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Abstract: MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation.
Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research
has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung,
bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate
cell–cell communication and signaling through packaging and transporting active biomolecules
such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers.
MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target
cells to exert alterations in the epigenetic landscape. The currently available literature indicates that
exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules
and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we
highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.
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1. Introduction

Over the past few decades, tremendous strides have been made in understanding
the genetics and treatment of lung cancer. However, lung cancer remains the prevailing
cause for global cancer-related morbidity and mortality [1]. Lung cancer is classified
into two histological subtypes: non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) [2]. NSCLC, which includes adenocarcinoma, squamous cell carcinoma,
and large cell carcinoma, is the most prevalent, covering approximately 80% of all lung
cancer cases [3]. SCLC is less commonly found (15–20%) but is known to proliferate
and metastasize more rapidly than NSCLC. In addition to these two main types, rare
lung tumors such as carcinoid tumors, adenoid cystic carcinomas, sarcomas, and benign
hamartomas have also been reported. Despite a wide array of currently available treatment
methods including surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year
survival rate of lung cancer patients is still under 20% [4]. Poor disease prognosis is in
part due to limited understanding of the complex nature of lung tumor heterogeneity
as well as late disease presentation and diagnosis. Notably, cancers are known to have
long incubation periods (~20 years), during which time, the sensitivity of typical detection
methods such as ultrasound, x-ray-based computer tomography, and endoscopy are inept.
In recent years, liquid biopsy has become a widely used technique in clinical settings due to
its ease of use, minimal invasiveness, and low cost. Most important, genomic information,
such as global gene expression dysregulation, extracted from biofluids provide higher
accuracy for disease detection as well as insights for underlying mechanisms of disease
pathogenesis.

Aberrant expression of microRNAs (miRNAs) has been well-documented in lung
cancer. Elevated oncogenic or reduced tumor suppressive miRNAs are equally important
in altering cancer-related signaling pathways, and have been implicated in tumor cell
growth, angiogenesis, and metastasis. In body fluids, miRNAs exist as circulating Ago
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protein-bound forms that are either released from damaged and dead cells or selectively
packaged into extracellular vesicles (EVs) for cell signaling purposes [5–7]. Exosomes
have been evidenced to play an important role in mediating cell–cell communication
through transferring and depositing active biomolecules such as miRNAs, thereby eliciting
epigenetic changes in recipient cells. Various exosomal miRNAs are dysregulated in lung
cancer. In particular, miR-21, miR-31, and miR-192 are most commonly found in human
lung cancer tissues and blood samples [8–11]. Through a comprehensive literature search,
we find that aberrant expression of exosomal miR-210 is found across various human, cell,
and animal models of lung cancer, indicating an important role in cancer development. MiR-
210 is a peculiar miRNA; apart from various cancers, its dysregulation is also associated
with other human diseases such as cardiovascular disease and diabetic obesity [12,13].
What is more interesting is that its inclusion in exosomes in response to hypoxia is also
relevant in placental disorder preeclampsia [14]. This review aims to examine the role of
exosomal miR-210 in lung cancer and its potential underlying pathways.

2. Biogenesis and Function of miRNAs

MiRNAs are a group of endogenous non-coding RNAs approximately 22 nucleotides
in length, and mainly function to mediate post-transcriptional gene silencing by binding to
complementary sites in the 3′ untranslated region (UTR) of target mRNAs. Processing of
miRNA can happen post- or co-transcriptionally [15,16]. Intragenic miRNAs are generated
mostly from introns of protein coding genes, while intergenic miRNAs, located between
genes, are processed by their own RNA polymerase II or III promoters [17]. MiRNAs
are known to have short seed regions, approximately seven nucleotides, that are often
found to be similar to a multitude of other miRNAs. In general, miRNA can be processed
through either canonical or non-canonical pathways [16,18,19]. Non-canonical miRNA
biogenesis includes Dicer-independent and Drosha/DGCR8-independent pathways. Pre-
miRNAs produced such as mirtrons often resemble Dicer substrates. In the canonical
pathway, the dominant pathway, pri-miRNAs transcribed by RNA polymerase II are first
cut into pre-miRNAs by microprocessor complex, which consists of RNA binding protein
DiGeorge Syndrome Critical Region 8 (DGCR8) that recognizes pri-miRNA motifs, and
Drosha, a ribonuclease III enzyme responsible for cleaving the pri-miRNA duplex, leaving
a 3′ overhang [20,21]. Lastly, pre-miRNA is transported to the cytoplasm via exportin 5
(XPO5)/RanGTP complex, where the terminal loop is removed by RNase III endonuclease
Dicer, resulting in mature miRNA duplex [22]. The double helix is then unwound by
helicase into either 3p or 5p strands. The 3p strand originates from 3′ end of the pre-
miRNA hairpin, and 5p strand comes from the 5′ end. While both strands can be loaded
into Argonaute (AGO) and serve as the guide strand, the preferred strand is often the one
with the lower 5′ thermodynamic stability, mostly with uracil at the 5′ end. The leftover or
passenger strand will then be eliminated by AGO-related degradation mechanisms.

MiRNAs exist in the genome as single copies, multiple copies or gene clusters, have
fixed gene loci, and are highly conserved through evolution. In animals, miRNA seed
regions, which span 2–8 nucleotides at the 5′ end, are critical for mRNA recognition. Con-
sidering the short seed region, individual miRNAs can target hundreds or even thousands
of different mRNAs, and similarly, individual mRNAs can be coordinately suppressed by
various miRNAs. However, despite seemingly non-selective binding activity of miRNAs,
reports that certain genes are preferentially targeted suggest that miRNA-led inhibition
may not be of random chance, but through an unknown yet sophisticated targeting mech-
anism. While in silico analyses provide predicted targets, the standard confirmation for
miRNA–mRNA binding is through biological assay, where a luciferase reporter fused to
3′UTR is reduced by miRNA overexpression or expressed when there is a point mutation
in the 3′UTR. Unlike animals, in most plants, miRNA is perfectly complementary to the 3′

UTR or even the coding region of the target mRNA, and can cleave target mRNA in the
complementary region, leading to gene silencing. MiRNAs are also known to be tissue-
specific. For example, in Arabidopsis thaliana, miR-157 is highly expressed in seedlings
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and miR-171 is highly expressed in flowers. Interestingly, the first miRNA, Lin-4, was
discovered by Ambros and Ruvkun in Caenorhabditis elegans in 1993, but it was not until
the early 2000s that miRNAs were formally classified as a distinct group of non-coding
biological regulators [23–26]. Since then, the field of miRNA has taken off, spanning a
wide range of study areas including molecular cancer biology, immunology, neurology, etc.
Today, it is well known that normal function of miRNAs in the human body is necessary
for maintenance of cellular homeostasis [27,28]. MiRNAs can influence the occurrence,
development, and formation of diverse diseases by regulating cell proliferation, apoptosis,
cell differentiation, cell cycle, hormone secretion, and biological development [27,29,30].
MiRNAs have been evidenced to participate in a multitude of cellular activities, including
cell fate determination, proliferation, apoptosis, immune response circadian rhythm, viral
replication, hormone secretion, etc. [24,31–35]. For example, miR-29a plays a crucial role in
the dysregulation of metabolism and inflammatory signaling linked to NAFLD severity
and progression [36]. The miR-15 family is capable of promoting cell cycle arrest and
suppressing mitotic genes [37]. MiR-155 upregulation represents an important signal in
various inflammatory diseases, some clinical trials have suggested this association as a
biomarker for inflammation [38]. Downregulation of miR-146a may contribute to severe
COVID-19 symptoms in patients suffering from diabetes, obesity, and hypertension [39].
MiRNAs have also been proposed to serve as early diagnostic biomarkers for identifying
high-risk subjects and early cancer stages [40]. Large-scale miRNA dysregulation can be
found in almost all cancer types. In particular, accumulating evidence has revealed that
exosomal miRNA plays a critical role in mediating favorable microenvironment for lung
cancer development. More importantly, tumor cells have been evidenced to promote an
immunosuppressive and chemoresistant environment through exosomal regulation, part
of which may be due to the role of miRNA in actively regulating the epigenetic landscape.

3. Exosomes

Exosomes are extracellular vesicles released by living cells, with a diameter ranging
between 30~100 nm, and a density between 1.13–1.19 g/mL [41–43]. Exosomes were
initially described by Johnstone as being uniquely secreted by reticulocytes [44,45]. The
main biogenesis mechanism is through the invagination of intracellular lysosomal particles,
which is released into the extracellular space after fusing with the cell membrane [46–50].
It is found that almost all cells can secrete exosomes under both normal and pathological
conditions, including reticulocytes, dendritic cells, lymphocytes, platelets, mast cells,
and tumor cells [44,51]. Exosomes can be detected in urine, cerebrospinal fluid, saliva,
sputum, serum, plasma, milk, semen, pleural effusion, amniotic fluid, and other biological
fluids [46,52–57]. While the composition of exosomes is similar to and determined by their
parental cells, it is interesting to note that exosomes released by all cell types contain several
common marker proteins, including CD63, CD81, CD9, TSG-101, and ALIX [47,58,59].

Exosomes are efficient in transmiting signals and transferring biologically active molecules
such as proteins, growth factors, cytokines, RNAs, DNAs, and lipids [46,48,51,60,61]. During
the transferring process, these biologically active molecules are surrounded by a lipid
bilayer membrane composed of cholesterol, phosphatidylserine, and sphingolipids, and
thus protected from degradataion. Active contents propageted by exosomes can serve as
stable signaling molecules mediating cell–cell communication and participating in various
cancer-related biological activities including cell migration, angiogenesis, pre-metastasis
niche formation, drug resistance, and immune regulation [41,62–70]. The secretion and
transportation of exosomes are accomplished through two main pathways. The first mech-
anism requires the endosomal sorting and transport complex (ESCRT). ESCRT is composed
of four proteins (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III), and functions to package
biomolecules in the internal cavity of exosomes. The other secretion method is the ESCRT-
independent mechanism, which requires the help of sphingolipids [41,44,71,72]. Once
released by the parent cell, exosomes can interact with neighboring or distant cells through
at least three mechanisms: (i) interaction between the exosomal transmembrane protein
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and the signal receptor of the recipient cell, (ii) fusion with the plasma membrane of the
recipient cell and release of their contents into the cytosol, (iii) internalization of exosomes
into the recipient cell through endocytosis [73]. Studies have shown that exosomal miR-
NAs released in the cytoplasm are functional and may induce changes in the function and
phenotype of recipient cells [74,75]. Existing data show that packaging of microribonucleic
acid into exosomes is a selective process. When tumor cells develop, levels of specific
exosomal microribonucleic acids will change. For these reasons, exosomal miRNA can also
act as potential candidate biomarkers for clinical applications [76]. Accumulating evidence
shows that exosomal miRNAs, especially miR-210, may play a key role in changing the
microenvironment of lung cancer, and may promote progression, invasion, angiogenesis,
metastasis, and drug resistance.

4. MiR-210 Function in Cancer

MiR-210 exists in two forms: miR-210-3p (guide strand) and miR-210-5p (passenger
strand). Most studies in literature focus on miR-210-3p since it can mature into functional
miRNA and integrate with the RNA-induced silencing complex (RISC), while the pas-
senger strand is meant for degradation [77,78]. MiR-210 is highly involved in a variety
of biological processes including mitochondrial metabolism, angiogenesis, cell prolifera-
tion, apoptosis, and erythropoiesis [79–82]. MiR-210-3p has shown both oncogenic and
tumor suppressive properties. MiR-210 expression is elevated in renal cell carcinoma
(RCC), hepatocellular carcinoma, breast cancer, colorectal cancer, pancreatic cancer, and
lung cancer [83,84]. In RCC patients, miR-210-3p levels are found to be especially high in
urine [85]. In bladder cancer, miR-210-3p has been evidenced to inhibit tumor growth by
targeting fibroblast growth factor receptor-like 1 (FGFRL1) and promote prostate cancer
cell epithelial–mesenchymal transition (EMT) and bone metastasis by targeting the NF-kB
signaling pathway [86]. In colon cancer patients, high miR-210 levels are correlated with
metastasis and poor prognosis [87]. Moreover, in colorectal and hepatocellular carcinoma
cells, overexpression of miR-210 has been evidenced to inhibit vacuole membrane protein 1
(VMP1) and enhance migration and invasion [88–91].

Target prediction software such as TargetScan and PicTar have revealed various
potential miR-210 targets, including E2F transcription factor 3 (E2F3), RAD52, and Max’s
Next Tango (MNT), and reflect the potential roles of miR-210 in regulating cell cycle,
proliferation, and genome integrity [78]. MNT is a transcription factor that competes with
c-MYC for max binding and is critical for cell cycle progression [92–94]. miR-210 has been
evidenced to bind to the 3′UTR region of MNT under hypoxic conditions to inhibit its
transcription and indirectly promote c-MYC activation and cell cycle progression [79].
Conversely, knockdown of miR-210 can lead to the overexpression of MNT and cell cycle
arrest, as shown in glioma stem cells [95]. Furthermore, miR-210 has been demonstrated to
inhibit E2F3 expression, which is known to preferentially target tumor suppressor genes
and inhibit cell proliferation [96,97]. In addition to cell cycle control, miR-210 has also
been implicated in disruptions of DNA damage repair pathways. For example, cells
overexpressing miR-210 exhibit low levels of RAD52 and greater instances of DNA strand
breaks [98]. Similar to BRCA2, RAD52 serves to recruit RAD51 to repair double-strand
breaks through nucleoprotein filament formation [89,97,99,100].

In vitro studies have found that miR-210-induced VEGF expression promoted cancer
cell migration and angiogenesis [101]. Angiogenesis, a process of new blood vessel forma-
tion, is particularly important for cancer cell proliferation and metastasis. Hypoxia-induced
miR-210 overexpression triggers lactic acid fermentation and increase in glucose trans-
porter GLUT-1. GLUT-1 upregulation is often found coupled with vascular endothelial
growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, creating
favorable conditions for angiogenesis [102]. Alternatively, miR-210 can also promote
VEGF expression through the inhibition of phosphor-tyrosine phosphatase-1B (PTP1B) and
Ephrin-A3(EFNA3) [98]. Moreover, its role in regulating hypoxia-inducible factors (HIFs)
under low oxygen (hypoxic) conditions is well documented. Notably, hypoxia is a common
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feature found in many cancer types, as the demand for oxygen in proliferating tumor
tissues eventually exceeds the supply. Under normal circumstances, glycerol-3-phosphate
dehydrogenase 1-like (GPD1L) activates prolyl-hydroxylase domain isoforms (PHDs) to
promote HIF-1 proline hydroxylation and proteasomal degradation. However, under
hypoxic conditions, elevated miR-210 expression inhibits GPD1L through mRNA 3′UTR
binding, and results in HIF-1 accumulation [103,104]. HIF-1 accumulation can up-regulate
CA9, COX2, and VEGFA, thereby adapting to hypoxic conditions [105]. Noted, miR-210-
HIF-1 interaction is bi-directional. When the oxygen level decreases, increase in HIF-1
protein can also promote miR-210 accumulation, indicative of a positive feedback loop.
Moreover, upon hypoxic stress, miR-210 can inhibit DNA repair factor RAD52, increase
ROS production, and decrease mitochondrial respiratory activity [77,79,106]. Notably,
hypoxia can also promote exosomal miR-210 release through increased production of
tissue inhibitor of metalloproteinases-1 (TIMP-1). TIMP-1 has been evidenced to promote
angiogenic tubulogenesis through upregulation of miR-210 expression via the PI3K/AKT
pathway [107]. Current studies indicate that exosomes excreted by hypoxic cancer cells
may be responsible for promoting tumor progression via miR-210 secretion [108,109]. For
example, circulating exosomes isolated from breast cancer and colorectal cancer patients
show increased miR-210 expression [90,110].

5. Mechanisms of Exosomal miR-210 in Lung Cancer

In 2009, Rabinowits et al. first reported that miRNAs extracted from NSCLC tissue can
serve as diagnostic biomarkers [111,112]. Since then, various miRNAs have been implicated
in the development of lung cancer, and miR-21 has been one of the most extensively studied
candidates. However, while dysregulation of exosomal miR-210 has been reported in
human, cell, and animal studies (Table 1), less is known about its underlying mechanisms
in lung cancer. This section will examine all currently known mechanistic pathways
involved in exosomal miR-210-mediated lung cancer.

Table 1. MiR-210 expression in human, cell, and mouse models.

Exosomal miRNA miR-210 miR-210-3p miR-210-3p miR-210-3p miR-210 miR-210

Expression Level Up Up Up Up Up Up

Sample Source Human Cell Cell Cell Cell Fox Chase SCID
mice

Sample Type Pleural effusion

HCC827 cells,
PC-9 cells,

HCC827-OR cells,
PC-9-OR cells

H358 cells, A549
cells, H460 cells

A549 cells,
NCIH1703 cells,
BEAS-2B cells

A549 cells,
HEK-293/EBNA

cells
Plasma

Exosome
Isolation Method

Exosome
isolation reagents

(Invitrogen)

differential
centrifugation EXO Quick ultracentrifugation ExoQuick-TC ExoQuick-TC

miRNA Detection
Method qRT-PCR

miRNA
microarray and

qRT-PCR

miRNA
microarray qRT-PCR qRT-PCR qRT-PCR

Upstream
Regulator unknown unknown unknown unknown TIMP-1 TIMP-1

Downstream
Target unknown unknown STAT3 signalling FGFRL1 EphA3

FGFRL1, E2F3,
VMP-1, RAD52

and SDHD

Function unknown Drug resistance Invasion,
Metastasis, EMT pro-proliferative Angiogenesis Vascularization

Cancer Type adenocarcinoma NSCLC NSCLC Not specified adenocarcinoma adenocarcinoma
Reference [9] [113] [114] [103] [102] [107]

5.1. Signal Transducer and Activator of Transcription 3 (STAT3)

Hypoxic bone marrow-derived mesenchymal stem cells (BMSCs) have been evidenced
to transfer exosomal miRNAs to promote lung cancer metastasis. Specifically, lung cancer
cells (A549, LLC, H460, and H358) treated with hypoxic BMSC-derived exosomes demon-
strated increased migration and invasion potentials compared to normoxic BMSC-secreted
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exosomes [114]. Hypoxic BMSC-derived exosomes were especially rich in miR-193a-3p,
miR-210-3p, and miR-5100. Furthermore, BMSC-derived exosomes promoted both the total
and phosphorylated STAT3 levels [114]. STAT3 is known to be overexpressed in cancer
cells, and functions to elicit production of immunosuppressive factors. Moreover, miR-
210-3p inhibitor was capable of reducing phosphorylated STAT3 expression. The study
further analyzed plasma exosomes and found significantly upregulated miR-210-3p levels
in metastatic lung cancer patients compared to non-metastatic lung cancer patients and
healthy controls, suggesting that miR-210 may play an important role in lung metastasis.
Specifically, miR-210-3p is capable of targeting STAT3 inhibitor, suppressor of cytokine
signaling 1 (SOCS1) [115]. Interestingly, miR-210-5p has also been shown to directly target
SOCS1 in RCC [116].

5.2. Fibroblast Growth Factor Receptor Like 1 (FGFRL1)

Cancer cells have high heterogeneity and contain a variety of cell types. Cancer stem
cells (CSCs) for example, make up a small population of cancer cells, and are characterized
by enhanced self-renewal and chemo/radiotherapy resistance capabilities, which make
them the main mediators for sustained cancer growth. Lung CSC-derived exosomes have
been evidenced to contain high levels of miR-210-3p and enhance lung cancer cell migration
and invasion, through the inhibition of E-cadherin as well as the promotion of vimentin,
N-cadherin, MMP-9, and MMP-1 expression, which are phenotypic hallmarks for EMT and
enhanced invasive potential [103]. Moreover, the study indicated that miR-210-3p may con-
tribute to cancer cell metastasis via the inhibition of FGFRL1. FGFRL1 is part of the FGFR
family and has been reported to modulate ERK1/2 and FGF signaling pathways [117]. Re-
cently, FGFRL1 has been associated with prostate, gastric, oesophageal, and ovarian cancer
cell proliferation and metastasis [118,119]. In particular, miR-210 has been evidenced to
promote angiogenesis by targeting FGFRL1 in hepatocellular carcinoma and osteosarcoma
cells [120,121]. However, in oesophageal squamous cell carcinoma, laryngocarcinoma, and
bladder cancer, miR-210-3p has showed tumor suppressive properties through FGFRL1
binding [91,120,122]. These conflicting results suggest that miR-210-3p and FGFRL1 may
have dual roles in cancer.

5.3. PI3K/AKT Pathway

Runt-related transcription factor-3 (RUNX3) is primarily involved in cartilage miner-
alization and chondrocyte maturation, though evidence suggests that miRNA-regulated
RUNX3 is capable of influencing phosphatidylinositol-3-kinase protein kinase B (PI3K/AKT)
signaling pathway, which is crucial for cancer cell proliferation [123–125]. RUNX3 is cor-
related with poor prognosis and shorter survival in NSCLC patients [126,127]. A study
led by Li et al. reported that miR-210 was capable of inhibiting RUNX3, thereby activat-
ing PI3K/AKT signaling pathway and promoting malignant phenotype of lung cancer
cells [127]. Conversely, the inhibition of miR-210 or PI3K/AKT signaling pathway via
LY294002 treatment reversed malignant potential of lung cancer cells. In addition to
RUNX3, PTEN is another well-known regulator of the PI3K/AKT signaling pathway. For
example, overexpression of miR-210 has been shown to promote NSCLC cell migration and
invasion through UPF1 suppression followed by upregulation of the PTEN/PI3K/AKT
pathway [128]. More recently, miR-210 upregulation has been reported to inhibit upstream
stimulating factor 1 (USF-1) and polycomb group ring (PCGF3) [129]. USF-1 is a transcrip-
tion factor belonging to the basic helix-loop-helix leucine zipper family, and is known to
regulate hepatocellular carcinoma, papillary thyroid as well as lung cancer [130]. Inter-
estingly, PCGF3 has also been reported to promote cell proliferation in NSCLC via the
PI3K/AKT signaling pathway [131]. Moreover, miR-210-mediated PI3K/AKT signaling
has also been reported in oral cancer. Notably, in oral squamous cell carcinoma, elevated ex-
osomal miR-210-3p levels can inhibit ephrinA3 expression and in turn activate PI3K/AKT
signaling pathway [132]. Overall, these studies suggest that miR-210 can alter PI3K/AKT
through various factors, and that this phenomenon is not limited to lung cancer.
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5.4. Tissue Inhibitor of Metalloproteinases-1 (TIMP-1)

TIMP-1 is known to regulate protease homeostasis via the inhibition of metzincin [133,134].
Its ability to inhibit matrix metalloproteinases (MMPs) and A-disintegrin-and-metalloproteinase
(ADAM-10) reflect anti-tumorigenic characteristics. However, increased TIMP-1 expres-
sion is often correlated with poor prognosis, especially in ovarian, lung, gastric, and
papillary thyroid carcinoma [135–140]. Interestingly, TIMP-1 serves as a positive reg-
ulator of PI3Ks and has been evidenced to promote cancer cell growth via AKT/ERK
phosphorylation [141–145]. A study led by Cui et al. showed that an increase in TIMP-1
promoted lung cancer progression through activating the PI3K/AKT/HIF-1 signaling
pathway and miR-210 expression [107]. Specifically, high levels of miR-210 were found in
exosomes derived from TIMP-1 overexpressing A549L cells, and that its expression level
was dependent on HIF-1 accumulation. Conversely, a reduction in miR-210 can effectively
inhibit A549L cell growth, suggesting its important role in cancer cell proliferation. Previ-
ous research has reported that hypoxia promotes exosome secretion of miR-210, suggesting
a mechanism of a self-sustaining hypoxia state. Moreover, the study finds that levels of
mature miR-210 was dependent on CD63, an interacting partner of TIMP-1, providing
novel insight into the mechanism of elevated miR-210 in lung cancer.

5.5. Epidermal Growth Factor Receptor (EGFR)-Mutant Drug Resistance

Osimertinib is a tyrosine kinase inhibitor, specifically designed to treat EGFR-mutant
non-small cell lung cancer [146,147]. Despite its effectiveness compared to previous two
generations of EGFR-tyrosine kinase inhibitors (EGFR-TKIs), multiple studies have re-
ported resistance to osimertinib, due to varying mechanisms, including EGFR mutation,
KRAS mutation, BRAF mutation, loss of T900M mutation, or HER2 amplification [148].
Using microarray and qRT-PCR, Hisakane et al. reported high levels of exosomal miR-
210 in osimertinib-resistant HCC827-OR and PC-9-OR cells compared to HCC827 and
PC-9 parental cells [113]. Moreover, co-culturing exosomes isolated from osimertinib-
resistant cells as well as induction of miR-210 both led to drug resistance and EMT in
oximertinib-sensitive cells. However, there was no evidence that miR-210 acted via the
EGFR signaling pathway, suggesting the involvement of a bypass mechanism. The study
points to E-cadherin as a potential mediating factor associated with EMT. In addition,
exosomes isolated from colorectal cancer cells and pancreatic cancer stem cells have also
been found to carry high abundance of miR-210 and are correlated with fluorouacil and
gemcitabine resistance [149–151].

5.6. KRAS BACH2/GATA-3/RIP-3

Mutant KRAS is a well-known driver of lung neoplasia, part of which functions
through secreting exosomes to manipulate tumor microenvironment favorable for hypoxic
immunosuppression [152–154]. Interestingly, in KRAS chemoresistant lung cancer tissues
from human patients, high abundance of miR-146 and miR-210 were found compared
to non-KRAS metastatic samples [154]. Moreover, post KRAS exosome inhibition, miR-
210 expression levels were reduced, suggesting a direct relationship between KRAS and
miR-210 levels. In addition, levels of miR-146/miR-210 were found at lower levels in
lymph node metastatic tissues, indicating their importance in primary lung tumor. The
study went on to report that KRAS was capable of regulating chromatin remodeling
genes SMARCE1/NCOR1, which play key roles in chemosresistant metastasis, as well
as transcription factor BACH2/GATA-3 expression through pyruvate/PKM2-dependent
metabolism, thereby contributing to sustained immunosuppressive metastasis [154]. Al-
though the mechanism of how miR-210 is regulated by KRAS remains elusive, there is
clear evidence that PKM2 is an HIF-1 target gene [155].

6. Conclusions

Studies on exosomal miRNA represent a growing niche for cancer biology. While
human and animal model studies use similar methods including miRNA-seq, qRT-PCR
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for the purpose of finding potential diagnostic biomarkers, there are only a few consistent
results among currently available studies. The vast number of dysregulated miRNAs
reported makes it difficult to pinpoint which miRNA is responsible for the development
of lung cancer. Currently, there is a limited amount of research on the role of exosomal
miR-210 in lung cancer, but dysregulation of its expression has been reported in various
human, cell, and animal models. The consistency in its dysregulated expression found
under various contexts suggests that miR-210 may play an important role in lung cancer
development. MiR-210 is a well-known hypoxia-related miRNA and has been evidenced
to mediate both oncogenic and tumor suppressive properties. Confirmed miR-210 down-
stream targets include STAT3 and FGFRL1; however, less is known about its upstream
targets. Future studies may benefit from investigating probable miR-210 regulators as well
as potential exosomal inhibitors and anti-miR-210 agents for therapeutic purposes.
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