
Cancer Science. 2020;111:2987–2999.     |  2987wileyonlinelibrary.com/journal/cas

1  | INTRODUC TION

Liver cancer is one of the leading causes of cancer death world-
wide. There are more than 840 000 new liver cancer cases and 

780 000 cancer deaths from liver cancer each year, and the 
trends are increasing in recent years.1-3 Hepatocellular carcinoma 
(HCC) is the most frequent primary liver cancer, accounting for 
80%-90% of all cases.4,5 Significantly, both the incidence and the 
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Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous liver cancer with signif-
icant male biases in incidence, disease progression, and outcomes. Previous stud-
ies have suggested that genes on the Y chromosome could be expressed and exert 
various male-specific functions in the oncogenic processes. In particular, the RNA-
binding motif on the Y chromosome (RBMY) gene is frequently activated in HCC and 
postulated to promote hepatic oncogenesis in patients and animal models. In the pre-
sent study, immunohistochemical analyses of HCC specimens and data mining of The 
Cancer Genome Atlas (TCGA) database revealed that high-level RBMY expression is 
associated with poor prognosis and survival of the patients, suggesting that RBMY 
could possess oncogenic properties in HCC. To examine the immediate effect(s) of 
the RBMY overexpression in liver cancer cells, cell proliferation was analyzed on 
HuH-7 and HepG2 cells. The results unexpectedly showed that RBMY overexpres-
sion inhibited cell proliferation in both cell lines as its immediate effect, which led to 
vast cell death in HuH-7 cells. Transcriptome analysis showed that genes involved 
in various cell proliferative pathways, such as the RAS/RAF/MAP and PIP3/AKT 
signaling pathways, were downregulated by RBMY overexpression in HuH-7 cells. 
Furthermore, in vivo analyses in a mouse liver cancer model using hydrodynamic tail 
vein injection of constitutively active AKT and RAS oncogenes showed that RBMY 
abolished HCC development. These findings support the notion that Y-linked RBMY 
could serve dual tumor-suppressing and tumor-promoting functions, depending on 
the spatiotemporal and magnitude of its expression during oncogenic processes, 
thereby contributing to sexual dimorphisms in liver cancer.
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mortality of HCC are considerably higher in males than females 
with a ratio as high as 5.4 to 1, depending on the patient popula-
tions.1,6,7 Both sex hormones and the sex chromosome genes have 
been postulated to contribute to such sex differences.8-13 Various 
studies, including ours, have demonstrated that several Y chro-
mosome genes, such as testis-specific protein Y-encoded (TSPY ), 
variable charge Y (VCY ), and RNA-binding motif Y (RBMY ), are ec-
topically expressed in male HCCs at high frequency,14-18 thereby 
potentially exerting male-specific functions in the oncogenic 
processes and contributing to sex differences in HCC patients. 
Indeed, overexpression of the putative Y-linked gonadoblastoma 
gene TSPY in HCC cells could promote cell proliferation and up-
regulate various cell-cycle regulators, including CDC25B, whose 
high expression levels are closely correlated with poor prognosis 
of HCC patients.19

Similar studies have suggested that high levels of RBMY ex-
pression could be associated with poor survival in HCC patients 
and promote oncogenesis in chemically induced mouse liver 
cancer models.20,21 RBMY is a repetitive gene located within the 
azoospermia factor (AZF) region on the long arm of the human Y 
chromosome.22 The coding sequences of respective copies, eg 
RBMY1A1 and RBMY1B, are identical, hence here we term those 
copies as RBMY as a whole. RBMY is predominantly expressed in 
the male germ cells under normal conditions.15,23 The encoded 
protein harbors an RNA-binding motif and could participate in 
RNA splicing events in germ cells of the testis.24-27 Deletions in 
the RBMY genes cause failure in male meiosis, resulting in the ab-
sence of mature sperms in the testes of infertile patients.23 RBMY 
is ectopically expressed in various somatic cancers, including lung 
adenocarcinoma, kidney renal papillary cell carcinoma, and hepa-
tocellular carcinoma (HCC).14 However, the roles of RBMY in cell 
proliferation, development, and oncogenesis are still unclear and 
somewhat controversial. For example, while RBMY is expressed 
in testicular germ cells, it is silent in testicular germ cell tumors 
(TGCT), such as seminoma and testicular embryonic carcinoma.28 
Furthermore, ectopic and epigenetic activation of RBMY inhib-
ited proliferation of embryonic stem cells, resulting in embryonic 
lethality in mouse.29 Conversely, RBMY is abundantly expressed 
in selected HCC specimens and its cytoplasmic location in tumor 

cells is associated with poor clinical outcomes in patients.20 These 
observations suggested that RBMY could serve dual functions in 
oncogenesis, ie tumor-promoting and tumor-suppressing func-
tions, depending on its expression levels and spatiotemporal pat-
terns in the processes.

In the present study, we investigated the expression patterns 
of RBMY in clinical HCC specimens by immunohistochemistry 
and explored the immediate effects of RBMY overexpression in 
a hepatocellular carcinoma cell line HuH-7 and a hepatoblastoma 
cell line HepG2 using the tet-ON conditional gene activation sys-
tem,30 and transcriptome19,31 and pathway analyses.32,33 In vivo 
effects of RBMY overexpression were further studied using the 
constitutively active AKT and RAS oncogene-induced mouse liver 
cancer model and the hydrodynamic transfection technique.34-36 
Our results showed that RBMY is differentially expressed in 
 heterogeneous patterns with densely and sparsely positive as  
well as negative immunostaining patterns in pathological male 
specimens. High-level RBMY expression is associated with poor 
survival of HCC patients. However, RBMY overexpression showed 
immediate inhibitory effects on cell proliferation in both HuH-7 
and HepG2 cells. Transcriptome and pathway analyses  revealed 
that overexpression of RBMY could downregulate various  
genes involved in cell proliferation, particularly affecting the  
RAS/RAF/MAP and PIP3/AKT signaling pathways. Significantly, 
RBMY completely abolished tumor formation in the AKT and  
RAS oncogene-induced liver cancer model, compared with 
 positive controls without RBMY. Our findings suggested the  
possibility that RBMY could possess dual oncogenic/anti-onco-
genic functions in promoting and suppressing hepatocarcino-
genesis respectively in spatiotemporal and dosage-dependent 
manners.

2  | MATERIAL S AND METHODS

2.1 | Human hepatocellular carcinoma specimens

Tissue microarrays of human HCC and normal liver tis-
sues were purchased from US BioMax (Derwood, MD), 

TA B L E  1   Summary of the results of immunohistochemical analysis

Sample type Sex Samples Number
Densely 
positive

RBMY immunohistochemistry

Sparsely positive Negative

Tissue microarray Male NT 85 0 0 85 (100%)

HCC 88 6 (6.8%) 11 (12.5%) 71 (80.7%)

Female NT 16 0 0 16 (100%)

HCC 15 0 0 15 (100%)

Pathology preparation Male NT 43 0 0 43 (100%)

HCC 43 7 (16.3%) 14 (32.6%) 22 (51.1%)

Female NT 6 0 0 6 (100%)

HCC 6 0 0 6 (100%)
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comprising information from 101 patients with HCC (85 males  
and 16 females) and 103 patients with adjacent normal liver   
tissue (85 males and 16 females) (Table 1). Human pathology  
HCC specimens were obtained from the VA Medical Center-
University of California, San Francisco, and the Cooperative 
Human Tissue Network, consisting of 43 male cases and 6 female 
cases (Table 1). The studies were performed under an exempted 
protocol, approved by the Institutional Committee on Human 
Research.

2.2 | Lentiviruses and cell culture

cDNA coding for human RBMY was cloned into the EcoRI site of the 
lentiviral plasmid FUW-tetO37 (Addgene), resulting in the FUW-tetO-
RBMY construct. An enhanced green fluorescent protein (EGFP) 
expression vector FUW-tetO-EGFP, that harbored an IRES-EGFP cas-
sette was used as a control. Lentiviruses for the expression of RBMY 
and EGFP with the tet-ON system were prepared as described pre-
viously.19,38 Human HCC HuH-7 and hepatoblastoma HepG2 cells 
were transduced with lentiviruses.19,38 Transgene expression was 
induced by addition of 0.5 μg/mL doxycycline (Dox) in the culture 
medium. Cell proliferation assay and annexin-V binding assay were 
performed as before.19,31

2.3 | Mouse liver cancer model using hydrodynamic 
tail vein injection

The plasmid vectors for the mouse HCC model using the hydrody-
namic injection technique have been described previously; ie pT3-
EF1α-HA-myr-Akt (designated as pT3-AKTmyr), pT2CAGGS-NRasV12 
(designated as pT2-NRASV12), pCMV/sleeping beauty transposase 
(designated as pCMV-SB), and pT3-EF1α (empty vector).35,36 The 
coding sequence of human RBMY was inserted into the pT3-EF1α 
plasmid using the Gateway LR clonase II system, resulting in pT3-
EF1α-RBMY (designated as pT3-hRBMY). EGFP expression plasmid 
vector pT3-EF1α-EGFP (designated as pT3-EGFP) was used as a 
control.

FVB male mice were divided randomly into 3 groups of 5-7 an-
imals each. Hydrodynamic injection was performed as described 
previously.35,36 In brief, 10 μg pT3-AKTmyr, 10 μg pT2-NRASV12, 2 μg 
pCMV-SB, and 30 μg pT3-RBMY or pT3-EGFP were diluted in 2 mL 
saline (0.9% NaCl), sterilized through 0.2-μm filter and injected 
into the lateral tail vein of a recipient mouse (20 g body size) in 
7 s. The injected transgenes could co-integrate into the genome 
of selected hepatocytes and stably express in the liver of the re-
cipients. Animals were monitored twice weekly for tumor growth, 
harvested at 8 wk post-injection, and analyzed by necropsy, patho-
logical evaluation, histochemistry, and immunohistochemistry. The 
Institutional Animal Care and Use Committee approved all experi-
mental procedures accordingly to the NIH Guide for Care and Use 
of Laboratory Animals.

2.4 | Western blotting, immunohistochemistry, and 
immunofluorescence

Western blot analysis was performed as described previously.39 
Immunohistochemistry and immunofluorescence were performed 
using an anti-RBMY rabbit monoclonal IgG (clone R12508(2), 
Abcam), anti-Ki-67 rabbit monoclonal IgG (clone SP6, Thermo-
Fisher Scientific), anti-glypican 3 (GPC3) mouse monoclonal 
IgG (clone 4A5, BioMosaics, Burlington, VT), anti-LIN28B rab-
bit monoclonal IgG (clone EPR18717, Abcam), anti-GFP (Abcam) 
or anti-TSPY mouse monoclonal IgG (in-house), as described 
previously.40,41

2.5 | RNA preparation and RNA-Seq transcriptome 
analyses of the transduced HuH-7 cells

RNA-Seq transcriptome analyses of HuH-7 cells, expressing RBMY 
or EGFP alone after 24-h induction, were performed in biologi-
cal triplicates using 1 μg total RNA per sample. Sequencing librar-
ies were bar coded and sequenced on the Illumina NextSeq 500 
sequencer.19,31

Approximately 20 million sequence reads per sample were 
mapped onto the Ensembl GRCh37/UCSC hg19 human reference 
genome using TopHat software.19,31 Expression levels were cal-
culated using the featureCounts program.42 Differential gene ex-
pression analysis was performed using an R package for Tag Count 
Comparison (TCC) program.43

Differentially expressed genes between HuH-7 cells expressing 
RBMY and EGFP were divided into upregulated and downregulated 
groups. Gene ontology and pathway analyses were performed using 
the DAVID Bioinformatics Resources 6.8 (https://david.ncifc rf.gov/), 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
REACTOME databases.32,33,44,45

2.6 | Dataset and data mining analysis of HCC 
specimens from TCGA

Normalized and processed RNA-Seq gene expression data and cor-
responding clinical information for the HCC patients at The Cancer 
Genome Atlas (TCGA) data portal were downloaded from the UCSC 
Xena Browser.46 The dataset included information from 22 patients 
with male nontumor samples, 250 patients with male HCCs, 28 pa-
tients with female nontumor samples, and 121 patients with female 
HCCs. Male HCC cases were classified based on their RBMY expres-
sion levels: RBMY-high group (threshold = 100 RSEM normalized 
count, n = 26), RBMY-low group (0 < expression level < 100 RSEM 
normalized count, n = 51), and RBMY-negative group (expression 
level = 0 RSEM normalized count, n = 173).

Statistical analyses were performed using the Prism8 program 
(GraphPad Software). Survival analysis for the HCC cases in TCGA 
datasets was performed using data from the Human Protein Atlas 

https://david.ncifcrf.gov/
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F I G U R E  2   Differential expression of RNA-binding motif, Y (RBMY) in male hepatocellular carcinoma (HCC) specimens. A, Three types 
of the RBMY expression patterns: (i) densely positive (left column), (ii) sparsely positive (middle 2 columns), and (iii) negative (right column). 
Middle row shows magnified images of the boxed areas and bottom row shows negative staining of adjacent nontumor areas. B, Top row, 
example of RBMY-densely positive (B1) and Ki-67 (B2) staining of adjacent sections. B3 and B4 show the magnified images of the boxed 
area in (B1) and (B2) respectively. C, Example of RBMY-sparsely positive (C1) and Ki-67 (C2) staining in the adjacent sections. Bottom panels 
(C3-C6) show magnified images of the boxed areas (c3-c6) on the top panels respectively. Only RBMY-densely positive tumor cells could be 
correlated with Ki-67 expression. Bars represent 100 μm

(HPA).47 Expression levels of RBMY and Ki-67 were correlated with 
the respective patient survival in days.

3  | RESULTS

3.1 | RBMY expression in hepatocellular carcinoma 
specimens

Previous studies, including ours, have shown that RBMY is aber-
rantly expressed together with other Y chromosome genes, such as 
TSPY and VCY, and other oncogenes, such as LIN28B, and cell pro-
liferative markers, Ki-67, in HCC specimens.14,40 Initially, we studied 

the RBMY expression pattern using immunohistochemistry with 
reference to other tumor markers, such as GPC3 and LIN28B, the 
Y-located gonadoblastoma gene TSPY and the proliferative marker 
Ki-67, in selected HCC specimens. The results showed that RBMY 
is expressed primarily in the nuclei of tumor cells and is frequently 
co-expressed with these markers in tumors and not in the adjacent 
nontumor (NT) areas (Figure 1). No cytoplasmic RBMY expression 
was observed in our HCC samples. TSPY was expressed in both the 
cytoplasm and nuclei; GPC3 was located in the cytoplasm and cellu-
lar membrane; Ki-67 was nuclear located, and LIN28B was located in 
the cytoplasm, as previously reported.40,48-51 Next, we analyzed the 
RBMY expression patterns in more detail using both tissue microar-
rays (TMAs) and pathological HCC specimens (Table 1). Analysis of 

F I G U R E  1   Expression of RNA-binding motif, Y (RBMY), testis-specific protein, Y (TSPY), and the tumor markers glypican 3 (GPC3), Ki-67, 
and LIN28B in a representative male hepatocellular carcinoma specimen. The boxed areas in A-E representing tumor (f-j) and non-tumor (k-o) 
areas are magnified in (F-J) and (K-O) respectively. Nuclei were counterstained by hematoxylin (A-C, E) and Nuclear Fast Red (D). See text for 
details. Bar represents 200 μm in (A-E), 50 μm in (F-O)

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

(K) (L) (M) (N) (O)
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HCC specimens from 131 male and 21 female patients and adjacent 
NT specimens revealed 3 types of immunohistochemical patterns 
for RBMY: (i) densely positive (RBMY densely), (ii) sparsely positive 

(RBMY sparsely), and (iii) negative (RBMY negative) (Figure 2A), 
while all NT areas and HCC samples from female patients were nega-
tive for RBMY expression. In the tissue microarray samples, RBMY 
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was expressed at 6.8% in densely positive, 12.5% in sparsely positive 
and 80.7% negative sections respectively. Among the larger pathol-
ogy preparations of HCC specimens, RBMY was expressed at 16.3% 
in densely positive, 32.6% in sparsely positive and 51.1% negative 
sections respectively (Table 1). We surmised that the relatively 
large sizes of the pathology preparations could have accounted 
for the higher positive staining compared with those of small TMA 
HCC samples. Most densely positive HCC specimens overlapped 
significantly (Figure 2B) while the sparsely positive and RBMY-
negative HCC cases did not overlap with the Ki-67 staining patterns 
(Figure 2C), suggesting a likely correlation of densely and sparsely 
positive RBMY expression with relatively high and low cell prolifera-
tive properties among the HCC specimens from male patients.

3.2 | High level of RBMY expression is associated 
with poor prognosis of the HCC patients

To explore the potential association of the differential RBMY ex-
pression levels to those of clinical outcomes, we performed a data 
mining study with transcriptome datasets of specimens from 250 
male and 121 female patients with HCC, as well nontumor speci-
mens from 22 male and 28 female patients with patient survival 
information from TCGA database.52 The expression levels of RBMY 
in the HCC transcriptomes/specimens were classified as high, low 
and negative (Figure 3A), and correlated to patient survival in days. 
The results showed that the survival ratio of male patients with HCC 
expressing RBMY at a high level was significantly lower than those 
of men in the RBMY-low and RBMY-negative groups (Figure 3B). 
There was little difference between the RBMY-low and RBMY-
negative groups. Although the proportion of RBMY-negative pa-
tients did not change significantly with various pathologic stages 

(I-III), ie within 67% to 75% range, there seemed to be an increase 
in the proportion of RBMY-high expression patterns toward the 
later stages, ie from 5% to 20% (Figure 3C). Furthermore, the ex-
pression of the cell proliferative marker Ki-67 was relatively higher 
in HCC tumor specimens (Figure 3D) and is usually correlated with 
poor patient survival (Figure 3E). Interestingly, Ki-67 expression 
levels did not show any significant differences among specimens 
from the female, RBMY-negative (−) and RBMY-low (+) male pa-
tients with HCC, while there was a statistically significant increase 
in Ki-67 expression in samples from RBMY-high (++) male patients 
with HCC (Figure 3D), suggesting that high RBMY expression is 
correlated with increased cell proliferation and poor survival of the 
patients (Figure 3B,D,E).

F I G U R E  3   Expression analysis of RNA-binding motif, Y (RBMY) 
and Ki-67 in the transcriptomes of hepatocellular carcinoma (HCC) 
specimens in The Cancer Genome Atlas (TCGA) database. A, Plot 
of RBMY relative expression levels in male HCC transcriptomes, 
showing the RBMY-high, RBMY-low, and RBMY-negative groups. 
NT, nontumor tissues; the number in parentheses indicates the 
respective sample size. B, Kaplan-Meier survival plot showing 
the survival rates of the male RBMY-high (red), male RBMY-low 
(orange), and male RBMY-negative (blue) groups. Log-rank test 
P-values against RBMY-negative group are indicated. RBMY-high 
expression is associated with poor survival of the patients. C, Ratios 
of RBMY-high, RBMY-low, and RBMY-negative groups at respective 
HCC pathological stages. Chi-square test P-value is indicated. 
There is a gradual increase (ie from 5% to 20%) in the proportion of 
RBMY-high expression level toward later pathologic stages. D, The 
expression levels of Ki-67 in the nontumor (NT) and HCC samples 
of female (left) and male (right) HCC groups negative (−), low (+) and 
high (++) for RBMY expression respectively. Asterisks indicate t test 
P-value < .05. Ki-67 expression is further elevated in RBMY-high 
expression HCC group. E, Kaplan-Meier survival plot showing the 
survival rate of the Ki-67-high group (orange) and Ki-67-low group 
(green). Log-rank test P-value is indicated. High Ki-67 expression is 
associated with poor survival of the patients
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3.3 | Conditional RBMY overexpression retards cell 
proliferation in HuH-7 and HepG2 cells

To explore the immediate effects of overexpression of human RBMY 
in HCC, we used a lentiviral vector-mediated tet-ON system to con-
ditionally overexpress RBMY in the HCC cell line, HuH-7, and hepa-
toblastoma cell line, HepG2. Under this system, the transgene could 
be activated in the transduced cells with the addition of Dox in the 

culture medium.30 The green fluorescent protein (EGFP) transgene was 
used as a control. Western blotting was used to confirm the expres-
sion of the respective transgenes in the induced cells (Figure 4A,E). 
Immunofluorescence analyses showed that the overexpressed RBMY 
protein was predominantly localized in the nuclei of transduced cells 
(Figure 4B,F), consistent with the observation in clinical HCC samples 
(Figures 1 and 2). Cell proliferation assays showed that, under induc-
tion conditions (+Dox), cell proliferation of the HuH-7 and HepG2 cells 

F I G U R E  4   RNA-binding motif, Y (RBMY) overexpression inhibits cell proliferation in HuH-7 (top panels) and HepG2 (bottom panels) cells. 
A, E, Western blots of EGFP and RBMY in the transduced HuH-7 (A) and HepG2 cells (E) at 1 d post–Dox induction (+Dox). β-Actin was used 
as an internal control. −Dox indicates noninduced cells. B, F, Immunofluorescence showed that the activated RBMY (red, +Dox) was localized 
in the nuclei of RBMY-transduced (tet-ON-RBMY) HuH-7 (B) and HepG2 (F) (+Dox). DNA was visualized by DAPI staining (blue). C, G, Cell 
proliferation assays showed that overexpression of RBMY in HuH-7 and HepG2 cells significantly inhibited cell proliferation, as compared 
with EGFP alone (+Dox, right). There was no difference between transduced RBMY and enhanced GFP (EGFP) cells under noninduced 
conditions (−Dox, left). Asterisks indicate t test P-value < .05. D, Annexin-V binding assay at 72 h post–Dox induction showing detached tet-
ON-RBMY HuH-7 cells being annexin-V positive (red), corresponding to dead cells. Bars represent 100 µm in (B, D), and 20 µm in (F)
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overexpressing RBMY was drastically retarded, as compared with 
those of the corresponding EGFP control cells and those cells with-
out induction (−Dox) (Figure 4C, G). At 3-d post–Dox induction, nu-
merous HuH-7 cells overexpressing RBMY were strongly stained by 
annexin-V, suggesting a significant apoptosis/cell death among these 
cells (Figure 4D, red fluorescence). Interestingly, extended activation 
of the RBMY transgene resulted in the emergence of HuH-7/HepG2 
cells with restored normal proliferative properties compared with that 
of the control cells (data not shown). These results suggested that 
overexpression of RBMY impaired cell proliferation in the short term, 
while persistent RBMY expression promoted evolutionary adaptation 
and restoration of proliferative properties of the tumor cells.

3.4 | RBMY downregulated various genes in the 
cancer-associated pathways in HuH-7 cells

As overexpression of RBMY induced immediate inhibitory ef-
fects on cell proliferation and promoted cell death in HuH-7 cells 

(Figure 4C,D), using a RNA-Seq strategy we sought to determine its 
effects on gene expression in the RBMY-overexpressing HuH-7 cells 
as compared with those of EGFP control cells. Total RNA was ex-
tracted from the respective cell populations after 24-h doxycycline 
induction and in biological triplicates subjected to RNA-Seq analysis, 
as described previously.19,31 Our results identified 1093 differentially 
expressed genes (DEGs) between RBMY and EGFP overexpressed 
cells, consisting of 523 upregulated genes and 570 downregulated 
genes, with FDR < .01 by TCC analysis, expressing levels of log2[read 
count]>1, and |log2[fold change]|> 0.8 (Table S1).43 Pathway analy-
ses using the DAVID Bioinformatics Resources 32,33,44,45 showed 
that various signaling pathways, including RAS/RAF/MAP and 
PIP3/AKT signaling pathways, and other pathways, such as Hippo 
and WNT signaling pathways, associated with various aspects of 
oncogenesis,53-57 were enriched among the genes downregulated 
by RBMY overexpression (Table 2). RBMY downregulated several 
factors involved in the activation of the RAS/RAF/MAP and PIP3/
AKT signaling pathways, including BTC, EGF, ERBB4, PDGFB, and 
KLB. In contrast, similar pathway analysis resulted in no statistically 

TA B L E  2   Pathways enriched with the genes downregulated by RBMY overexpression in HuH-7 cells. Pathways were identified by DAVID 
with KEGG and REACTOME databases

Pathway Database Molecule P-value Genes in cluster

Cluster 1, Enrichment score = 2.27

Hippo signaling pathway KEGG 14 7.89E-05 BIRC3, BMP2, BMP4, BMP8B, BMPR2, CDKN2B, 
CER1, COL4A5, CTGF, CXCL8, CXCR4, DKK1, 
EDN1, EGF, ERBB4, FGF12, FRAT1, FZD1, FZD5, 
FZD6, FZD8, FZD9, HIF1A, IGF1R, INHBB, ITGA2, 
LPAR6, LUM, PDGFB, PLCE1, PPP1R12B, PTGER4, 
PTH2R, TEAD2, TGFB2, TGFB3, WNT3

Pathways in cancer KEGG 23 2.26E-04

Basal cell carcinoma KEGG 8 3.19E-04

R-HSA-373080: Class B/2 (Secretin family 
receptors)

REACTOME 7 6.87E-04

Proteoglycans in cancer KEGG 14 1.23E-03

Signaling pathways regulating pluripotency 
of stem cells

KEGG 11 2.25E-03

R-HSA-5340588: RNF mutants show 
enhanced WNT signaling and proliferation

REACTOME 3 1.30E-02

Wnt signaling pathway KEGG 9 2.00E-02

Melanogenesis KEGG 7 3.60E-02

Cluster 2, Enrichment score = 1.84

R-HSA-380108: Chemokine receptors bind 
chemokines

REACTOME 9 4.88E-05 BMP2, BMPR2, CCL20, CCR1, CCRL2, CXCL1, 
CXCL3, CXCL5, CXCL6, CXCL8, CXCR4, IL18, 
INHBB, OSMR, TGFB2, TGFB3, TNFRSF21Cytokine-cytokine receptor interaction KEGG 16 8.86E-04

Rheumatoid arthritis KEGG 7 2.08E-02

Cluster 3, Enrichment score = 1.32

R-HSA-2219530: Constitutive signaling by 
aberrant PI3K in cancer

REACTOME 7 2.44E-03 BTC, EGF, ERBB4, IRS2, KL (klotho), KLB, PDGFB

R-HSA-1257604: PIP3 activates AKT 
signaling

REACTOME 7 9.84E-03

R-HSA-1236394: Signaling by ERBB4 REACTOME 3 2.44E-02

R-HSA-5673001: RAF/MAP kinase cascade REACTOME 7 4.74E-02

Cluster 4, Enrichment score = 1.29

R-HSA-3000178: ECM proteoglycans REACTOME 7 6.82E-03 BMP2, BMP4, COL4A5, ITGA2, ITGB6, LUM, 
MATN3, TGFB2, TGFB3R-HSA-2129379: Molecules associated 

with elastic fibers
REACTOME 5 1.02E-02
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significant pathways being identified among the upregulated genes 
(data not shown). Hence, transcriptome and pathway analyses sup-
ported the observations of of cell proliferation and oncogenic signal-
ing by RBMY overexpression in HuH-7 cells (Figure 4C,D).

3.5 | RBMY overexpression inhibits oncogene-
induced HCC development in an in vivo mouse model

The AKT and RAS signaling pathways are frequently activated and 
associated with cancer development in human HCC.58-61 Aberrant 
activation of these pathways is widely involved in initiation and 
progression of various cancer types.59,62-64 Indeed, co-activation of 
the AKT and RAS pathways in mouse liver cancer models promotes 

rapid carcinogenesis.34,65 In the present study, we investigated the 
in vivo effects of RBMY in the AKT and RAS oncogene-induced 
liver cancer model using a hydrodynamic tail vein injection tech-
nique. Hydrodynamic tail vein injections of DNA in mice result in 
delivery of the injected DNA primarily to the liver of the recipient 
hosts.34-36 When such DNAs are flanked by the Sleeping Beauty 
(SB) inverted/direct repeat sequences (IR/DR) and co-injected 
with the SB transposase expression cassette, they could be effi-
ciently integrated into the genome of hepatocytes (Figure 5A).35,36 
By hydrodynamic injection of the expression vectors harboring the 
constitutively active AKT (pT3-AKTmyr) and NRAS (pT2-NRASV12) on-
cogenes with SB vector (pCMV-SB), selected hepatocytes could be 
transformed into tumor cells within 8 wk post-injection, thereby 
forming foci of HCC in host animals.35,36 To evaluate the effects 

F I G U R E  5   RNA-binding motif, Y (RBMY) overexpression abolishes tumor formation in a mouse liver cancer model mediated by 
constitutively active AKTmyr and NRASV12 oncogenes. A, Schematic diagram illustrating the hydrodynamic transfection of the oncogenes in 
the mouse liver using the Sleeping Beauty (SB) transposon system. DNAs inserted in either pT2 or pT3 vectors are capable of integrating 
into the hepatocyte genome mediated by SB transposase encoded by the pCMV-SB plasmid, when they are hydrodynamically co-injected via 
the tail vein of the recipient mouse. Using the constitutively active AKTmyr and NRASV12 oncogenes, such integration results in transformed 
hepatocytes that become tumorigenic and develop into loci of hepatocellular carcinoma (HCC) in 8 wk post-injection. The effects of RBMY 
in such oncogenic processes are evaluated in this system by inclusion of either pT3-RBMY or pT3-EGFP (control) plasmid in the injection 
mixtures. B, Immunohistochemistry showing the expression (red) of enhanced GFP (EGFP) (anti-GFP) and RBMY (anti-RBMY) in the 
respective transfected livers of the recipients at 3 d post-injection. C, Gross morphological images of selected livers from AKTmyr/NRASV12/
EGFP, AKTmyr/NRASV12/RBMY, and untreated control mice at 8 wk post-injection. The constitutively active AKTmyr and NRASV12 oncogenes 
induced foci of tumors with EGFP control plasmid (top row) while inclusion of a RBMY expression vector abolished such tumor formation 
(middle row) similar to untreated controls (bottom row). Bar represents 1 cm. D, Average liver weight of the mice corresponding to the 
results of an experiment, as presented in (C). Asterisk indicates Mann-Whitney test P-value < .05, and numbers in parentheses indicate the 
respective sample size. Bar indicates the standard error of each group. ND, no difference
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of the human RBMY in this in vivo HCC mouse model, we pro-
duced groups of co-injected mice with a combination of pT3-
AKTmyr, pT2-NRASV12, and pCMV-SB, and either with (a) a RBMY 
expression vector pT3-RBMY (AKTmyr/NRASV12/RBMY mice), or 
(b) an EGFP expression vector pT3-EGFP (AKTmyr/NRASV12/EGFP 
mice) (Figure 5A). The latter served as a positive control, while 
non-injected animals served as negative controls. Initially, immu-
nohistochemistry was performed on the livers of recipient mice 
at 3 d post-injection, which confirmed the efficient uptake of the 
co-injected DNAs and hepatic expression of the transgene EGFP 
and RBMY respectively (Figure 5B). At 8 wk post-injection, the 
positive control group of mice (AKTmyr/NRASV12/EGFP) developed 
significant HCCs, while none of the AKTmyr/NRASV12/RBMY mice 
developed any HCC in their livers, similar to the findings in the 
untreated negative control (Figure 5C, top, middle, and bottom row 
respectively). These observations were obtained consistently in 3 
separate experiments with groups of 4-6 animals each. Figure 5D 
represents measurements of the weights of the livers of experi-
mental animals from one of these studies, showing an increase in 
the average weight of the positive control mice (AKTmyr/NRASV12/
EGFP) while those for AKTmyr/NRASV12/RBMY mice were similar 
to that of untreated negative controls. These results suggested 
that early expression of RBMY could inhibit/suppress the initia-
tion of tumorigenesis mediated by constitutively active AKTmyr and 
NRASV12 oncogenes in this in vivo animal model of HCC.

4  | DISCUSSION

The human sex chromosomes, ie X and Y, evolved from a pair of 
identical chromosomes, through which one of them acquired a sex-
determining gene and became the Y chromosome while the other 
one became the X chromosome.66 In particular, the male-specific re-
gion on the Y chromosome (MSY) harbors genes that serve specific 
functions pertaining to male sex determination, differentiation, and/
or physiology.67 In total, 24 X degenerate/transposed or ampliconic 
genes are located on MSY, most of which have an X homolog with 
highly conserved sequences and encoded proteins that are capa-
ble of serving similar functions.67-69 There are a few exceptions, ie 
the sex-determining gene SRY, the gonadoblastoma gene TSPY and 
RBMY, whose X homologs, ie SOX3, TSPX, and RBMX respectively, 
encode for somewhat diverged proteins and might possess differ-
ent functions from their respective Y counterparts.15,23,70-72 Most 
conserved MSY and their X homologs are expressed ubiquitously 
in a wide variety of tissues, while those of diverged MSY genes 
are primarily expressed in the testis, ie SRY, and/or germ cells, ie 
TSPY and RBMY, and are likely to play crucial roles in male sex de-
termination/differentiation and spermatogenesis.15,23,70,73 Ectopic 
expression of MSY genes in other somatic tissues/organs could con-
tribute sex differences in normal development, differentiation and 
physiology,67 and disease initiation, progression, and treatment re-
sponses in male-biased manners.15,71 Indeed, ectopic expression of 
testis-specific genes, ie SRY, TSPY, and RBMY, have been observed 

in normal and diseased somatic cells/tissues, and have been postu-
lated to exert male-specific actions on the normal and/or diseased 
development.14-16,38,74,75

Hepatocellular carcinoma is a major liver cancer, which shows sig-
nificant male predominance in incidence and mortality.1,4-7 Although 
such sex differences have been attributed to the differential actions 
of sex hormones and their receptors, in which the male sex hormone 
androgen/receptors and the female sex hormone estrogen/recep-
tors are postulated to exacerbate and suppress the various aspects 
of hepatocarcinogenesis,12,76-79 genetic factors, particularly those 
encoded by the MSY genes, could also contribute to the pathogenic 
processes.15,67,71,80 Various studies have demonstrated that TSPY, 
VCY, and RBMY, are ectopically and highly expressed in selected 
HCC, thereby contributing to differential gene regulatory program(s) 
and sex differences in HCC.14,16-18,20,21,40,81

RBMY protein harbors an RNA recognition motif (RRM) and 
functions as a regulator of germ cell-specific splicing events.24-27 
Although it shares a conserved RRM domain with its X homolog 
RBMX, they diverged at their flanking sequences. RBMX is ubiq-
uitously expressed, including in the liver, and plays fundamental 
roles in the DNA-damage response and regulation of chromatid 
cohesion as well as in RNA splicing activity.82-86 Hence, RBMY 
and RBMX could serve slightly different biological functions. 
Accordingly, ectopic expression of RBMY could exert male-spe-
cific functions on hepatocarcinogenesis. Our immunohisto-
chemistry analysis on clinical HCC specimens revealed 3 RBMY 
expression patterns, in which the RBMY-densely expression pat-
tern is associated with the proliferative marker Ki-67, but not those 
sparsely positive/negative expression patterns. We surmised that 
densely positive and sparsely positive/negative specimens could 
correspond to those RBMY-high and those RBMY-low/negative 
samples in the TCGA transcriptomes, the former of which is asso-
ciated with poorer patient survivals than the latter. Interestingly, 
we detected a RBMY protein location primarily on the nuclei of 
tumor cells, while others suggested that only cytoplasmic location 
of the RBMY protein is associated with poor prognosis of the pa-
tients.20,21 At present, we are uncertain of the reason(s) for such 
difference(s) in the cytological locations of the RBMY proteins in 
the tumor cells. Nevertheless, high RBMY expression is associated 
with poor outcomes for the patients.

Our in vitro and in vivo assays demonstrated that overexpression 
of RBMY suppresses cell proliferation in cultured liver cancer cells 
and completely abolishes hepatocarcinogenesis in an acute onco-
gene-induced mouse HCC model (Figures 4 and 5). These observa-
tions seem to be in contrast with those of clinical data, suggesting that 
RBMY-high expression is associated with cell proliferative marker, 
Ki-67, and poor prognosis of the patients. We surmised that the sup-
pression of cell proliferation and promotion of cell death are imme-
diate effects upon induction of the RBMY transgene in the culture 
cells. Our transcriptome and pathway analyses suggested that such 
RBMY overexpression inhibits various oncogenic pathways, includ-
ing Wnt, Hippo, PIP3/AKT and RAS/RAF/MAP signaling pathways, 
in HuH-7 cells (Table 2). Using an acute in vivo HCC model mediated 
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by constitutively active AKTmyr and NRASV12 oncogenes, we further 
demonstrated that overexpression of RBMY inhibited the initiation of 
oncogenesis in the transfected hepatocytes in the livers of recipient 
mice. Importantly, both AKT and RAS signaling pathways are inhib-
ited similarly as immediate effects of RBMY overexpression in HuH-7 
cells. The AKTmyr and NRASV12 oncogenes transformed selected he-
patocytes upon initial transfection to the liver by hydrodynamic tail 
vein injection, and such transformed tumor cells developed into foci 
of HCC in 8 wk. The co-injected RBMY could have an immediate ef-
fect(s) in abolishing such early oncogenic events, thereby completely 
inhibiting the oncogenic actions of the constitutively active onco-
genes and subsequent tumor foci formation in the host animals.

Our results suggested that the Y-located RBMY gene could pos-
sess dual oncogenic functions, ie being a tumor suppressor and 
proto-oncogene depending on its spatiotemporal and expression 
levels, in hepatocarcinogenesis (Figure S1). With high expression at 
the initiation stage, RBMY could suppress pro-oncogenic pathways, 
thereby serving as a male-specific tumor suppressor as its early ef-
fects. Surviving tumor cells could have evolved to adapt proliferative 
mode, thereby promoting HCC progression as its chronic effects. 
Preliminary data mining analyses of TCGA dataset revealed that, in 
clinical HCC samples, RBMY is co-expressed with various oncogenic 
genes whose expression levels are negatively correlated with sur-
vival ratio in patients with HCC, while those genes were not upreg-
ulated by RBMY overexpression in HuH-7 cells (Figure S2 and Table 
S2). These observations suggested that RBMY expression may lead 
to or be related with the activation of various oncogenic genes during 
processes of adaptation to the proliferative mode under clinical con-
ditions. Future analyses of the RBMY expression in dysplastic nod-
ules/premalignant lesions would provide information regarding the 
potential roles of RBMY at the early phase of hepatocarcinogenesis.

Recent studies on a variety of proto-oncogenes have suggested 
similar dual functions as tumor suppressors and oncogenes, and 
these have been termed double-agent genes, eg NOTCHs, P21/
CDKN1A, P27/CDKN1B, TGF-β, and WT1.87-89 Our results suggest 
that RBMY could be also one of these double-agent genes, suppress-
ing and promoting hepatocarcinogenesis.
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