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Abstract: Growing evidence supports the hypothesis that changes in both the composition and
function of the intestinal microbiome are associated with a number of chronic inflammatory diseases
including celiac disease (CD). One of the major advances in the field of microbiome studies over
the last few decades has been the development of culture-independent approaches to identify and
quantify the components of the human microbiota. The study of nucleic acids DNA and RNA
found in feces or other biological samples bypasses the need for tissue cultures and also allows the
characterization of non-cultivable microbes. Current evidence on the composition of the intestinal
microbiome and its role as a causative trigger for CD is highly heterogeneous and sometimes
contradictory. This review is aimed at summarizing both pre-clinical (basic science data) and clinical
(cross-sectional and prospective studies) evidence addressing the relationship between the intestinal
microbiome and CD.
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1. Introduction

Although the recognition of the causal link between gluten and celiac disease (CD) was unveiled
in the 1950s [1], what factor (or factors) triggers the loss of immune tolerance to gluten in genetically
predisposed subjects still remains unknown. Since its original description, CD has most often been
perceived as a pediatric condition with a peak incidence in children younger than two years of age,
with more recent data suggesting that most of the cases would manifest by five years of age [2].

The worldwide prevalence of CD ranges between 1% and 2% in the general population [3,4], with
most patients remaining undiagnosed due to the subtle or multiform clinical manifestations of the
disease [5]. Based on more recent epidemiological data, and contrary to the original paradigm, it is
now appreciated that CD can present at any age with a broad range of intestinal and extra-intestinal
symptoms [6,7]. Its prevalence, as in many other autoimmune diseases often found in comorbidity
with CD [8], has increased over time in geographical regions characterized by a Western lifestyle [9].
This phenomenon was initially hypothesized to be secondary to the timing of gluten introduction
at weaning [10], although two large, randomized, and prospective high-risk, birth cohort-controlled
trials have disputed this premise by demonstrating that neither delayed nor early gluten introduction
modified the risk of CD [2,11].

These findings raised doubts about another CD paradigm that suggested that genetic background
and dietary gluten intake were necessary and sufficient to develop the disease. Besides the evidence
that CD onset can occur years after gluten introduction into the diet [6], other evidence at odds with
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the old paradigm is the lack of 100% CD concordance among monozygotic twins [12]. Therefore, while
genetic predisposition (including the required presence of HLA DQ2 and/or DQ8 haplotypes) and
gluten exposure are necessary, they seem to be insufficient for the development of CD autoimmunity.
Intestinal permeability is an additional element involved in CD pathogenesis, as a “leaky gut” might
initiate the early phases of innate immune activation following the exaggerated trafficking of undigested
gluten fragments from the intestinal lumen to the lamina propria [13].

Growing evidence supports the hypothesis that changes in gut microbiome composition and
function are associated with a number of chronic inflammatory diseases including obesity [14],
diabetes [15], inflammatory bowel disease [16] and cancer [17]. This might also be the case for CD.

In the last decades, one of the major advances in the field of microbiome studies has been the
ability to apply culture-independent approaches to determine the microbiome’s composition [18].
These technologies allow for the identification and quantification of components of the human
microbiota by studying nucleic acids (DNA and RNA) from fecal samples or other biological
samples [19], which eliminates the need for tissue cultures and also allows the characterization
of non-cultivable microbes.

The human gastrointestinal lumen contains a copious and diverse microbial ecosystem of over
100 trillion microorganisms [20]. More than 2 million genes are expressed by the human microbiome,
and these genes encode for metabolic pathways that finally produce thousands of metabolites [21].
Conversely, it is striking to note that the human genome is composed of only 23,000 genes [22].
Consequently, the host and its microbial communities can be viewed as a “superorganism” with
mutable immune and metabolic profiles [23].

Gut bacteria facilitate the digestion of insoluble fiber, produce vitamins such as vitamin K,
and elaborate trophic and immunomodulating compounds such as short-chain fatty acids (SCFA) [24].

Moreover, they also display key immune-modulating functions within the gut. By competing for
nutritional sources and producing anti-microbial molecules, beneficial gut bacteria counterbalance
the growth of pathogenic bacteria and favor epithelial integrity [25,26]. Microbiome-derived SCFA
can also modulate host histone deacetylase, therefore epigenetically influencing the function of innate
and adaptive immune cells [27]. The impact of the gut microbiome on mucosal immunity is further
demonstrated by the evidence of defects in lymphoid tissues (a decreased number of mucosal Peyer’s
patches and smaller mesenteric lymph nodes) and compromised antibody production in germ-free
animals [28].

In early childhood, microbial diversity rises with age until it stabilizes with two major bacterial
phyla: Firmicutes and Bacteroidetes, which represent roughly 90% of the whole gut microbiota.
Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia are the next most-numerous describing
a “healthy gut microbiota composition” [29]. At approximately three years of age, a child’s gut
microbiota composition and diversity are very similar to the adult microbiota [30]. While it is generally
assumed that microbiome engraftment occurs at birth during the passage through the vaginal canal,
or via maternal skin microbiota in case of cesarean section, there are a few reports showing that a
specific microbiota colonizes the placenta [31] and is detectable in the meconium [32], suggesting that
engraftment may start in utero.

In recent years, research into the early development of the microbiome has highlighted the
influences of delivery mode, maternal/infant nutrition and antibiotics on the engraftment and
subsequent changes in intestinal microbiome composition [33,34]. This crucial initial symbiotic
relationship between host and gut microbiome is instrumental in programming the immune system
to distinguish between pathogens and commensals to achieve the proper strategies to unleash
inflammation when necessary (for example fighting pathogens) or maintain anergy [35].

This review is aimed at summarizing current evidence on the relationship between the gut
microbiome and CD. For the sake of brevity, no studies on the microbiomes of patients on a gluten-free
diet (GFD) have been considered. This choice is also justified by the fact that gluten dietary exclusion
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would represent an “intervention” affecting gut microbiome composition, thus introducing a strong
bias for further considerations.

The literature search was run using Pubmed, EMBASE, Web of Science and Scopus using terms
as: “microbiome and CD” (341 articles), “microbiota and CD” (301 articles), “gut microbiome and CD”
(152 articles) and “gut microbiota and CD” (220 articles). The search was limited to articles written in
English. All abstract papers were read, 153 were analyzed as full articles, and finally, only 129 were
included as references for this review.

2. Microbiome, Environmental Factors and Gut Inflammation: Implications for Celiac
Disease (CD)

Environmental factors strongly drive microbiota engraftment and subsequent composition.
For example, vaginal delivery ensures the vertical mother–infant transmission for pivotal gut
microbiome components such as Bacteroides and Bifidobacteria [36]. Conversely, cesarean (C) section-born
infants show less Bacteroidetes, and the diversity of this specific phylum is lower [37]. However, while it
is uncertain if these changes might explain some reports of an increased risk of CD for children born
via C-section [38,39], it should be acknowledged that the association between C-section and CD is still
controversial [40].

Diet is another key regulator of microbiome development and homeostasis. The human milk
oligosaccharides (HMOs) select the growth of commensals such as Bifidobacteria and prevent the
growth of potential pathogens such as Clostridium difficile [41,42]. Moreover, HMOs enhance overall
barrier integrity by making enterocytes less vulnerable to bacterial-induced innate immunity [43].
Therefore, breast-feeding seems to be ideal for the engraftment of a symbiotic gut microbiome.

Some data also suggested that maternal antibiotic assumption during pregnancy shapes the gut
microbiota in the offspring [44], albeit a cohort study found no statistically significant association
between maternal use of antibiotics during pregnancy and CD risk in the offspring [45]. According to
some reports, antibiotic exposure during the first year of life has been associated with an increased
risk of developing CD [46,47], however, other studies did not confirm this finding [48–50]. A recent
meta-analysis did not resolve these incongruences, albeit favoring a non-causal relationship between
early antibiotics exposure and CD [51].

Early life infections may be involved in CD onset, and this issue is also supported by cohort
studies [52,53]. Another study that looked at the effect of viral triggers and Th1 response recognized
reovirus as a possible cofactor for both inappropriate immune activation and subsequent loss of
tolerance to gliadin [54]. Patients with CD display higher antibody titers against human adenovirus
serotype 2 [55,56]. This might go along with the clinical interpretation of in vivo data. A longitudinal
prospective cohort of genetically at-risk children demonstrated that an increased rate of rotavirus
gastroenteritis may strengthen the risk of CD in infancy [57]. However, the implementation of
rotavirus vaccination did not prevent a rise in CD prevalence that has been recently reported in Italian
children [58]. A role for Candida albicans in CD development has been hypothesized based on sequence
similarities between a hyphal wall protein and several T-cell gliadin epitopes [59], albeit the only small
study on mycobiome next-generation sequencing analysis of duodenal samples showed no difference
between adult CD cases and controls [60]. A large cohort study from Sweden has shown that there is a
significantly higher hazard ratio of C. difficile infection in patients with CD when compared to age- and
gender-matched controls [61], albeit study limitations leave open a few areas of uncertainties [62].

The physical isolation of microbes from the glycocalyx of the intestinal epithelium without
evidence of overt inflammation suggests that preventing physical contact with the gut mucosa avoids
activation of the immune system, therefore favoring a symbiotic relationship between the host and the
gut microbiome [63]. A balanced gut microbiota also contributes to the maintenance of the mucous
layer, especially due to bacteria such as Lactobacillus species and Akkermansia muciniphila [64,65].
A healthy microbiota additionally favors colonization resistance, namely, the capability of commensal
bacteria to compete for nutrients with pathogens, thereby stimulating the epithelium to secrete
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antimicrobial molecules into the mucous layer and provide a better defense against pathogens [66].
Additionally, commensals contribute to this line of defense by synthesizing protective substances,
such as acetate produced by Bifidobacterium, which prevents colonization by enterohemorrhagic E. coli
O157:H7 [67]. IgAs produced by the gut-associated lymphoid tissue (GALT) also contribute to barrier
maintenance, microbiome selection and decreased activation of innate immunity [68]. Related to this
topic, Olivares et al. demonstrated that a reduction in IgA fecal level can precede CD development in
infants [69].

Some studies have shown an increased expression of genes responsible for pathogen-associated
molecular pattern (PAMPs) recognition, such as Toll-like receptors (TLR) in CD. For example,
Szebeni et al. found higher expressions of TLR2 and TLR4 in untreated and treated CD patients
versus controls, as shown both at mRNA and protein levels [70]. Furthermore, TLR2, TLR9 and
TOLLIP, an intracellular protein that inhibits TLR, have been found as microbiota-associated
factors in the possible development of CD [71]. Overexpression of TOLLIP in vitro offsets TLR
pathways after lipopolysaccharide or lipotechoic acid stimulation. This phenomenon has been named
“lipopolysaccharide tolerance” [72]. In fact, a reduced expression of TOLLIP in active CD might
indicate that a failure to tolerate microbiota may contribute to CD immune activation.

It is well acknowledged that the host can tightly control the microbiota, however, the microbiota
also exerts a strong programming on host metabolism and immunity [73]. SCFA synthesized by
commensal bacteria condition regulatory T-cells (Treg cells), specifically, one member of the SCFA,
butyrate, helps T-cells to differentiate toward Treg cells [74]. SCFA might inhibit histone deacetylases,
provoking hyperacetylation of histones, which finally results in anti-inflammatory gene activation [75].

The role of gut microbiota and their metabolites in CD has been explored by a recent study
showing their effects on Treg cells through epigenetic processes [76]. Specifically, CD patients showed
an increased expression of a non-functional spliced form of FOXP3 (so increasing the risk of developing
autoimmunity) which could be attributable to the altered intestinal microbiota and to its unbalanced
butyrate production.

In another study, CD-derived organoids treated for 48 h with microbiota-derived compounds,
such as lactate, butyrate and polysaccharide A, showed a significant improvement of intestinal
permeability measured as transepithelial electrical resistance changes. Moreover, the same group also
showed that butyrate significantly upregulated the expression of genes regulating epithelial integrity
in CD organoids [77].

It has been noticed that the HLA-DQ genotype can affect early gut microbiota composition [78],
and an increased occurrence of pathogenic bacteria such as enterotoxigenic Escherichia coli has also
been described in infants genetically at risk for CD [79]. In a previous study from a Spanish group,
higher numbers of Bifidobacterium spp. and Bifidobacterium longum were present in the gut microbiota
of infants with the lowest HLA-DQ genetic risk for CD, whereas, for those with the highest genetic
risk, higher Staphylococcus spp. and Bacteroides fragilis were identified. However, the method of
infant-feeding influenced the composition of the microbiota, with breast milk favoring Clostridium
leptum, Bifidobacterium longum and Bifidobacterium breve gut colonization, therefore slightly switching
the fecal microbiome toward the one identified in infants with low HLA-DQ genetic risk [80].

3. Bifidobacteria and Lactobacilli Strains: Few “Paladins” in the Pathogenetic Joust?

In the pursuit of the best microbial candidate for disease immunomodulation, a few Bifidobacteria
strains have been studied with considerable results. For example, in an in vitro model using peripheral
blood mononuclear cell (PBMCs), both Bifidobacterium longum ES1 and Bifidobacterium bifidum ES2 have
been shown to downregulate the Th1 pathway typical of CD [81].

In addition, Lindfors et al. assessed whether Bifidobacterium lactis is capable of neutralizing the
toxicity of gliadin. In Caco-2 cells, they found that this strain was at least able to reduce the epithelial
permeability triggered by gluten [82].
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Laparra et al. evaluated Bifidobacterium longum CECT 7347 in a murine model of CD, and they
found that this specific strain not only diminishes pro-inflammatory cytokine synthesis, such as tumor
necrosis factor-alfa (TNF-alfa), but it also reduces jejunal architecture damage [83]. Another group
has demonstrated that Bifidobacterium longum strain NCC2705 produces a serine protease inhibitor
with immune-modulating features, i.e., attenuating gliadin-induced histological damage in NOD/DQ8
mice [84].

An alternative Bifidobacterium, B. infantis, seems to decrease Paneth cells and expression of
alfa-defensin-5 on electronic microscopy of duodenal biopsy when administered in active CD [85].
Paneth cells are key masters of gut homeostasis in innate immunity against noxious pathogens through
the release of defensins, lysozyme and phospholipase [86]. Furthermore, some evidence concerning
the protective effect of Lactobacillus casei DN-114001 and E. coli strain Nissen 1917 on gut barrier function
has been reported [87].

D’Arienzo et al. analyzed the effect of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus
fermentum in a transgenic mouse model expressing human DQ8. They found that L casei reduces
TNF-alfa secretion and related villous blunting, while both L paracasei and L fermentum determine
increased antigen-specific TNF-alfa. This suggests that, depending on the strain and on the experimental
model, probiotics may have either proinflammatory or immunomodulatory properties [88,89].

4. Focus on Other Species and Strains: The Joust Gets Hectic

Several other bacterial species and specific strains have been studied in regard to their possible
link with CD pathogenesis. As Bacteroides fragilis clones expressing metalloproteases were often
reported in patients with CD, this might underscore an anticipated role played in CD pathogenesis.
B. fragilis strains carrying metalloprotease genes may lead to increased intestinal permeability and
production of gliadin immunogenic peptides. Furthermore, these peptides could maintain or even
intensify their ability to provoke an inflammatory response mediated by TNF-alfa. These increases in
TNF-alfa production by epithelial cells could have deleterious effects that fuel both innate and adaptive
immunity in CD onset [90].

Some Prevotella species, Lachnoanaerobaculum umeaense and Actinomyces Graevenitzii, were isolated
from CD jejunal biopsies. These species could trigger an IL-17A-driven immune response [91].
This emphasizes the possibility that the increased IL-17A response seen in active CD could be in
part attributable to host-microbiota interactions, and this might also explain why the IL-17A mucosal
response in CD is not consistent in some CD patients [92].

Neisseria flavescens determines inflammation and induces disturbances in the mitochondrial chain
processes of Caco-2 epithelial cells. This latter metabolic alteration seems to be partly corrected when
Lactobacillus paracasei CBA is administered [93]. Another study involving N. flavescens showed that
five different strains isolated from adults with untreated CD led to an inflammatory activation of
both human and murine dendritic cells (DC) [94]. Nevertheless, it is not clear whether N. flavescens
causes inflammation, or the inflammatory process occurring in the gut of CD patients may favor its
colonization, which then simply maintains an activated proinflammatory response.

In addition, it has been demonstrated by Galipeau et al. that gut microbiota can either reduce or
exacerbate gliadin-induced damage in a mouse model of CD [95]. In this study, the expansion of the
Proteobacteria phylum caused more severe intestinal damage induced by gluten. This could possibly
be explained by the fact that the intestinal mucus layer is more penetrable to bacteria and toxins
where Proteobacteria prevail [96]. Similar evidence comes from a study on Caco-2 cells from Spain.
Enterobacteriaceae (belonging to the Proteobacteria phylum) were found to act similarly to gliadins
regarding DC maturation, i.e., attachment, spreading and pro-inflammatory cytokine polarization.
On the other hand, Bifidobacterium longum CECT 7347 counterbalanced IFN-production as a consequence
of gliadin stimulation and increased IL-10 release [97]. Altogether, these evidences underline the
importance of the biological milieu of the intestinal lumen for disease advancement.



Nutrients 2019, 11, 2403 6 of 19

5. Microbiome- Derived Gluten-Degrading Enzymes: Opportunity for Prevention and
Alternative Treatment

Another issue to consider is the capacity of the enzyme machinery belonging to the gut microbiome
to completely digest gluten. To this extent, it is of note that, after the bacterial proteolytic degradation
of gliadin, peptides could still be toxic and eventually cross the intestinal barrier more easily [98].
However, few in vitro studies have revealed that microbiota components, specifically Bifidobacteria,
can degrade proinflammatory gluten peptides in the small intestine, thus reducing their immunogenic
potential [82,99]. In one recent study, some Lactobacilli were able to digest in vitro amylase-trypsin
inhibitors (ATIs), non-gluten wheat proteins that induce an innate immune response through the
Toll-like receptor 4 (TLR4)–MD2–CD14 mechanisms. It is of note that the administration of Lactobacilli
species (Lactobacillus salivarius H32.1, Lactobacillus mucosae D5a1 and Lactobacillus rhamnosus LE3)
decreased both inflammation and permeability stimulated by ATIs [100].

Along with the bacterial component of the gut microbiome, enzymes able to digest gluten can
also be elaborated by some eukaryotes. Papista et al. studied the influence of Saccharomyces boulardii
KK1 supplementation in an animal model of gluten enteropathy (BALB/c mice). This intervention
allowed the hydrolyzation of toxic gliadin peptides and counterbalanced both enteropathy and
pro-inflammatory cytokine production [101]. In line with these data, another group has shown
degrading activities toward toxic gluten epitopes by oral commensal bacteria such as Rothia spp,
Actinomyces odontolyticus, Neisseria mucosa and Capnocytophaga sputigena [102]. Currently, some drugs
based on degrading enzymes from bacteria and fungi have been used in clinical trials with diverse
results [103].

It is well established that compliance to the GFD is difficult [104], and, for this reason, there is
a great expectation among CD patients for drug-based therapies [105]. In light of these challenges,
these findings on gluten-degrading activities by specific microbial strains might pave the way for a
probiotics-based complementary therapy of CD in the years to come.

6. Cross-Sectional Studies on CD and the Microbiome

Studies of electron microscopy scans of the small intestine have shown that some bacteria were
most frequently detectable in young patients with CD during the so-called Swedish epidemics [106,107].
These rod-shaped bacteria adhering to the epithelial lining in the small intestine were commonly seen
in children with CD but not in controls.

In 2007, a Spanish study showed that the diversity of stool microbiota was significantly higher
in CD children than in healthy controls, and that Bifidobacteria showed a significantly higher species
diversity in healthy children than in CD [108]. In the same year, the same group found (using
small bowel biopsy samples) that the proportions of total bacteria and Gram-negative bacteria were
significantly higher in CD children with active disease than in controls. Lactobacillus–Bifidobacterium
were significantly reduced while Bacteroides–E. coli were significantly increased in active CD compared
with controls [109]. Collado et al. showed that Clostridium leptum, Bacteroides, Staphylococcus and E. coli
were significantly more abundant in stool and biopsy samples of pediatric CD patients than in healthy
controls. Conversely, Bifidobacterium appeared significantly lower in feces of CD children as well as in
biopsies compared to control children [110].

Another study on fecal samples also showed that Bacteroides and Prevotella were higher in
untreated pediatric CD than in controls, whereas Clostridium histolyticum, Clostridium lituseburense
and Faecalibacterium prausnitzii were higher in healthy individuals than in CD children. According
to previous data, Bifidobacteria as well were significantly reduced in untreated CD [111]. Active CD
patients were reported to have a higher abundance of Bacteroides fragilis and a lower abundance of
Bacteroides ovatus than controls [90].

In 2010, a study from Italy pinpointed that a higher diversity in dominant microbiota characterized
CD children compared to controls. In addition, Bacteroides were significantly higher in CD compared to
controls [112]. A subsequent study from Spain demonstrated that Proteobacteria were more abundant
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in duodenal biopsies of active CD children than in those of controls [113]. Nevertheless, two different
studies from Finland, one study from the Netherlands and one more study from Spain did not replicate
previous findings, revealing no significant differences in small bowel biopsies concerning the amounts
or frequencies of bacteria identified between the CD subjects and controls [71,114–116].

In adult subjects, researchers from Spain found that bacterial richness in the upper small intestinal
mucosa is higher in adults than in children with CD [117]. However, in another work published
in the same year, the authors demonstrated that Bifidobacterium bifidum was significantly higher in
the stool samples of untreated CD patients than in those of healthy adults [118]. In another study,
Helicobacter and Megasphaera genera were highly abundant in duodenal biopsy samples from adult CD
patients compared to both first-degree relatives and the control group. Conversely, Barnesiella were
higher in controls compared to CD and first-degree relatives in duodenal samples, while Dorea,
Akkermansia and Prevotella genera were higher in fecal samples from controls compared to CD [119].
In 2016, D’Argenio et al. demonstrated that Proteobacteria were more abundant in samples from
duodenal biopsies of adult subjects, while Firmicutes and Actinobacteria were not as well represented
in active CD compared to controls. In the Neisseriales order, the Neisseriaceae family and the Neisseria
genus were significantly more present in active CD patients than in controls [94].

However, a word of caution concerning the studies mentioned above must be noted.
Studies focused on duodenal and/or jejunal microbiome in CD are scarce and often present contrasting
results. Additionally, differences in mucosal microbiome composition may represent the consequence of
an inflamed CD mucosa, rather than a contribution to CD pathogenesis. Ideally, comparable intestinal
and fecal microbiome analyses in the same subject may shed light on possible differences to be
considered in interpreting these data.

Adult patients with dermatitis herpetiformis seem to share more similar microbiota with control
subjects than those with other clinical features of CD. In fact, patients with gastrointestinal symptoms
had a higher amount of Proteobacteria than patients with another manifestation of the disease
(i.e., dermatitis herpetiformis) and the control subjects [120]. This finding allows speculation into
the possibility that microbiota might drive the symptoms of CD, which might also explain its protean
clinical features.

In regard to specific pathogenic features of bacterial strains associated with CD, studies from
Spain highlighted that virulence-gene carriage was higher in E. coli, in samples isolated from the stool
of children with CD when compared to healthy controls [121], and that the methicillin-resistant gene
(mecA) was most frequently identified in Staphylococcus epidermidis isolated from stools of active CD
than in those from controls [122]. All cross-sectional studies are recapitulated in Table 1.

To summarize, considering all these cross-sectional studies in a comprehensive fashion, it should be
pointed out that the highly individual-specific microbial profiles may greatly impact the interpretation
of the results, especially when evaluated on relatively small groups (a common feature of many
studies published to date). Moreover, another limitation of these results is the spurious healthy control
group, especially in regard to patients who underwent an upper GI endoscopy because of signs or
symptoms of disease, the microbiomes of these individuals might have hosted unpredictable microbiota
alterations. In addition, a strong limitation does apply for those studies that utilized PCR-D/TGGE
analysis (see Table 1), solely detecting the most-represented bacteria and therefore underestimating
microbiota diversity. Finally, and specifically for the mucosa-associated microbiome, it is unclear
whether changes in microbiota strains colonizing the duodenal mucosa influenced by environmental
risk factors (i.e., infant-feeding practice, exposure to antibiotics and use of anti-acids, etc.) could be
the cause of CD, or that structural and histological changes characterizing the celiac enteropathy
are responsible for secondary shifts in the composition of the adherent microbiota. Despite all these
limitations, one might conclude that a decrease in Bifidobacteria and an increase in Bacteroides seem to
be a somewhat common denominator of a few studies, both on feces and on mucosal biopsies.
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Table 1. Cross-sectional studies on Microbiota and subjects with celiac disease (CD).

Author and
Reference Journal Year Population Country Samples Methods Significant Findings

Sanz et al.
[108]

FEMS Immunol
Med Microbiol 2007 Children

(n = 20) Spain Fecal samples DGGE

The diversity of stool microbiota was significantly higher in
celiac children than in healthy controls. The Bifidobacterium

population showed a significantly higher species diversity in
healthy children than in celiac patients.

Nadal et al.
[109]

Journal of Medical
Microbiology 2007 Children

(n = 28) Spain Duodenal biopsy Molbiol FISH

The proportions of total bacteria and Gram-negative bacteria
were significantly higher in CD patients with active disease than

in controls. The ratio of Lactobacillus–Bifidobacterium to
Bacteroides–E. Coli was significantly reduced in celiac patients

with active disease compared with controls.

Sánchez et al.
[121]

BMC
Gastroenterology 2008 Children

(n = 21) Spain Fecal samples VRBD agar, API20E
system, PCR

Virulence-gene carriage was higher in E. coli isolated from CD
patients compared to healthy controls.

Collado et al.
[110] J Clin Pathol 2009

Children
(n 60 fecal samples
and n = 33 biopsy

samples)

Spain Fecal samples and
duodenal biopsy qPCR

Clostridium leptum and Bacteroides were significantly more
abundant in feces and biopsies of CD patients than in healthy
controls. E. coli and Staphylococcus were significantly higher in
stool and biopsy samples of CD patients compared to controls,

Bifidobacterium were significantly lower in feces of CD patients as
well as in biopsies compared to control children.

Ou et al.
[107]

Am J
Gastroenterol 2009 Children

(n = 51) Sweden Duodenal biopsy 16s RNA amplification Small intestine microbiota from CD patients did
not differ from controls.

De Palma et al.
[111] BMC Microbiology 2010 Children

(n = 44) Spain Fecal samples Molbiol FISH

Bacteroides and Prevotella were higher in untreated CD patients
than in controls. Clostridium histolyticum, Clostridium lituseburense

and Faecalibacterium prausnitzii were higher in healthy
individuals than in CD patients. Bifidobacteria were significantly

reduced in untreated CD patients.

Schippa et al.
[112] BMC Microbiology 2010 Children

(n = 20) Italy Duodenal biopsy TGGE
A higher diversity in dominant microbiota was found in CD
patients compared to controls. Bacteroides were significantly

higher in CD compared to controls.

Nistal et al.
[118] Biochimie 2012 Adults

(n = 21) Spain Fecal samples DGGE Bifidobacterium bifidum was significantly higher in untreated CD
patients than healthy adults.

Sánchez et al.
[122] J Clin Pathol 2012 Children

(n = 20) Spain Fecal samples
PCR ABI

PRISM-3130XL Gene
Analyzer

Staphylococcus epidermidis and haemolyticus were more represented
in the microbiota of active CD. Staphylococcus spp. diversity was

higher in active CD patients than in controls. The
methicillin-resistant gene (mecA) was most frequently identified

in S. epidermidis isolates from active CD than
in those from controls.

Sánchez et al.
[90]

Applied and
Environmental
Microbiology

2012 Children
(n = 40) Spain Fecal samples Schaedlr agar, 16S

rRNA amplification
Active CD patients had a higher abundance of Bacteroides fragilis

and a lower abundance of Bacteroides ovatus than controls.
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Table 1. Cont.

Author and
Reference Journal Year Population Country Samples Methods Significant Findings

Nistal et al.
[117]

Inflamm
Bowel Dis 2012

Children
(n = 13 and Adults

n = 15)
Spain Duodenal biopsy 16S rRNA

amplification
Bacterial richness in the upper small intestinal mucosa was

higher in adults than in children.

Kalliomaki et al.
[71] JPGN 2012 Children

(n = 19) Finland Duodenal biopsy qPCR No significant differences in the amounts or frequencies of
bacteria were identified between the study groups.

Sánchez et al.
[113]

Applied and
Environmental
Microbiology

2013 Children
(n = 40) Spain Duodenal biopsy 16S rRNA

amplification

Increased diversity of the cultivable mucosa-associated bacteria
from CD patients compared to the diversity of bacteria from the
controls. Proteobacteria were more abundant in active CD patients

than in controls.

Cheng et al.
[114]

BMC
Gastroenterology 2013 Children

(n = 20) Finland Duodenal biopsy HITChip None of the 65 genus-like bacteria was found to be significantly
more or less abundant between CD versus healthy controls.

Wacklin et al.
[120]

Inflamm Bowel
Dis 2013 Adult (n = 51) Finland Duodenal biopsy PCR- DGGE

Patients with CD presenting Dermatitis Herpetiformis shared more
similar microbiota with controls than those with other clinical

features of CD. Patients with GI symptoms had a higher amount
of Proteobacteria than the patients with another manifestation of

the disease or the control subjects.

de Meij et al.
[115]

Scandinavian
Journal of

Gastroenterology
2013 Children (n = 42) Netherlands Duodenal biopsy 16S–23S ISPRO PCR

No relevant differences in small bowel mucosal microbiome
composition and diversity index was found between children

with untreated CD and control.

Nistal et al.
[116]

Journal of Applied
Microbiology 2016 Adults (n = 18) Spain Duodenal biopsy 16S rRNA gene

pyrosequencing
No differences in the duodenal microbiota between untreated CD

patients and non-CD controls.

D’Argenio et al.
[94]

Am J
Gastroenterol 2016 Adult

(n = 35) Italy Duodenal biopsy 16s next generation
sequencing

Proteobacteria were more abundant and Firmicutes and
Actinobacteria less abundant in active CD than in controls.

Neisseriales order, the Neisseriaceae family, and the Neisseria genus
were significantly more abundant in active CD

patients than in controls.

Bodkhe et al.
[119] Front. Microbiol 2019 Adults

(n = 47) India Duodenal biopsy
and fecal samples

Illumina MiSeq
sequencing

In the CD group, Helicobacter and Megasphaera genera were highly
abundant compared to both first-degree relatives and control
group in duodenal samples. Barnesiella was higher in controls

compared to CD and first-degree relatives in duodenal samples.
Dorea, Akkermansia and prevotella genera were higher in fecal

samples from controls compared to CD.

DDGE: Denaturing Gradient Gel Electrophoresis; FISH: Fluorescent in situ hybridization; VRBD: Violet Red Bile Dextrose; API: Analytical profile index; qPCR: quantitative polymerase
chain reaction; TGGE: Temperature gradient gel electrophoresis; HITChip: Human Intestinal Tract Chip.
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7. Prospective Cohort Studies on Microbiome in CD

The only chance to detect a contributory microbial signature of CD and to mechanistically correlate
potential environmental factors involved in disease onset is to follow-up cohorts of infants at risk for
CD in a prospective manner. It has been previously reported that HLA genotype per se affects the gut
microbiota of infants at family risk for CD, with DQ2-positive subjects displaying higher abundance of
Firmicutes and Proteobacteria and lower abundance of Actinobacteria [123]. Infants with high genetic risk
for CD showed a higher prevalence over time of Bacteroides vulgatus, while those with low genetic risk
displayed a higher prevalence of Bacteroides ovatus, Bacteroides plebeius and Bacteroides uniformis [124].

Sellitto et al. analyzed stool samples from a relatively small number of subjects at several
time-points (7 days and 30 days, 6 months, 8 months, 10 months, 12 months, 18 months and 24 months).
Their data suggested significant differences between the developing microbiota of infants with a genetic
predisposition for CD compared to those from infants with a non-selected genetic background. In their
proof-of-concept study, they recruited infants with a genetic predisposition for CD and assessed them
prospectively until 24 months of age. 16s gene analysis proved that compared with the low-risk subjects,
infants carrying the CD-associated HLA had increased Firmicutes and Proteobacteria, while Actinobacteria
and Bacteroidetes were significantly restricted. Additionally, they also found that stool microbiota in
these DQ2+/DQ8+ children did not stabilize, nor was it similar to adult microbiota at one year of
age, and this feature remained at 24 months of age. In the only infant who developed CD during the
follow-up, Sellitto et al. found a lactate peak between 6 and 12 months of age, speculating about a
possible microbiome disturbance at that time [125].

Two more studies have been published from the PROFICEL prospective cohort in Spain by the
same group. When researchers examined stool samples from infants at genetic risk for CD at 4 and
6 months of age, those who did not develop CD showed an increased bacterial diversity over time.
Furthermore, a higher abundance of Bifidobacterium longum was found in control children, while higher
levels of Bifidobacterium breve and Enterococcus spp. were found in those who developed CD [68].
When researchers examined stool samples from infants at genetic risk within the first week of life,
and at 4 months and at 6 months of age, enterotoxigenic E. coli (ETEC) were found more often in infants
with the highest genetic risk versus those with a low or intermediate risk among breastfed infants.
Among infants on formula feeding, on the other hand, a higher number of ETEC was also identified
in infants with a high genetic risk versus those of intermediate risk [79]. Albeit limited to fewer
time-point assessments (4 months and 6 months), another prospective study from Finland did not find
any significant difference in fecal microbiota composition between children who later developed CD
and control children without disease or associated autoantibodies [126]. All prospective studies are
summarized in Table 2.
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Table 2. Prospective studies on microbiota development in subjects at risk for CD.

Author Journal Year Population Country Samples Methods Age of Sampling Significant Findings

Sanchez et al.
[124]

Applied and
environmental
microbiology

2011 Children
(n = 75) Spain Fecal samples DGGE 7 days, 1 month and 4 months

The Bacteroides diversity index was higher in
formula-fed infants than in breast-fed infants, infants
with high genetic risk showed a higher prevalence of

B. vulgatus, while those with low genetic risk
displayed a higher prevalence of B. ovatus, B. plebeius,

and B. uniformis.

Sellitto et al.
[125] PLoS One 2012 Children

(n = 34) USA Fecal samples Roche/454 FLX
pyrosequencing

7 and 30 days, 6 months, 8 months,
10 months, 12 months, 18 months

and 24 months

Genetically at-risk for CD enrolled in this study were
characterized by a low abundance of members of the
phylum Bacteroidetes, one infant who developed CD

showed high levels of lactate between 6 and 12
months of age.

Olivares et al.
[69] Microbiome 2018 Children

(n = 20) Spain Fecal samples Illumina MiSeq
sequencing 4 months and 6 months

Children not developing CD showed rising bacterial
diversity over time. A higher abundance of

Bifidobacterium longum was found in control children
while higher Bifidobacterium breve and Enterococcus

spp. were found in those who developed CD.

Olivares et al.
[79] Gut Microbes 2018 Children

(n = 127) Spain Fecal samples 16S rRNA
amplification 7 days, 1 month and 4 months

A higher prevalence of enterotoxigenic E. coli (ETEC)
was found in infants with the highest genetic risk

compared either to those with a low or
intermediate risk

Rintala et al.
[126]

Scandinavian
Journal of

Gastroenterology
2018 Children

(n = 27) Finland Fecal samples Illumina MiSeq
sequencing 9 months and 12 months

No statistically significant differences in microbiota
were found between children who later developed

CD and the control children without disease or
associated autoantibodies.
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8. Conclusions

Current evidence into the composition of the intestinal microbiome and its role as a causative trigger
for CD is highly heterogeneous and contradictory. This is most frequently due to the limited number
of cross-sectional and prospective studies performed, small sample sizes and different methodologies
applied (fluorescence in situ hybridization-PCR, denaturing gradient gel electrophoresis and 16 s
ribosomal RNA sequencing). In the recent past, molecular microbiology has developed based on
the analysis of bacterial DNA, therefore bypassing the shortfall of microbiome analysis limited to its
cultivable component. In-depth examination of the gut microbiome and identification of all strains is
now mainly obtained with sequencing-based techniques [127].

However, a mechanistic analysis on how specific bacterial strains may influence intestinal health
has not succeeded in considering the system biology network that plays a pivotal role in disease
development. The future scenarios of biomedical science will take advantage of recognizing the
unique routes that lead from health to disease, according to what has been called “precision medicine”.
In the pursuit of precision medicine applied to CD, a multicenter, prospective longitudinal study
called CDGEMM (Celiac Disease, Genomic, Environmental, Microbiome and Metabolomic Study) is
ongoing in the USA, Italy and Spain [128,129]. CDGEMM uses a multi-omic analysis approach to
identify early changes in the gut microbiome of infants genetically predisposed to CD and to monitor
metatranscriptomic profiles over time, correlating those profiles to other environmental factors such as
mode of delivery, feeding patterns and antibiotic exposure. This study will also deeply characterize
the “metabotypes” (microbe-derived metabolomes) of these “at-risk infants“ to be integrated with
multi-omics profiles in the framework of system biology.

In conclusion, even though studies in both pediatric and adult patients with CD have suggested an
association between altered microbiota and CD, a specific microbial signature has not been recognized.
Multi-omics data from ongoing longitudinal cohort studies are eagerly awaited to further clarify this
decisive field for precision medicine and primary prevention in CD.
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