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Abstract 

Background:  Anthropometric measurements of healthy children differ in different parts of the world due to the 
diverse ethnicity and cultural backgrounds of families. In longitudinal studies, appropriate modeling of repeated 
anthropometric measures can improve the understanding of patterns of change, determinants of patterns, and varia-
tions in patterns of change over time. The objective of this study was to examine the latent change in physical height 
of children in Ethiopia, India, Peru, and Vietnam.

Method:  Longitudinal data of 6601 children aged 1 to 15 years were obtained from the Young Lives cohort study. 
The data were analyzed using a latent basis growth curve model.

Results:  The findings of the study revealed that the rates of growth did not remain constant across the time inter-
vals, which indicates the nonlinearity of the growth trajectory over time. For instance, children had the highest rate 
of growth between age 1 and 5 years, then between age 8 and 12 years, and a low rate of growth was observed 
between age 12 and 15 years. At the first measurement occasion (age 1 year) females were 0.826 cm (p < 0.0001) 
times shorter than males. The mean height at one year of age ranged from 72.13 cm in Ethiopia to 72.62 cm in India. 
Children in India and Vietnam had higher mean height at age one year. However, no significant difference in mean 
height at age one year was found between Ethiopian and Peruvian children, ( p = 0.914 ). Peruvian and Vietnamese 
children grew at a faster rate, while Indian children grew at a slower rate than Ethiopian children.

Conclusion:  We found substantial latent growth variations among children in four low- and middle-income 
countries. The latent trajectories differed by gender and country. The outcomes of the study could aid in detecting 
inequalities in children’s height growth.

Keywords:  Basis coefficient, Freed-loading, Growth curve, Latent variable, Longitudinal data, Structural equation 
modeling
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Background
Child growth which is defined by a gain in weight, height 
and other measurements is a basic characteristics of 
development [1]. It is one of the most accurate indicators 
of population health, wellbeing, and living conditions 

and nutritional status in childhood [2, 3]. Furthermore, 
the assessment of children’s growth patterns is impor-
tant to understand the child anthropometric indices of 
growth. Children’s stunting and underweight are associ-
ated with a lack of growth [4]. The socioeconomic status 
in which children grow up has a significant impact on 
their health and development [1]. For instance, children 
from low-income families have poorer health than chil-
dren from higher-income families [5]. Due to the diverse 
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ethnicity and cultural background of families, anthropo-
metric measurements (height and weight) of healthy chil-
dren differ in different areas of the world [6]. As a result, 
investigating variations in body height growth over time 
and across countries might help to detect inequalities in 
childhood living conditions [7].

When sufficient allowances are made for variations in 
genetic ability, average values of children’s height and 
weight accurately represent the condition of a nation’s 
public health and the average nutritional status of its 
people particularly in developing countries [8]. This 
study provides a detailed overview of differences in 
growth change among children measured height between 
2002 and 2016 in four low- and middle-income countries. 
In the comparative study of children’s physical growth in 
distinct populations, we are more interested in the aver-
age and variance of groups of children than in the growth 
trajectories of individuals. As a result, a well-designed 
growth model is an effective tool for examining differ-
ences in childhood growth patterns over time. Longitudi-
nal studies are appropriate tools for a clear understanding 
of growth trajectories when each individual is measured 
repeatedly on the same outcome over many years [9, 10].

The growth trajectories are expected to demonstrate 
nonlinear change if followed for a long enough period 
span, as the outcome variable has a nonlinear association 
to time [11, 12]. In modeling such trajectories, defining 
the functional form of the mean pattern over time, which 
is commonly done by comparing models that tolerate 
nonlinearity with respect to time, as well as determining 
the amount to which individual growth trajectories differ 
around that mean pattern are crucial first tasks. To com-
plete these tasks, growth curve models can be employed. 
Several authors have modeled the human growth curve 
in terms of mathematical functions. A few authors, for 
example, Karlberg [13] has proposed ICP-model (infancy, 
childhood and puberty) which split postnatal growth 
into three separate components which reflect the differ-
ent biological/endocrinological periods, the Jenss-Bayley 
model [14], and the Reed model [15]. The growth pro-
cess is a latent which is not observed directly. However, 
the main challenge of these models is that they cannot 
account for latent variables. To overcome this challenge, 
structural equation modeling [16] is used to fit growth 
curves in this study.

A structural equation modeling allows the repeated 
measurements (observed measurements) as multi-
ple indicators on unobserved or latent factors to model 
unobserved growth trajectories [17]. Therefore, this study 
focuses on latent growth curve models in the context of a 
structural equation modeling framework to examine the 
gender and country contributions to variation in height 
growth from 1 to 15  years of age, using data from four 

low- and middle-income countries. The hypotheses of 
the study are: 1) The patterns of growth differ by gender, 
and 2) The patterns of growth differ by country.

Methods
Data source
Data from the Young Lives study were used for this study. 
The Young Lives research is a 15 years longitudinal cohort 
study that looked at how childhood poverty changed over 
time in Ethiopia, India, Peru, and Vietnam. The study has 
two cohorts of children. The older cohort of 1000 chil-
dren born before the millennium development goals and 
the younger cohort of 2000 children born just after the 
millennium development goals were recruited from each 
country. The repeated measures of quantitative anthro-
pometric data (height and weight) were gathered from 
older and younger cohorts, respectively, ranging in age 
from 8 to 22 years and 1 to 15 years. Five rounds of quali-
tative and quantitative data collecting were completed. 
The first round of the survey was performed in 2002 
when children were on average 1 (younger cohort) and 8 
(older cohort) years old; the second round was performed 
in 2006, the third in 2009, the fourth in 2013, and the fifth 
in 2016 [18]. Details regarding sampling and participant 
recruitment have been discussed in previously published 
work [19, 20]. Children in the younger cohort who had 
completed five rounds were included in this study.

Latent basis growth curve model
The goal of a longitudinal study is to analyze phenom-
ena in terms of their time-related constancy and change 
[21]. Thus, it is important to include time into a statis-
tical model to obtain a better understanding of growth 
change over time. Statistical techniques that incorporate 
time as a factor or function in the model can be classi-
fied as a growth curve model [22]. Growth curve analy-
sis represents the procedures of defining and establishing 
scientific inferences regarding the growth change and 
patterns of change in a wide range of time-related events 
[23]. This model openly displays outcomes as a function 
of time, making it ideal for examining systematic change 
in longitudinal data [24]. The latent growth curve model, 
as a subset of the broader structural equation modeling, 
can benefit from structural equation modeling’s advan-
tages. As such, there are numerous ways to extend the 
latent growth curve model: structured and unstructured 
latent growth curve model [24, 25]. The structured latent 
growth curve model has the advantage of being able to 
specify and test known functional forms of change across 
time, for instance, polynomial latent growth curve mod-
els. In contrast, latent basis or a shape-factor or freed-
loading models determine the functional form for the 
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change across time by estimating some basis function on 
the growth factors [21, 26].

A latent growth curve model assumes that under-
neath the observed outcomes for each subject is a latent 
trajectory, meaning that a true curve is not directly 
observable [16]. In such cases, the latent trajectory is 
described using a weighted combination of basis func-
tions which reflects a shape of change that the under-
lying outcome is supposed to follow [25]. In order to 
account for the nonlinear patterns contained in the 
data, polynomial functions are predefined and included 
in a structured latent growth model. However, the 
unstructured latent technique describes nonlinearity 
in growth curves by estimating the basis function coef-
ficients for the growth parameters [21]. In an unstruc-
tured latent model, the values of the basis functions are 
estimated from the data not predetermined. Hence, 
unstructured latent growth curve models gained the 
name called latent basis growth curve models [23]. A 
latent basis growth curve model is very flexible and can 
handle nonlinear trajectories by relaxing the basis func-
tion coefficients for the latent slope. The shape of the 
trajectory is latent in the sense that it is derived from 
data. That is, the form of the trajectory does not have 
to follow a predetermined functional form; instead, it is 
an optimal functional form derived from the data [27].

Growth change is examined as a function of time in 
a latent growth model, and it is characterized by the 
description of latent variables known as growth fac-
tors. Growth factors, therefore, provide a prediction 
of the mean trajectory, as well as individual differences 
around that trajectory [28]. For example, assume yti 
is a set of responses for subject i at time point t, then 
the latent growth curve model with an estimated basis 
function can be expressed as:

where αi and βi are latent variables represent the initial 
and growth rate factor for i-th individual, respectively, 
�t represents the basis function for the factor of growth 
rate, and  εti is a time-specific residual. The latent vari-
ables αi is stated as a function of a latent intercept µα and 
βi is stated as a function of a latent slope µβ . The vari-
ance of the intercept factor eα is used to model individual 
deviations from the group intercept, while the variance 
of the slope factor eβ is used to represent individual 
deviations from the group slope [29]. Therefore, αi and 
βi are random components that vary across subjects. The 
variance–covariance of the initial and growth rate are, 
respectively, ψαα , ψββ and ψαβ.

(1)
yti = αi + βi�t + εti

αi = µα + eα
βi = µβ + eβ







In  latent basis growth curve models, the unknown 
basis functions are computed from the data by specify-
ing at least two basis function coefficients [21, 30]. The 
basis coefficients are the loadings from the latent slope 
to the repeated measures [31]. A common choice is to fix 
the first basis coefficient to zero ( �1 = 0 ) to establish an 
interpretation of the latent intercept as initial level and 
the last basis coefficient to �T to allow interpretation of 
the pattern of loadings on the growth change [26]. For 
instance, for 5 waves of data, when the time scores are 0, 
4, 7, 11, 14, the model would be:

For identification purposes, the model specified 0 
and 14 basis coefficients for the first and the last waves, 
respectively, while the other parameters are estimated 
freely from the data. The parameters �1, . . . , �T−1 are 
basis coefficients that determine the functional form 
of the trajectories. If the basis coefficients are equally 
spaced, it shows that the change in growth is linear, if not 
the change in growth is nonlinear [30, 31].

Figure  1 depicts a latent basis growth curve path dia-
gram with 5 measurements of height data. The height 
measurements, (y1, y2, . . . , y5) , are expressed as a func-
tion of the 2 latent components, α and β , and residu-
als, (ε1, ε2 . . . , ε5) . The basis coefficients of α and β are, 
respectively, fixed to 1 and (0, �2, �3, �4, 1) . The first time 
point t1 in this specification corresponds to the initial of 
the height measurement. The interpretation of the initial 
measurement is determined by the origin of time points 
[32]. The origin, on the other hand, can be located at any 
point in time based on the objectives of the study. The 
latent components, the intercept ( α ) and slope or shape 
factor (β) , have means ( µα and µβ ), variances ( ψαα and 
ψββ ), and a covariance ( ψαβ).

An intercept component describes the predicted 
value at time point zero. It is constant through time 
points, which is obtained by fixing basis functions of 
all time points on the latent intercept to 1 [29]. Iden-
tification basis coefficients must be placed on �t to 
define the slope factor β . For instance, in Eq.  (2), 
�1 = 0 and �T = 14 , making intercept interpreted as 
individual’s predicted score at t = 1 and shape factor β 
as the total amount of change that occurred from t = 1 
to t = T  . On the other hand, estimated basis coef-
ficients from �2 to �5 denote the percentage of over-
all change that has occurred up to that point in time 
[33]. In addition to this, they showed departures of the 
trajectories from linearity [26]. To illustrate, consider 
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that the basis function at time t is the sum of �t and 
the amount by which the basis function deviates from 
linearity at time t, represented θt (i.e., �t + θt ). The fol-
lowing re-expression is given for the previous Eq. (2):

Since �1 and �5 are pre-specified, θ1 = θ5 = 0 . The 
rest, θ2, θ3 and θ4 are estimated and used to solve for 
basis coefficients, �2, �3 and �4 , respectively. Equa-
tion  (3) tells us about deviations of trajectories from 
linearity at time t. Generally, due to the lack of a spe-
cific functional form, a latent basis growth curve 
model can capture a wide range of nonlinear patterns 
[33].

Model fit was evaluated using comparative fit index 
(CFI), the Tucker-Lewis index (TLI), the root mean 
square error of approximation (RMSEA), the stand-
ardized root mean square (SRMS). The higher values 
closed to 1 for CFI and TLI reflecting a better fit, while 
the lower values closed to zero for RMSEA and SRMS 
reflecting a better fit [34, 35].
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Results
This study provides a detailed summary of differences in 
height growth among children in four low- and middle-
income countries. Child height was measured at five dif-
ferent uneven time intervals of 1, 5, 8, 12, and 15  years 
and used as an observed variable in modeling a latent 
trajectory. All of the participants in this study were, 
on average, 1  year old at the time of the first measure-
ment. Table 1 shows the means, standard deviations, and 

Fig. 1  Path diagram for latent basis growth model with five waves of data

Table 1  Means and correlation matrix of height at five different 
measurement occasions

Height Age 1 Age 5 Age 8 Age 12 Age 15

Correlation matrix
  Age 1 1.000

  Age 5 0.56711 1.000

  Age 8 0.50055 0.76121 1.000

  Age 12 0.41197 0.6636 0.75258 1.000

  Age 15 0.39373 0.55641 0.62422 0.57612 1.000

Mean and standard deviation (SD)
  Mean 71.9456 104.8436 120.7948 142.9084 157.4089

  SD 4.7347 5.1106 5.6990 7.2132 7.2576
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correlation matrix for the five measurement occasions of 
height data.

Unconditional latent basis growth curve models
Unconditional latent basis growth curve models with dif-
ferent basis functions were employed. The coefficients 
in the basis function for the growth rate component,�t , 
of Eq.  (1) are fixed to specific values to indicate linear 
growth of the height data; for example, values match-
ing to the measurement occasion �t = (0, 4, 7, 11, 14) or 
any comparable scaling. However, under a latent basis 
growth curve model, the functional form of the trajec-
tory is unknown and determined by estimating the val-
ues of the basis coefficients from the data. Therefore, 
models with varied basis functions were fitted to the 
height data: Model l: �t = (0, 4, �3, �4, �5) and Model 2: 
�t = (0, �2, �3, �4, 14) . Fixing the basis coefficient of the 
first measurement to zero formally indicates that the ini-
tial status of height measurement at the age of one. Based 
on the objectives of the study, the initial status can be 
shifted to any time point [32]. Model 1 and 2 provide a 
different interpretation for the growth change parameter. 
In model 1, the latent intercept indicates the mean height 
at the first measurement. The latent slope, on the other 
hand, represents the growth change between the 1st and 
the 2nd measurements. In Model 2, the latent intercept 
still has the same interpretation as in model 1 since the 
origin of the time point is invariant in both models. How-
ever, the growth change is interpreted in terms of the full 
time.

Table  2 displays the models’ parameter estimates 
and fit statistics. The fitted growth models are sta-
tistically comparable and provide a satisfactory fit to 
the data (TLI = 0.998, CFI = 0.999, RMSEA = 0.025). 
Since the zero time point did not change in both mod-
els, the latent intercept’s mean and variance are the 
same for both models ( α = 71.945,ψββ = 13.374 ). 
The variations between the models are in the estima-
tions of the slope, variance of slope and covariance. 
There must be discrepancies in the parameter esti-
mates with varying basis function coefficients [24]. 
The purpose of these models is to clarify by dem-
onstrating the challenge of scaling basis functions 
and to demonstrate the consequences for the esti-
mated parameters and models fit. To elucidate this, 
the freely estimated basis coefficients in Model 1 are 
�t = (0, 4, �3 = 5.94, �4 = 8.628, �5 = 10.391) and 
in Model 2 are �t = (0, 5.389, 8.003, 11.624, 14) . The 
freely estimated basis coefficients for the shape factor 
in Model 1 suggest that the change between age 5 and 
8  years was 1.94, (i.e., 5.94—4), ​times the growth rate 
factor or overall change between infancy and middle 
adolescence. Similarly, the change between age 8 and 

12 years was 2.688, (i.e., 8.628− 5.94) , times the growth 
rate, and the change between age 12 and 15 was 1.763, 
(i.e., 10.391− 8.628) , times the growth rate.

The study revealed that children had the highest change 
between age 1 and 5  years, next between age 8 and 
12 years and get less growth between age 12 and 15 years. 
The results indicate that the increments of the basis 
coefficients are not constant reflects that the functional 
form of the growth trajectory is nonlinear. The estimated 
basis coefficients in Model 2, on the other hand, tell us 
the overall change between age 1 and 15 years as well as 
about the trajectory deviations from linearity. The mean 
rate of change from infancy to middle adolescence was 
6.105. On the other hand, the results show that the devia-
tion from linearity at the 2nd occasion was about 1.389, 
( i.e., θ2 = 5.389− 4 ), at the third occasion was about 
1.003 ( i.e., θ3 = 8.003− 7 ) and at the fourth occasion was 
about 0.624 ( i.e., θ4 = 11.624 − 11 ). The values of all θ ’s 
are not equal, suggest that the functional form of height 
growth is not linear. Figure 2 further indicates the growth 
patterns of children height aged 1 to 15 years are not lin-
ear. The pattern line depicts a faster increase in growth 
from the first to the second measurement occasion and a 
slight increase in the subsequent time points. Therefore, 
the growth model with an unspecified functional form of 
latent growth is suitable to fit the data.

Table 2  Results of fitted two unconditional latent basis model

Model

Model 1 Model 2

Estimate SE Estimate SE

Basis coefficient
  �1   0 0

  �2   4 5.389 0.008

  �3 5.940 0.007 8.003 0.009

  �4 8.628 0.012 11.624 0.012

  �5 10.391 0.016 14

Mean
  α 71.945 0.058 71.945 0.058

  β 8.225 0.014 6.105 0.006

Variance
  ψαα 13.374 0.406 13.374 0.406

  ψββ 0.182 0.008 0.1 0.005

Covariance
  ψαβ 0.057 0.048 0.043 0.036

Index of fit
  TLI 0.998 0.998

  CFI 0.999 0.999

  RMSEA 0.025 0.025

  AIC 49.784 49.784
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Latent basis growth curve model with time‑invariant 
covariates
There are different trends of change in height from 
infancy to adulthood. Therefore, individuals do not 
always react in the same fashion to growth and change 
over time. To resist the linear trend assumption, it is 
possible to freely estimate the slope basis function, as 
opposed to a latent growth curve model that specifies the 
slope basis function based on the measurement occasion 
used [33]. Therefore, to investigate the most likely growth 
change from age 1 to 15  years, Model 2 was employed 
with basis coefficients of the beginning and the end 
time points were specified (Fig. 2). Gender and country 
(country of children) were introduced as time-invariant 
covariates in the model. These covariates are assumed to 
affect the growth change and are therefore modeled as 
predictors of the growth factors. The results of this model 
reveal the initial level of height, the mean rate of change 
from infancy to middle adolescence (i.e., between age 1 
and 15), and variance–covariance of the growth factors. 
Furthermore, the study discovered a difference in growth 
between females and males, as well as between four 
low- and middle-income countries. Table 3 shows the fit 
results for this model.

As seen in Table 3, the estimated initial component of 
72.14 indicates the mean height of children at age one. 
Similarly, the estimated shape factor β = 6.143 suggests 
that the rate of change in growth over time. Significant 
negative gender difference in height growth was observed 

at both growth factors. These suggest that females had 
significantly lower initial mean height and rate of growth 
( α = −0.83,β = −0.09 ) than males. By incorporating 
countries as predictors of change in the growth model, 
the variations in the growth trajectories of children 
in four countries were analyzed. The study identified 

Fig. 2  The mean growth patterns of children height aged 1 to 15

Table 3  Results of conditional latent basis model

Note: ***p < 0.0001

Estimate SE CR P-value

Growth factor
  α 72.126 0.126 573.110 ***

  β 6.143 0.013 489.145 ***

Time-invariant covariate
  α<–- Gender (Female) -0.826 0.111 -7.410 ***

  β<–- Gender (Female) -0.090 0.011 -8.108 ***

Country < –- Ethiopia (Reference group)

  α<–- India 0.498 0.159 3.125 0.002

  α<–- Peru 0.017 0.160 0.108 0.914

  α<–- Vietnam 0.342 0.157 2.179 0.029

  β<–- India -0.143 0.016 -9.027 ***

  β<–- Peru 0.049 0.016 3.064 0.002

  β<–- Vietnam 0.112 0.016 7.122 ***

Variance–covariance
  ψαα 12.935 0.386 33.538 ***

  ψββ 0.073 0.004 17.357 ***

  ψαβ 0.210 0.031 6.750 ***
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that county differences were significantly predicted the 
growth factors. The comparisons found that, at base-
line, children in India and Vietnam showed positive and 
significant mean height ( India : α = 0.498, p = 0.002, 
Vietnam : α = 0.342, p = 0.029 ) when compared to 
Ethiopian children. This indicates that children in 
India and Vietnam were 0.418 and 0.342 times taller at 
age one than children in Ethiopia, respectively. How-
ever, no significant difference in mean height at the 
initial level was found between Ethiopian and Peru-
vian children, ( α = 0.017, p = 0.914 ). The positive 
and significant rate of change for children in Peru 
and Vietnam (Peru:β = 0.043, p = 0.002 , Vietnam: 
β = 0.112, p < 0.001 ) suggests that children in Peru and 
Vietnam grew at a faster rate than children in Ethiopia. 
Children in India, on the other hand, exhibited a negative 
and significant rate of change ( β = −0.143, p < 0.001 ), 
indicates that Indian children grew at a slower rate than 
Ethiopian children.

Individual growth variability is represented by the vari-
ance–covariance of the model components. Both the 
latent intercept ( ψαα = 12.94, p < 0.001 ) and the latent 
slope ( ψββ = 0.07, p < 0.001 ) had significant variance, 
indicate that there were significant individual differences 
in initial height and rate of change. Finally, the rate of 
growth and the mean intercept of height was positively 
correlated ( ψαβ = 0.21, p < 0.001 ). This indicates that 
children who reported higher initial values of height 
tended to show a slight increase in growth over time 
compared with children who reported lower initial values 
of height.

Discussion
Growth changes are complicated phenomena that 
require the use of robust models to depict and compre-
hend them. A prominent method for examining growth 
trajectories is to model change using structured and 
unstructured latent growth curve models within a struc-
tural equation modeling framework [36]. The structured 
latent growth model assumes that change happens in a 
specific pattern, for example, in either linear, quadratic, 
or cubic patterns. Nevertheless, accurately modeling the 
real process of change using a specific pattern may be 
problematic [37]. Due to these problems, we considered 
unstructured latent change analysis to model the current 
data since it does not enforce a particular functional form 
depending on the pattern of change appearing in the 
data.

The main goal of this study was to look at how the 
height of children in four low- and middle-income 
countries varies over time and across countries. To 
find the underlying functional form of growth pat-
terns in the latent growth analysis, we first constructed 

the unconditional latent model excluding potential fac-
tors. Thus, the two unconditional latent basis models 
with different basis functions were fitted, and then the 
conditional latent basis model was fitted. In the first 
unconditional model, the first and the second basis coef-
ficients were specified to represent the mean height at 
the first measurement occasion and the change of growth 
between the first and second measurement occasion, 
respectively. Our preliminary analysis revealed that a lin-
ear growth model did not adequately fit the data, imply-
ing that the growth curve contains nonlinear change. The 
highest growth change occurred between ages 1 and 5, 
while the lowest occurred between ages 12 and 15. This 
finding is consistent with previous studies [38–40].

Another essential aspect of this study was to investi-
gate the relations of gender and country variables with 
child growth and then we included these time-invariant 
covariates as the predictors of the growth factors. The 
time-invariant effect of gender on the latent intercept 
represented that females reported shorter height on 
average compared to males. Similarly, there was a gen-
der effect on shape factor, with males growing at a faster 
rate than females. Furthermore, results of the conditional 
latent basis model with the time-invariant effect of the 
country showed that India and Vietnam had a higher 
mean height at age one year than children in Ethiopia. 
However, there was no significant difference in mean 
height at age one year between Ethiopian and Peruvian 
children. In our previous study, we applied a piecewise 
mixed-effects approach to examine gender and coun-
try variations in the height growth at different growth 
phases. It was found that variations in height growth are 
significant [41]. Using the same datasets of the Young 
Lives cohort study, a previous study investigated child 
growth trajectories and found that children in Ethiopia 
had a lower mean height-for-age Z-score (HAZ) at age 
one year, whereas children in Vietnam had a higher HAZ 
at age one year [42].

We also analyzed the difference in the mean rate of 
change across four countries for 15-years trajectories. 
Children in four countries had substantial variations 
in growth change. Peruvian and Vietnamese children 
grew at a higher rate than Ethiopian children, whereas 
Indian children grew at a slower rate. This may be due 
to differences in socioeconomic level among countries. 
The previous study, which utilized the same datasets 
of the Young Lives cohort study, found that height dis-
parities resulting from early-life situations remain even 
when children reach early adolescence [1]. According 
to a study conducted by Bassino [43], regional income 
inequality in Japan between 1892 and 1941 explains ine-
qualities in population mean height. Children of higher 
socioeconomic status were taller than those of lower 



Page 8 of 9Wake et al. BMC Pediatrics          (2022) 22:208 

socioeconomic status. Children from higher socioeco-
nomic status were taller than those from lower socioeco-
nomic status [44].

Conclusion
This study examined the latent change process in height 
growth of children aged 1 to 15  years in four low- and 
middle-income countries. Furthermore, the effects of 
gender and country differences on child growth were 
investigated. It was found that the functional form 
between child growth and age is nonlinear, with rapid 
growth change observed between age 1 and 5 years. The 
outcomes of the study may help to identify inequities in 
children’s living conditions.
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