior is a result of small, short lived, cluster formation, and was only observable due to the
ability to isolate high-FRET objects. However, if one were only able to compare the overall average
diffusion of all objects, then the slight decrease in the diffusion coefficient of mutant E-cad at high
concentration would not be observable, as previously reported (Thompson et al., 2019). We have
also shown that for wild-type E-cad, the combination of specific and nonspecific cis-interactions
results in the formation of clusters in the range of ~40 to ~160 E-cad, and for the mutant, nonspecific
cis-interactions result in an increasing probability of ~40 E-cad clusters. Cell studies have previously
reported the formation of clusters of comparable size, independent of trans-interactions. However,
we observe larger median cluster size values (Wu et al., 2015). This discrepancy could be explained
by differences in membrane viscosity, E-cad surface coverage, and/or the dynamic range of cluster
size determination techniques.

It was necessary to include both nonspecific and specific interactions in the kMC simulations, in
order to accurately reproduce the experimental cluster size distributions. This agreement confirmed
the interpretation of the single-molecule FRET data. The rate constants associated with each of
these distinct lateral interactions further show that, despite the 10-fold slower dissociation rate of
specific cis-bonds, the nonspecific interactions must be taken into account.

The influence of nonspecific interactions on mutant E-cad has not previously been reported.
Indeed, it was necessary to combine highly sensitive single-molecule FRET with computational simu-
lations, and to explicitly compare wild-type and cis-mutant E-cad, in order to characterize these
weak interactions. Moreover, as these results demonstrate, nonspecific interactions are dynamic and
short lived, and would not likely be detected by alternative methods, such as ensemble averaged
FRET or photon counting (Biswas et al., 2015; Zhang et al., 2009). Although nonspecific steric
(repulsive) interactions have been invoked to account for membrane protein organization
(Albersdérfer et al., 1997, Paszek et al., 2014, Qi et al., 2001; Schmid et al., 2016), the potential
significance of nonspecific attractive interactions was not fully appreciated prior to this study.

E-cadherin represents a special, and particularly demanding test case for characterizing lateral
protein interactions tethered to lipid bilayers, because the cis-bonds have very low affinity and are
not detectable in solution. This combination of single molecule FRET and kMC simulations can be
extended to other proteins such as nectins that likely interact through higher affinity cis-bonds
(Rikitake et al., 2012). Although there are approaches for quantifying the 2D trans- (adhesive) affini-
ties and binding rates of membrane receptors, until now, few measurements were able to quantify
lateral binding affinities (Chen et al., 2010; Chesla et al., 1998; Chien et al., 2008;
Sarabipour et al., 2015; Wu et al., 2008; Zhu et al., 2007), and there are no prior reports of mea-
sured off rates. Interestingly, theoretical models of cadherin binding predict cooperativity between
trans-binding between opposing cadherins and cis-interactions (Wu et al.,, 2010). The approach
described in this study lays the groundwork for directly testing that hypothesis, by comparing cis-
binding rates, for example, between cadherins on free membranes versus within adhesion zones.

These findings provided new insights regarding the physical interactions underlying E-cadherin
clustering. They also raise the possibility that nonspecific interactions could similarly influence the
oligomerization of other membrane proteins. Conversely, the methods described in this study also
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open the possibility of quantifying the impact of other factors such as crowding, confinement, or
even membrane topography on protein interactions.

Materials and methods

Source or reference Identifiers Additional information

Cell line (human)

HEK293T ATCC, Dr. Keith Johnson, CRL-3216

authenticated using STR-PCR and
University of Nebraska, (RRID:CVCL_0063) tested negative for mycoplasma

Lincoln

Transfected construct
(human)

CEP 4.2 plasmid

Encoding hexahistidine-tagged
wild-type E-cad and L175D mutant

Dr. Lawrence Shapiro,
Columbia University

Commercial assay or kit

Commercial assay or kit

Chemical compound, drug
Chemical compound, drug

Chemical compound, drug

Alexa Fluor 555 Invitrogen A20187 Labeling E-cad
NHS-ester antibody

labelling kit

Alexa Fluor 647 Invitrogen A20186 Labeling E-cad
NHS-ester antibody

labelling kit

DOPC Sigma-Aldrich P6354

DGS-NTA(N) Avanti Polar Lipids 790404

DOPE-LR Avanti Polar Lipids 810150

Software, algorithm

Software, algorithm

Custom Matlab-based
software 10.1021/acsnano.8b02956;

simjFRAP 10.1038/srep11655

10.1021/acsmacrolett.800004, Image analysis

10.1021/acs.jpclett.2000004

Image analysis

FRET sample preparation

CEP 4.2 plasmids encoding the hexahistidine-tagged wild-type E-cad and L175D mutant were
obtained from Dr. Lawrence Shapiro (Columbia University, NY). The Human Embryonic Kidney 293T
(HEK293T) cell line (authenticated using STR-PCR and tested negative for mycoplasma) was from Dr.
Keith Johnson (University of Nebraska, Lincoln), where they were purchased from the American Type
Culture Collection (Manassas, VA). Cells were cultured in Dulbecco’s Minimum Eagle Medium
(DMEM) containing 10% fetal bovine serum (FBS) (Life Technologies, Carlsbad, CA) under 5% CO,
atmosphere at 37°C. Cell lines that stably expressed the soluble proteins were generated, by trans-
fecting HEK293T cells with the mutant construct, using Lipofectamine 2000 (Invitrogen, Grand Island,
NY) according to the manufacturer’s instructions.

HEK293T cell lines that stably expressed hexahistidine-tagged, soluble E-cadherin ectodomains
were selected with 200 pg/mL Hygromycin B (Invitrogen). Western blots of the culture medium con-
firmed protein expression by individual colonies. The colonies that expressed the highest levels of
soluble protein were pooled for further protein production. Secreted, hexahistidine-tagged cadherin
was then purified from filtered culture medium, by affinity chromatography with an Affigel NTA affin-
ity column, followed by ion-exchange chromatography (Aktapure). Protein purity was assessed by
SDS polyacrylamide gel electrophoresis, and the adhesive function was confirmed with bead aggre-
gation assays (Brieher et al., 1996).

Purified E-cad extracellular domains with C-terminal 6xHis tags were randomly labeled using an
Alexa Fluor 555 (AF555) NHS-ester antibody labeling kit, and both wild-type and L175D mutant
were labeled using an Alexa 647 (AF647) NHS-ester antibody labeling kit (succinimidyl ester; Invitro-
gen, Carlsbad, CA). Protein was reacted with the dye for 1 hr in buffer (25 mM HEPES, 100 mM
NaCl, 10 mM KCI, 2 mM CaCl,, 0.05 mM NiSO,, pH 8) at room temperature. Unreacted dye was
removed via spin column. Based on absorbance measurements, using extinction coefficients of
150,000 cm™" M~ for the AF555, 239,000 cm™' M~ for the AF647, and 59,860 cm™' M~ for the
protein, the labeling stoichiometry was ~1.3 for AF555 labeling of wild-type E-cad and ~2.3 and~1.3
for AF647 labeling of wild-type and mutant E-cad, respectively. A random labeling procedure was
selected over a site-specific labeling method so that interactions not necessarily involving the known

Thompson et al. eLife 2020;9:e59035. DOI: https://doi.org/10.7554/eLife.59035 14 of 28


https://scicrunch.org/resolver/CVCL_0063
https://doi.org/10.1021/acsmacrolett.8b00004
https://doi.org/10.1021/acsnano.8b02956
https://doi.org/10.1021/acs.jpclett.9b00004
https://doi.org/10.1038/srep11655
https://doi.org/10.7554/eLife.59035

e Llfe Research article

Structural Biology and Molecular Biophysics

cis-interaction interface would still be observed. Functionality of wild-type and mutant E-cad was
retained after labeling as indicated by bead aggregation assays (Brieher et al., 1996).

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Millipore Sigma (Burling-
ton, MA). 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel
salt) (DGS-NTA(Ni)) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B
sulfonyl) (ammonium salt) (DOPE-LR) were purchased from Avanti Polar Lipids (Alabaster, Alabama).
DOPC and DGS-NTA(Ni) were dissolved in chloroform in the molar ratio of 19:1 in a glass culture
tube. Following solvent evaporation under a stream of nitrogen, a thin film of lipids was formed on
the side of the tube. This lipid film was then hydrated with buffer so the total lipid concentration was
3 mM. This suspension was mixed via vortex and sonicated for 0.5 hr. The vesicles were then
extruded through a 50 nm filter membrane (Whatman, Maidstone, UK) 21 times to form unilamellar
vesicles with a homogeneous size distribution.

Glass coverslips (Fisher Scientific, Hampton, NH) and fused silica wafers (Mark Optics, Santa Ana,
CA) were cleaned with piranha solution for 2 hr and treated by UV-ozone for 0.25 hr. Following sur-
face treatment, the wafers were placed in a custom built flow cell that had been cleaned using
Micro-90 detergent solution (International Product Corp., Burlington, NJ). To form supported lipid
bilayers, a dispersion of unilamellar vesicles (3 mM total lipid concentration) was carefully injected
into the flow cell in order to avoid air bubble formation. Following a 1 hr incubation period, vesicles
spontaneously formed a fluid supported lipid bilayer via vesicle fusion (Cremer and Boxer, 1999,
Gizeli and Glad, 2004; Richter et al., 2006). Following formation, the bilayer was rinsed with buffer
to remove excess vesicles and incubated with 100 mM NiSO, for 0.5 hr to ensure complete chelation
of DGS-NTA(NI) lipids (Gizeli and Glad, 2004; Nye and Groves, 2008). The supported lipid bilayer
was then exchanged into buffer before injecting 300 pL of a protein buffer solution containing
AF555 labeled wild-type E-cad and either AF647 labeled wild-type E-cad and unlabeled wild-type
E-cad or AF647 labeled mutant E-cad and unlabeled mutant E-cad, permitting the binding of hexa-
histidine-tagged E-cad to the DGS-NTA lipids. In this configuration, the AF555 labeled E-cad served
as the FRET donor and the AF647 labeled E-cad served as the FRET acceptor. Two different total
wild-type E-cad solution concentrations of 3 x 1077 M and 5 x 10~ M and one total mutant E-cad
solution concentration of 5 x 1077 M were studied. Supplementary file 1c summarizes the donor
and acceptor solution concentrations for the three conditions. The donor concentration was adjusted
to allow for single molecule resolution, and the acceptor concentration was optimized to allow for a
large number of FRET events, but an insignificant amount of direct excitation of the acceptor. The
resulting average donor surface density was ~0.003 E-cad/um? for all three experimental conditions.
Using the optimized donor and acceptor concentrations, donor bleed-through into the acceptor
channel and direct excitation of the acceptor were both determined to be insignificant by imaging
control samples containing either donor and unlabeled E-cad or acceptor and unlabeled E-cad and
checking for significant emission in the acceptor
channel. These control experiments indicated
that the FRET signal observed in samples with
both donor and acceptor represented physical
donor-acceptor interactions. The addition of
unlabeled E-cad was necessary in order to reach
a surface coverage high enough, such that signifi-
cant  cluster  formation had  occurred
(Thompson et al., 2019). This resulted in a large
number of high-FRET events, indicated by an
acceptor intensity greater than that of the donor.
This high surface coverage could not be achieved
by only binding donor and acceptor E-cad to the
bilayer as this required an extremely high concen-
tration of acceptor, which would result in exces-
sive background emission in the acceptor channel
due to direct acceptor excitation by the donor
excitation source. All samples were imaged in 25
mM HEPES, 100 mM NaCl, 10 mM KCI, 2 mM Video 1. High-coverage wild-type E-cad movie segment.
CaCly, 0.05 mM NiSQy4, pH eight buffer under htips:/elifesciences.org/articles/59035#video
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high calcium conditions. An oxygen scavenging system was deemed unnecessary by checking for
photo-induced complications in displacement distributions and association time distributions as a
function of imaging time (Figure 1—figure supplements 2-3).

Control experiments using DOPC/DGS-NTA bilayers without added E-cad and DOPC/DGS-NTA
bilayers containing a small fraction of DOPE-LR fluorescent probes were performed to characterize
bilayer contamination and lipid diffusion within the supported lipid bilayer, respectively. A low cover-
age control condition was also tested using wild-type E-cad, where the donor and acceptor concen-
trations used were the same as the mutant condition, but no unlabeled E-cad was added to confirm
that at higher coverage, the FRET signal represented surface coverage dependent interactions. The
resulting surface coverage was ~0.2 E-cad/um?, and the apparent average dissociation rate constant
was 17.5 + 0.6 s, nearly an order of magnitude faster than the average dissociation rate constants
seen for the high surface coverage conditions. Consistently, the high-FRET dwell times observed at
low coverage were drastically shorter than the dwell times observed at higher surface coverages
(Figure 3—figure supplement 1).

Single-molecule TIRFM FRET imaging

Imaging of the samples was accomplished using a custom-built prism-based TIRF microscope (Nikon
TE-2000 base, 60x water-immersion objective, Nikon, Melville, NY). Custom-built flow cells were
mounted on the microscope stage and a 532 nm 50 mW diode-pumped solid state laser (Samba,
Cobolt, Solna, Sweden) was used as an excitation source, incident through a hemispherical prism in
contact with the wafer on the top of the flow cell. This resulted in an exponentially decaying TIRF
field propagating into solution, selectively exciting donor fluorophores at the lipid bilayer-water
interface. Fluorescent emissions from the donor and acceptor were separated using an Optosplit Il
beam splitter (Cairn Research, Faversham, UK) containing a dichroic mirror with a separation wave-
length of 610 nm (Chroma, Bellows Falls, VT). Fluorescence from the donor and acceptor were fur-
ther filtered using a 585/29 bandpass filter and 685/40 bandpass filter (Semrock, Rochester, NY),
respectively. The donor and acceptor channels were then projected onto different regions of an
Andor iXon3 888 EMCCD camera (Oxford Instruments, Abingdon, UK) maintained at —95°C. An
acquisition time of 50 ms was used to capture 12 or 13 image sequences (i.e. movies) of each sam-
ple. Three movies were 5 min long and the remaining 9 or 10 movies were 3 min long (see Videos 1-
5 for raw movie segments). Additionally, to allow for accurate donor and acceptor colocalization,
the donor and acceptor channels were aligned using images of a glass slide that had been scratched
with sand paper, resulting in an irregular alignment image. The details of this image alignment pro-
cess are described previously (Faulon Marruecos et al., 2018). DOPE-LR lipid control experiments
were imaged using the same setup for E-cad FRET imaging, except the beam splitter was not neces-
sary and the field of view was allowed to photobleach until the number of DOPE-LR objects was con-
ducive for single-molecule tracking if necessary. Five movies, 5 min in length, were captured for
DOPE-LR control experiments using a 50 ms acquisition time.

Fluorescence recovery after photobleaching (FRAP)

DOPC unilamellar vesicles containing 0.5% DOPE-LR were prepared and used to form a supported
lipid bilayer as described previously. SLB incorporated DOPE-LR was bleached by illuminating a cir-
cular area of radius ~5 um with a 532 nm 50 mW diode-pumped solid state laser (Samba, Cobolt,
Solna, Sweden) for 4.85 s. After bleaching, DOPE-LR was excited using an Intensilight C-HGFIE lamp
(Nikon, Melville, NY). Excitation and emission was separated and filtered using a 532/640 nm TIRF fil-
ter cube set (Chroma). The fluorescent emission of DOPE-LR was captured with a Hamamatsu
CMOS (ORCA-flash 4.0) camera at an acquisition time of 50 ms. Fluorescent recovery curves were
obtained using the ImageJ plug-in simFRAP (Blumenthal et al., 2015). Figure 1—figure supple-
ment 4 shows FRAP recovery snapshots and the FRAP recovery curve, indicating essentially com-
plete recovery and a mobile fraction greater than 0.95.

Image analysis

All single-molecule movie analysis was performed using custom Matlab-based software, where the
methods and algorithms for determining object positions and intensities and linking trajectories
have been described elsewhere (Faulon Marruecos et al., 2018; Kienle et al., 2018). The tracking
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; software uses established algorithms for localiza-
¢ ; Acceptor 8 tion and tracking, but allows for efficient, inte-

e grated analyses of high throughput data, while
combining tracking and FRET methods. To briefly
summarize, objects that were detected in conse-
cutive frames that were within a user-defined
tracking radius (3 pixels or 1.29 um, for this analy-
sis) were linked into trajectories that could be fur-
ther analyzed. Object identification was
determined using an automated thresholding
function that has been described previously
(Kienle and Schwartz, 2019). This automatic
thresholding software allowed for a user-defined
number of noise-objects per frame to be identi-
fied, as well as the use of a user-defined object
radius (0.05 and 1 pixel for this work, respec-
tively). All localized and tracked trajectories lon-
ger than two frames from Video 1 are shown as
Figure 1—figure supplement 5. Objects that
were identified within two pixels in separate
channels were identified as a donor-acceptor pair
undergoing FRET. A two pixel colocalization distance was selected to allow for potential colocaliza-
tion between observations with a large position uncertainty, while also allowing for registration error.
Figure 1—figure supplement 6 shows a histogram of position uncertainties for the high surface cov-
erage wild-type condition. As indicated by the distribution, most observations have a position uncer-
tainty well below one pixel (0.43 pum), however the tail of the distribution shows a number of
observations with a position uncertainty of approximately one pixel. Therefore, the colocalization
distance was set to two pixels and is only applicable when objects were observed within this distance
in both channels. Furthermore, the FRET maps (Figure 1—figure supplement 1) show two popula-
tion peaks, both centered around either zero donor intensity or zero acceptor intensity, indicating
that colocalization is rare and molecules either exhibit complete energy transfer or zero energy
transfer. If the colocalization distance of 2 pixels were too large, resulting in erroneous FRET pair
assignment, one would expect to see significant peaks centered around high acceptor and donor
intensities. The position of the FRET pair was determined using the object with the greatest signal-
to-noise ratio. The FRET state of each object at

Video 2. High-coverage mutant E-cad movie segment.
https://elifesciences.org/articles/59035#video?2

Video 3. Intermediate-coverage wild-type E-cad movie  Video 4. Low-coverage wild-type E-cad control movie
segment. segment.
https://elifesciences.org/articles/59035#video3 https://elifesciences.org/articles/59035#video4
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every frame was assigned using a method and
algorithm described elsewhere (Chaparro Sosa
et al., 2018). To summarize, two-dimensional
heat maps showing the donor intensity (Ip) versus
acceptor intensity (l5) were constructed. It was
apparent that two populations were present at
high and low FRET efficiency (Figure 1—figure
supplement 1). A linear threshold dividing these
two populations was calculated by determining
the slope and intercept that minimized the inte-
grated heat map values along the dividing line
(Figure 1—figure supplement 1).

By imaging samples without labeled E-cad, it
was apparent that a small number of contami- video 5. Lipid tracer control movie segment.
nants were present in the supported lipid bilayer hiips://clifesciences.org/articles/59035#video5
only in the donor channel. These contaminants
were generally bright and immobile. Further-
more, due to inherent defects in supported lipid
bilayers, a permanently immobile (or highly confined) population was observed in the donor channel
(Knight et al., 2010). Traditionally, a displacement-based trajectory filtering procedure or photo-
bleaching is applied to remove these slowly diffusing trajectories in lipid bilayer studies (Cai et al.,
2016; Chaparro Sosa et al., 2018; Chung et al., 2016; Knight and Falke, 2009; Knight et al.,
2010; Ziemba and Falke, 2013). However, we opted to instead use a median donor intensity trajec-
tory exclusion criterion, as this removed many bright contaminants, donor aggregates, and donor
E-cad labeled with multiple fluorophores, but did not accidentally remove slowly diffusing E-cad
clusters. A 60" percentile median donor intensity maximum cutoff was selected as this was deter-
mined to include single donor E-cad with one fluorophore, while excluding many anomalous trajec-
tories, described above, that were represented by the tail of the median donor intensity
distributions (Figure 1—figure supplement 7). Intensity-based filtering criteria are frequently used
in single-molecule analysis (Knight and Falke, 2009; Knight et al., 2010). Not using a displace-
ment-based filtering procedure allowed the observation of diffusion over an extremely large
dynamic range, which was important here to observe both large clusters and monomers. However,
this results in lower than expected average diffusion coefficients, as a small number of apparently
immobile trajectories will bypass the intensity exclusion. Because of this, we focus on relative differ-
ences in diffusion and do not base any major scientific conclusions on the absolute values of the
average diffusion coefficients. To show that our bilayers do in fact exhibit diffusion consistent with
previous reports, we have included a short-time diffusion analysis using a displacement-based trajec-
tory filtering procedure (Figure 2—figure supplement 2). When this more conventional filtering pro-
cedure is applied, we measure average short-time diffusion coefficients within the range seen for
supported lipid bilayers for both E-cad and lipids in the bilayer (Rose et al., 2015).

For short-time diffusion coefficient determination, only trajectories with a total surface residence
time of at least 0.71 s were included, to allow for significant statistical analysis. This surface residence
time minimum of 0.71 s was not required for the dissociation rate estimations. Therefore, all trajecto-
ries longer than 0.1 s (two frames) were included. Also, trajectories that were observed in the first or
last frame were excluded from dwell time and surface residence time analyses to avoid misestimat-
ing the time spent in a given state. Lastly, trajectories that lasted longer than 1000 frames were
assumed to be contaminants and were removed.

Surface coverage estimation
The surface coverage in terms of # of E-cad/um? was estimated according to:

np +nsy —npac
=——" """ 1
Rorp M

where 0 is the surface coverage in terms of # of E-cad/um?, np is the number of fluorescent mole-
cules in the donor channel, ny is the number of fluorescent molecules in the donor channel, np 4¢ is
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the apparent number of fluorescent molecules in the donor channel for an acceptor control sample
that did not contain any donor labeled E-cad, Ap, is the area of the donor channel, and Ry, is the ratio
of donor-labeled protein to total protein. Subtracting the apparent number of fluorescent molecules
in the donor channel for a sample without any donor labeled E-cad allowed for the exclusion of con-
tamination in the donor channel, as well as any fluorescence in the donor channel from direct excita-
tion of the acceptor. This estimate assumes a one-to-one transfer of energy from donor to acceptor,
complete transfer of energy from donor to acceptor, minimal apparent objects in the acceptor chan-
nel that were not actually FRET acceptors, and that labeled and unlabeled E-cad are equally capable
of binding to the bilayer. These assumptions were appropriate for these experiments, primarily
because the number of objects in the donor channel was much greater than the number of objects
in the acceptor channel and because intermediate FRET-states were not significant. Even so, the
resulting surface coverage values should be treated as estimates. The fractional surface coverage
was averaged over only the first ten frames of each movie to minimize the underestimation of sur-
face coverage due to photobleaching. To further improve estimates, only objects that were tracked
for three frames or more were included in surface coverage calculations. This greatly reduced the
inclusion of false noise objects that were observed only for one or two frames. These surface cover-
age values were converted to a fractional areal surface coverage by multiplying by the cross-sec-
tional area of an E-cad extracellular domain, ~9 nm?, assuming the proteins were in an extended
conformation due to the presence of calcium (Lambert et al., 2005; Nagar et al., 1996). Surface
coverage estimates are included in Supplementary file 1d, both in terms of # of E-cad/um? and
fractional surface coverage by area, for the three protein solution conditions.

Average short-time diffusion coefficient determination

All molecular displacements between consecutive frames were separated based on FRET state, and
complementary cumulative squared displacement distributions were calculated using histograms of
all squared displacements in each of the two states (high and low FRET efficiency), where the
squared displacement was defined as the square of the Euclidean distance traveled from frame to
frame. Additional distributions were constructed using all molecular displacements from both FRET-
states. These distributions were then fitted to a Gaussian mixture model:

M
P(R2 > rz,At) = Zc,-e_’z/M’D‘ (2)

i=1

where r is the Euclidean displacement between frames, At is the time between frames (0.05 s), ¢; is
the fraction of displacements fitted by the ith Gaussian term, D; is the diffusion coefficient for the ith
term, and M is the number of terms included in the model. These data were satisfactorily modeled
by M =3 based upon residual analysis. A three-term Gaussian mixture model was selected because
the ability of this model to serve as a robust fitting function to extract an accurate average short-
time diffusion coefficient under all conditions, and interpretation of the three diffusive states is
strictly avoided. Using the Gaussian mixture model parameters determined from nonlinear fitting, an
average short-time diffusion coefficient (D) was calculated for both FRET-states and overall:

M
l_)shnrt Z CiDi (3)
i=1

where Dy,,,, represented the average diffusion coefficient on the shortest experimentally accessible
time-scale.

Surface residence time distributions

Complementary cumulative residence time (observation time) distributions were constructed for
both the high and low-FRET states by separating all trajectories into high-FRET and low-FRET trajec-
tories, where a high-FRET trajectory was defined as any trajectory where the molecule was in the
high-FRET state for at least one frame. After trajectory classification, the fraction of molecules that
remained on the bilayer a given time after their initial observation (t;) was calculated for both high-
FRET and low-FRET trajectories. Figure 3—figure supplement 2 shows the resulting complementary
cumulative surface residence time distributions for the mutant and two wild-type conditions.
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FRET-state dwell time distributions and transition rate determination
Complementary cumulative dwell time distributions were calculated for the two FRET states, corre-
sponding to high and low FRET efficiency, where the apparent dwell time (1) was defined as the
number of consecutive frames a trajectory spent in a given state multiplied by the acquisition time,
where the FRET state was determined as described above (Figure 3—figure supplement 5 and Fig-
ure 3—figure supplement 1). For these distributions, all dwell times were used, not only dwell times
bounded by transitions.

Furthermore, E-cad interactions were modeled using a 3-state Markov model that has been previ-
ously used to model protein conformation changes (Kienle et al., 2018). To summarize, this model
allowed for three states: high-FRET, low-FRET, or off. Therefore, the transition probability matrix
had the form:

1 —pru —Ppog PLH Poff
TR = PHL 1 — pHL — Do Pofy (4)
0 0 1

Where pry, pur, and p,y are the probabilities for a transition from the low-FRET state to the high-
FRET state, from the high-FRET state to the low-FRET state, and for a trajectory to terminate via
photobleaching or desorption, respectively. The value of p,; was determined independently by fit-
ting the surface residence times to an exponential distribution. In order to determine the transition
probabilities, a maximum likelihood estimate was used based on all trajectory FRET state sequences
(assigned as described above). To describe the heterogeneity in these transition probabilities, a like-
lihood function was defined to allow for beta-distributed transition probabilities. The resulting likeli-
hood function was:

LF(S|aru,bru,ane, ba)

_ H {B (aru + Nowg b 4 Nick) B(ans + Nu g bue + Nun ) s
. B(apy,bra)B(aur, bur) o

(1 _ pgff)NLL,k +Nrw e +Nen x+ Nk (5)

Where S is the sequence of observed FRET states for the kth trajectory, B is the beta function,
and Nypk, Now g, Nun g Nog k. and are the number of times within the kth trajectory the molecule tran-
sitions from the high-FRET state to the low-FRET state, transitions from low-FRET state to the high-
FRET state, remains in the low-FRET state, remains in the high-FRET state, and ends, respectively.
The model is parameterized by a;y, bry, ayr, and by, which are the parameters defining the beta
distribution of p;y and pg., respectively. The log of this likelihood function was maximized by itera-
tively changing the parameters defining the beta distributions describing the transition probabilities
between the high and low-FRET states. The average transition rates were then estimated by:

rin = —((bn) — Y(aLy +bin)) /At ©

ri = —((bre) — (. + b)) /At 7

where Ar is the experimental acquisition time, v is the digamma function, and r;y and ry; are the
average transition rates from the low-FRET state to the high-FRET state and from the high-FRET
state to the low-FRET state, respectively. Additionally, for transition from the high-FRET state to the
low-FRET state, the average transition rate is equivalent to the average dissociation rate constant
(kg), since dissociation is a unimolecular reaction. This is not the case for transition from the low-
FRET state to the high-FRET state. Resulting beta distributions of state transition probabilities are
shown as Figure 3—figure supplement 6, and the corresponding probability density functions for
state transition rates are shown as Figure 3—figure supplement 4. The values of the average transi-
tion rates are included in Supplementary file 1e. After determining the most likely beta distribution
parameters for the transition probabilities, trajectories were simulated using these transition proba-
bility distributions and complementary cumulative dwell time distributions were constructed after
truncating the simulated trajectories by sampling from the experimental trajectory surface residence
time distributions. These theoretical dwell time distributions were compared to the experimental dis-
tributions to check for model consistency (Figure 3—figure supplement 3).
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Single-molecule TIRFM cluster size distributions

In order to calculate E-cad cluster size distributions, raw trajectory friction factor data were adapted
from Thompson, et al. and subjected to further analysis (Thompson et al., 2019). Mobility was
selected as a means to infer cluster sizes as this allows determination of cluster sizes over a large
dynamic range (i.e. greater than two orders of magnitude in diffusion coefficients). Briefly describing
the methods used to generate these raw friction factor data: TIRFM was used to observe single
AF555 labeled E-cad molecules diffusing on DOPC supported lipid bilayers containing 5% DGS-NTA
(Ni) as a function of increasing E-cad surface coverage. Single molecule trajectories were extracted
and an effective diffusion coefficient (Dr) was calculated for each trajectory according to:

T
DT=%;[(xi*Xi—1)2+()’i*yi—1)2] (8)

where T is the duration of the trajectory and x; and y; are the Cartesian position coordinates of the
trajectory after time i. The effective diffusion coefficient was then related to the trajectory friction
factor (f) by the Einstein relation (Edward, 1970):

oo
k37T = FT (9)
where kg is the Boltzmann constant, T is temperature, and D+ is the effective diffusion coefficient for
a single trajectory. For a more detailed explanation of experimental methods or trajectory friction
factor calculations, see Thompson et al., 2019.

Considering that mutant E-cad tethered to the bilayer diffuses the same as a single lipid at all sur-
face coverages (Figure 5—figure supplement 3 and Thompson et al., 2019), we can extract the
effective size of E-cad clusters assuming additive friction factor contributions from each E-cad mole-
cule in the cluster (Cai et al., 2016; Knight et al., 2010; Thompson et al., 2019; Ziemba and Falke,
2013). The apparent trajectory friction factor, f, can be expanded as:

f=>f (10)

where f; is the friction factor contribution due to each E-cad molecule in the cluster and N is the
number of protein molecules in the cluster. The friction factor contribution of each protein in the
cluster is equal to the friction factor of a lipid in the free-draining limit, assuming bound lipids are
well separated and each E-cad molecule tightly binds a single lipid and has minimal contact with
additional lipids, all of which are generally true for this system after filtering trajectories
(Knight et al., 2010). The lipid separation distance for this system should be equal to the diameter
of an E-cad extracellular domain, which is approximately 3.4 nm (Lambert et al., 2005; Nagar et al.,
1996). This separation distance is large enough to assume lipid motion is not correlated
(Knight et al., 2010). Therefore, the trajectory friction factor becomes:

f=NfL (11)

Where f, is the friction factor of an individual lipid. The friction factor of a lipid can be extracted
from E-cad trajectory friction factor distributions recognizing that the large peak in the low friction
factor limit corresponds to E-cad monomer diffusion. It was determined that f, = 0.5 s/um? corre-
sponded to the friction factor of a lipid (Figure 5—figure supplement 4). The apparent cluster size
was calculated for each trajectory, and a probability distribution was constructed for each experi-
mental condition.

Ensemble-time-averaged mean squared displacement

The E-cad trajectory data adapted from Thompson, et al. mentioned above was further compared
to trajectory data for fluorescent lipid tracers also from Thompson, et al. to corroborate the claim
that E-cad is monovalently bound to a single lipid (Thompson et al., 2019). This was done by com-
paring ensemble-time-averaged mean squared displacement curves between wild-type and mutant
E-cad and a lipid in the bilayer. Ensemble-time-averaged mean squared displacement calculation
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and fitting for E-cad has been described previously (Thompson et al., 2019). Using the raw lipid tra-

jectory data, the ensemble-time-averaged mean squared displacement ((8*(7,T))) was calculated as
a function of lag time, 1, according to :

I-z

s A& _ N2 Y
<5 (77 T)> _N LT 1 < |:(xt7nAt+‘r xl,nAt) + (yt.nAl+‘r yL,nAt) } (12)

i=1 n=

where N is the number of trajectories, x; ; and y; ; represent the Cartesian position coordinates after

time 7, Az, is the time between frames (0.06 s), T is the duration of the trajectory, and 8%(z,T) is the
time-averaged mean squared displacement of a single trajectory. Only trajectories longer than six
frames (0.36 s) were used in mean squared displacement (MSD) calculations and trajectories were

truncated at six frames for (8°(7,T)) calculations. Additionally, (8%(7,T)) was only evaluated for lag

times where < was greater than three frames. The (8°(7,T)) lipid curve was then fitted to the Brow-

nian diffusion model (Meroz and Sokolov, 2015):
<52(T,T)>:4DTAT (13)

where Dt represents the time-averaged diffusion coefficient. Figure 5—figure supplement 3

shows (8°(7,T)) comparisons between wild-type and mutant E-cad at high, intermediate, and low
surface coverage values and the resulting values of Dra, confirming that E-cad is monovalently
bound to a single lipid.

kMC simulations

Construction of a domain-based coarse-grained model

Considering the E-cad extracellular regions consisting of five domains (EC1-EC5) (Harrison et al.,
2011), we constructed a domain-based coarse-grained model to describe the structural arrange-
ment of E-cad proteins. Each E-cad extracellular domain is coarse-grained into a rigid body with a
radius of 1.5 nm, and the rigid bodies are spatially aligned into a rod-like shape (Figure 4A). These
E-cad extracellular domains are further distributed on the plasma membrane, which is represented
by the bottom surface of a three-dimensional simulation box. The space above the plasma mem-
brane represents the extracellular region. The extracellular regions of E-cad can form clusters
through cis-interactions. Two different types of cis-interactions are considered in the model. The first
is the polarized interactions that were observed in the crystal structure. To implement this interac-
tion, we assigned a cis-donor site (purple dots) on the surface of each E-cad N-terminal domain, so
that it can bind to a cis-acceptor (red dots) site on the other E-cad. As a result, two adjacent E-cad
proteins can be laterally connected through these specific cis-binding interfaces (Figure 4A). In addi-
tion to the polarized specific interaction, a nonspecific interaction between two E-cads was also con-
sidered in the simulation system. As shown in the figure, this interaction can be formed by any pair
of two E-cad within a certain distance cutoff. Therefore, it is non-polarized.

Implementation of the kMC simulation algorithm
Given the surface density of E-cad, an initial configuration is constructed by randomly distributing
molecules on the plasma membrane, as shown in Figure 4B. Starting from this initial configuration,
simulation of the dynamic system is then guided by a kinetic Monte-Carlo algorithm. The algorithm
follows a standard diffusion-reaction protocol, as we developed earlier (Xie et al., 2014a). Within
each simulation time step, stochastic diffusions are first selected for randomly selected E-cad mole-
cules. Translational and rotational movements of the molecules are confined on the surface at the
bottom of the simulation box. The amplitude of these movements within each simulation step is
determined by the diffusion coefficients of E-cad on a membrane surface. Periodic boundary condi-
tions are implemented such that any E-cad that passes through one side of the cell surface reap-
pears on the opposite side.

In conjunction with diffusion, the reaction associated with nonspecific and specific interactions is
triggered stochastically if the binding criteria are satisfied between two E-cad molecules. The spe-
cific cis-interactions are triggered by two criteria: (1) the distance between a cis-donor site and a cis-
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acceptor site of two molecules is below 1.2 nm cutoff (bond length), and (2) the orientation angles
between two monomers are less than 30°, relative to the original configuration of the native E-cad
dimer. Nonspecific interactions are triggered by one criterion: the distance between the center of
mass of EC1 domains of two E-cad molecules is below 3.2 nm cutoff.

The probability of association is directly calculated by multiplying the on rate of the reaction with
the length of the simulation time step. At the same time, dissociations are triggered for any ran-
domly selected interaction with the probability that is calculated by multiplying the off rate of the
corresponding reaction with the length of the simulation time step. If an E-cad molecule or E-cad
cluster binds to another E-cad, or E-cad cluster through specific or nonspecific binding, they connect
and move together subsequently on the surface of the plasma membrane. Finally, the above proce-
dure is iterated until the system evolves into equilibrium patterns in both configurational and compo-
sitional spaces.

Parameter determination in the coarse-grained simulations

The basic simulation parameters, including time step and binding criteria, were adopted from our
previous work (Wang et al., 2018). The values of these parameters were determined based on
benchmark tests in order to optimize the balance between simulation accuracy and computational
efficiency. The two-dimensional translational diffusion constant of a single E-cad protein on a lipid
bilayer is taken as 10 um?/s and the rotational coefficient as 1° per ns. The values of these parame-
ters were derived from our previous all-atom molecular dynamic simulation results for the diffusions
of a cell-surface protein on the lipid bilayer (Xie et al., 2014b).

The reaction parameters, including the on and off rates of binding, were chosen from the range
that is typical for protein-protein interactions, but at the same time make the simulations computa-
tionally accessible. As shown in the next section, the on rates for nonspecific and specific interactions
are chosen from the range 108 s7" and 10* s, corresponding to effective rate constants ranging
from 10* M~'s™" to 108 M~ 's™". This is a typical range for diffusion-limited rate constants, in which
association is guided by complementary electrostatic surfaces at binding interfaces (Zhou and
Bates, 2013). A wide range of off rates, from 10* s™' and 10 s™', are used to model dissociation of
both specific and nonspecific cis-interactions. Therefore, our tests cover the wide range of dissocia-
tion constants from milliMolar (mM) to nanoMolar (nM), which is within the typical range for binding
of cadherin or other membrane receptors on cell surfaces.

Sensitivity analysis

To evaluate the sensitivity of different parameters on E-cad clustering, we first performed kMC simu-
lations at different E-cad concentrations (Supplementary file 1f). In order to exclude other factors,
the on rate and off rates were fixed for nonspecific interactions at 2 x 107> s~" and 10° s, respec-
tively, for both mutant and wild-type systems, and the on rate and off rate for specific interactions
were fixed at 108 s™" and 102 s, respectively, for wild-type systems. To build up the initial struc-
ture, we assign positions and orientations to 50, 100, 200 E-cad molecules on the membrane surface.
The length of each side of the square plasma membrane surface is 400 nm, along both X and Y
directions, which gives a total area of 0.16 umz, leading to surface densities of 313 E-cad/umz, 625
E-cad/um?, 1,250 E-cad/um?, respectively. At each concentration, we employed 50 independent
replica simulations with random initial seeds. The simulations were extended to 0.8-1.3 s until the
average cluster size reached equilibrium, and the final frames of trajectories were used for cluster
size analysis. Figure 5—figure supplement 5 shows resulting cluster size distributions at different
concentrations. The solid lines represent one-term exponential fitting for each concentration. For
comparison between experimental and simulated characteristic cluster size values, fitting was per-
formed after removal of the data point corresponding to the bin at the smallest cluster size. The pos-
itive values of fitted characteristic cluster size (negative slope on semi-logarithmic plot), suggest that
small cluster sizes are more favorable than large cluster sizes across the concentration range of 313
E-cad/um? to 1,250 E-cad/um?. Meanwhile, our results show that large cluster sizes become more
populated at higher E-cad concentration for both mutant and wild-type E-cad. This is consistent with
experimental results showing that the characteristic cluster size increases with elevating E-cad con-
centration. Specifically, the characteristic cluster size for the cluster size distribution at 1,250 E-cad/u

m? is ~29 E-cad, which is nearly the same for the experimental distribution at a concentration of
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1,280 E-cad/um? (~29 E-cad). These results indicate the robustness of our kMC simulation, suggest-
ing that the clustering configuration generated from the model is sensitive to the total surface cover-
age of E-cad.

In order to further explore the sensitivity of the model to different binding parameters, we per-
formed smaller kMC simulations involving various on- and off- rates of binding (Supplementary file
1g). To fix the surface density at 1,250 E-cad/um? and accelerate computing speed, we assigned
only 50 E-cad molecules on a 100 x 100 nm? membrane surface. For nonspecific interactions in
mutant systems, the on rate values tested were 2 x 10°s77,2x 10°s™ ", and 2 x 10* s, while the
off rate values tested were 10* s~', 10° s, and 10° s~. For specific interactions in wild-type sys-
tems, the on rate values tested were 108 s=', 107 s7", and 10° s™', and the off rate values tested
were 10°3s77,10°s™ ", and 10577, respectively. Simulations were carried out for all different combi-
nations of on/off rates in the mutant system. At each on/off rate, we employed 10 or 20 independent
runs with random initial seeds. The simulations were extended to 2 to 4 s, and the final 1 s trajecto-
ries were used for cluster size analysis. Figure 5—figure supplement 1 shows the effects of on/off
rate on mutant E-cad cluster size distributions. In each panel, the solid red line represents a single
exponential fit, and the values of the characteristic cluster sizes are shown in red. The panels with dif-
ferent on/off ratios have distinct characteristic cluster sizes, while the panels with the same on/off
ratio (same binding affinity) have approximately the same characteristic cluster sizes. By comparing
simulated and experimental characteristic cluster size values for the mutant, appropriate candidates
of nonspecific on/off rates were identified. The optimum nonspecific on and off rates were 2 x 10°
s ' and 10% s, respectively. Using these nonspecific on/off rates, the wild-type system was simu-
lated using all combinations of specific interaction on/off rates described above. Similarly, Figure 5—
figure supplement 2 shows the effects of specific interaction on/off rates on wild-type E-cad cluster
size distributions. In each panel, the solid red line represents the single exponential fit, and the char-
acteristic cluster size value is shown in red. The panels with different on/off rate ratios have distinct
characteristic cluster sizes. Finally, analysis of simulated association time distributions can be utilized
to select the best candidate from the combinations of specific on/off rates with the same ratio by
comparing association time distributions for simulated and experimental trajectories. The selected
on/off rates for nonspecific and specific interactions were the only combination of rates that resulted
in qualitative agreement between simulated and experimental association time distributions.
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