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LincRNAs enriched with high H3K4me1 and low H3K4me3 signals often have the

enhancer-like features which are named as enhancer-associated lincRNAs (elincRNAs).

ElincRNAs are considered to be indispensable for target gene transcription, which play

important roles in development, signaling events, and even diseases. In this study,

we developed a regularized regression model to identify elincRNAs by integrating the

genomic, epigenomic, and regulatory data. Application of the proposed method to

mouse ESCs reveals that besides the basic well-known epigenetic features H3K4me1

and H3K4me3, more specific epigenetic features, such as high DNA methylation, high

H3K122ac, and H3K36me3 were contributed to mark elincRNAs with the best accuracy

and precision. Finally, 3729 elincRNAs were identified in mouse ESCs. Furthermore, the

elincRNAs and canonical lincRNAs exhibit distinct genomic features, and elincRNAs have

the higher CGI enrichment and lower sequence conservation. Through the analysis of

transcription regulation, we found that elincRNAs were significantly regulated by NANOG,

POU5F1, SOX2 and ESRRB, and were involved in the core transcriptional regulatory

circuitry controlling ES cell state Function enrichment analysis further discovered that

elincRNAs tended to regulate specific embryonic development biological processes.

These results indicated that these two types of lincRNAs had both specific epigenetic

and transcriptional regulation mechanism and display distinct functional characters. In

conclusion, we presented a credible computational model to prioritize novel elincRNAs,

and depicted the atlas of elincRNAs in mouse ESCs, which would help dissect the

function roles of lncRNAs during the mammalian development and diseases.

Keywords: enhancer lincRNA, mouse embryonic stem cell, regularized regression model, epigenome, regulatome

INTRODUCTION

Long non-coding RNAs (lncRNAs) are a class of RNA transcripts longer than 200 nucleotides
which are not transcribed into proteins (Derrien et al., 2012). Most lncRNAs are PolII-dependent
transcribed, whose transcripts have the exon-intron structure with the 5′ capping and poly-A
trail (Dinger et al., 2008). In comparison with mRNAs, lncRNAs generally have lower expression
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abundance and sequence conservation. Recently, crucial roles
of lncRNAs in cell differentiation, embryonic development and
complex diseases have been confirmed in multiple studies (Lee
and Bartolomei, 2013; Flynn and Chang, 2014; Hamazaki et al.,
2015; Zhou et al., 2017, 2018, 2019). Guttmanet al. knocked
down 147 lncRNAs expressed in mouse embryonic stem cells
(ESCs), which resulted in the significant changes of the global
gene expression in mouse ESCs, indicating that lncRNAs had key
roles in the circuitry controlling ES cell state (Guttman et al.,
2011). LncRNAs can regulate gene expression through a number
of mechanisms, across epigenetic, transcriptional, and alternative
splicing regulation (Gong andMaquat, 2011; Sun et al., 2014; Tay
et al., 2014; Rutenberg-Schoenberg et al., 2016; Zhou et al., 2018).
LncRNAs could regulate gene expressions in both cis and trans
effects, influencing or interacting with nearby or distant genes
(Signal et al., 2016). Furthermore, lncRNAs could regulate the
gene expressions in mammalian development.

Intergenic lncRNAs (lincRNAs) are one type of the most
widely studied lncRNAs, besides other lncRNA types, such as
sense lncRNAs, antisense lncRNAs and intronic lncRNAs (St
Laurent et al., 2015). Studies have shown that lincRNA tends to be
located on functional elements, such as enhancers and promoters.
Enhancers are the short DNA regions which could be bound
by activators to enhance the transcription of the target genes
in developmental patterns, cell differentiation, even in human
diseases (Hnisz et al., 2013; Emera et al., 2016; Karnuta and
Scacheri, 2018). Many studies have discovered and described
the functional regulations of enhancers on gene expression
(Cinghu et al., 2017; Catarino and Stark, 2018). LincRNAs,
whose genomic location are overlapped with enhancers, generally
transcribe from enhancer regions, and are often named as
enhancer-associated lincRNAs (elincRNAs). Thus, they are also
considered as enhancer RNAs (eRNAs), and could be involved
in the enhancer-promoter looping inside topological associated
domains (TAD) (Vance and Ponting, 2014). ElincRNAs could
perform enhancer-like function that spatially and temporally
regulate the target gene expression in cis or in trans format,
during the mammalian development and diseases (Sakabe
et al., 2012; Lam et al., 2014; Long et al., 2016). Hon et al.
identified the e-lncRNAs from 27919 human lncRNA genes

with high-confidence 5
′

ends (Hon et al., 2017). More and
more studies have shown that elincRNAs play key regulatory
roles in cell differentiation and embryonic development. MyoD
is a major regulator for muscle differentiation, and Mousavi
et al. found that eRNA from the core enhancer could
promote the MyoD expression (Mousavi et al., 2013). Recent
researches indicated that elincRNAs were indispensable for
the gene regulatory network by establishing and stabilizing
the chromatin loops of enhancer-promoter interactions (Plank
and Dean, 2014; Kim T. K. et al., 2015; Bose et al., 2017).
Generally, there is another important type of RNA, named
as canonical lincRNAs [also known as promoter-associated
lincRNAs (plincRNAs)], presenting the canonical promoter-
specific features with H3K4me3 enriched in their TSS intervals
(Vance and Ponting, 2014; Kim T. K. et al., 2015).

Using epigenetic features, elincRNAs could be distinguished
with the canonical lincRNAs (Signal et al., 2016). ElincRNAs

are marked with high H3K4me1 and low H3K4me3 in the
TSS regions, which are the enhancer-specific signatures, while
canonical lincRNAs are marked with the high H3K4me3 and
low or lacked H3K4me1 in the TSS regions which are canonical
promoter features (Vance and Ponting, 2014). ElncRNAs and
canonical lncRNAs were classified by H3K4me1/H3K4me3
ratio in TSS intervals in human monocytes by Ilott et al.
(Ilott et al., 2014). Brain region-specific intergenic or intronic
enhancer RNAs were marked with H3K4me1 and H3K27ac
enrichment transcribed from enhancers in human genome. Bogu
et al. also identified the elncRNAs and plncRNAs (marked by
promoter features) across various tissues of mouse, by using
the ChromHMM method to interrogate the chromatin status
of enhancer and promoter regions (Bogu et al., 2015). Previous
studies have shown that elincRNAs could be characterized
by high H3K4me1/H3K4me3 ratio in their TSS intervals. As
the key regulators for the establishment of the chromatin
looping and activation of gene expression, the knowledge about
genomic and epigenomic characteristics of elincRNAs is far from
completeness. Moreover, H3K36me3 could enrich in the body
regions of canonical lincRNAs, while lack in the elincRNAs
body regions, just like the enhancers (Natoli and Andrau,
2012; Li et al., 2016). ElincRNA TSS intervals are CGI (CpG
Island)-poor regions, while canonical lincRNA TSS intervals
are the CGI-rich regions (Li et al., 2016). Thus, elincRNAs
could be distinguished from canonical lincRNAs by integrating
multi-omic features. However, there are few other known
discriminatory chromatin modification or genomic features for
the elincRNAs and canonical lincRNAs. DNA methylation could
regulate H3K27ac at enhancer regions inmouse ESCs (King et al.,
2016), and DNA methylation at enhancers could also identify
distinct breast cancer lineages (Fleischer et al., 2017). However,
whether this is a specific feature for elincRNAs is still unknown.
Furthermore, which features could be contributing factors for
elincRNAs have not been systematically interrogated from the
perspective of genome, epigenome and regulatome. ElincRNAs
could be better characterized by the integration of the significant
genomic and epigenomic features. Furthermore, the annotation
atlas of elincRNAs could be more comprehensive and complete.

As the acknowledged model organism, mouse is the well-
known model for the researches of mammalian development
and human diseases. ESCs are the primitive cells derived from
preimplantation embryos that have the potential to differentiate
into numerous specialized cell types. In this study, chromatin
modification data and genomic features of mouse ESCs were
collected derived from public online source to identify elincRNAs
and canonical lincRNAs based on regularized regression model.
Subsequently, elincRNAs and canonical lincRNAs were identified
in the genome wide, using the predictive model with the
specific features. Further, elincRNAs and canonical lincRNAs
were characterized and compared from transcript structure,
sequence features, epigenetic modifications and so on. Moreover,
it is found that the TF binding patterns of the elincRNAs
were different from canonical lincRNAs, which were enriched
with specific development associated TFs. The identification of
characteristic features of elincRNAs and canonical lincRNAs and
the prediction of the two kind lincRNAs might be helpful for
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the target gene expression regulation of enhancers and their
transcriptions in development and human diseases.

MATERIALS AND METHODS

Epigenome, Regulatome, and
Transcriptome Datasets
We collected epigenome, regulatome and transcriptome data of
mouse ESCs. For epigenome data, the publicly available data
contain 12 histone modifications, including 9 active histone
modifications and 3 repressive histone modifications (Details see
Supplementary Table 1). BS-Seq and DNase-Seq data of mouse
ESCs were derived from GEO (Supplementary Table 1). For
regulatome data, the 25 TF ChIP-seq data of mouse ESCs were
obtained from public repository GEO (Details haven shown in
Supplementary Table 1). For transcriptome data, the RNA-Seq
data was derived from GEO with the ID GSE39619, and was used
to quantify the expression levels of lincRNAs in mouse ESCs.
The CAGE data was obtained from FANTOM5 project (http://
fantom.gsc.riken.jp/5/).

Publicly Available Genomic and Functional
Annotations
The genome annotation of known lincRNAs were derived from
GENCODE Release M6 (GRCm38.p4), and was converted into
mm9 assembly version, using NCBI remap_api.pl (https://
www.ncbi.nlm.nih.gov/genome/tools/remap/docs/api). CGI
and repeat elements annotations of mouse (mm9 version)
were obtained from UCSC database. Mouse mm9 reference
genome was sourced from UCSC. Conservation scoring by
phyloP (phylogenetic p-values) for 20 placental mammal
genomes, which contained mouse rat, pig, guinea, rabbit,
human, chimp, and so on (Details see Supplementary Table 2).
Enhancer annotation was derived from vista enhancer database,
which contained 568 mouse enhancers (mm9 version) and
1747 human enhancers (hg19 version) (Visel et al., 2007).
Promoter annotation was sourced from EPD (The Eukaryotic
Promoter Database), in which 21239 mouse promoters
(mm9 version) and 23248 human promoters (hg19 version)
(Supplementary Table 2) (Dreos et al., 2017).

Sequencing Reads Alignment
Next Generation Sequencing data in SRA format, including
RNA-Seq, ChIP-Seq and BS-Seq, were converted into fastq
format by the NCBI-provided program sartoolkit. Trim_galore
was used to remove the adapter sequence and low-quality reads
of NGS data, and the quality control was performed by FastQC.
The data passed the examination of quality control were mapped
to the mouse reference genome for the following analysis. RNA-
Seq data of mouse ESCs were processed and mapped into mouse
reference genome (mm9 version) by HISAT2 (Kim D. et al.,
2015), and the expression levels of the annotated and putative
lincRNA sets were estimated by StringTie (Pertea et al., 2016).
ChIP-Seq data of Histone modifications and TFs were aligned
into mouse reference genome (mm9 version) using bowtie2
(Langmead and Salzberg, 2012). Peak callings which identified
the enriched signal regions for ChIP-Seq were performed by

MACS2 (Zhang Y. et al., 2008). BS-Seq for mouse ESCs was
processed by Bismark, and the DNAmethylation levels (βvalues)
were extracted by bismark_methyaltion_extrasctor at single base
resolution (Krueger and Andrews, 2011). The conversion of
SAM to BAM file formats was conducted by samtools. The
visualization of NGS data was performed by ngs.plot (Loh and
Shen, 2016) and deepTools2 (Ramirez et al., 2016), including
the meta profiles and the heatmaps of TSS, transcripts and the
particular regions. In addition, the K-means clustering based on
histone modifications was performed by DeepTools2 (Ramirez
et al., 2016).

Predictive Model for elincRNAs and
Canonical lincRNAs
In order to identify elincRNAs, we propose a multi-step
predictive method. Firstly, by using H3K4me1 and H3K4me3
signals of TSS intervals, High confidence elincRNAs and
canonical lincRNAs were identified as training set for the
predictive model. Then, genomic, epigenomic, and regulatory
features were calculated for high confidence set. Using the
mutil-omic features, the predictive model was developed, based
on regularized regression model. Further, the predictive model
was evaluated by ten-fold cross-validation and independent test
set with high assessment measures. Finally, elincRNAs were
identified from the canonical lincRNAs by the predictive model
with the specific features.

Identifying High Confidence Sets of
Elincrnas and Canonical Lincrnas
For identifying high confidence sets of elincRNAs and canonical
lincRNAs, TSS intervals of elincRNAs and canonical lincRNAs
are defined as the regions from TSS up-stream 500 bp to TSS
down-stream 500 bp. Gene body regions of elincRNAs and
canonical lincRNAs are defined as the regions from TSS down-
stream 500 bp to TTS (Transcription Termination Site). Then,
4,157 lincRNA transcripts were collected from the annotation
of UCSC mm10 version, whose genomic coordinates were
converted to the mm9 version. As significant makers for
elincRNAs and canonical lincRNAs, H3K4me1 and H3K4me3
status in the expressed lincRNA TSS intervals were interrogated.
Here, the expressed lincRNAs were defined as those with FPKM
≥ 0.5. For a certain expressed lincRNA with at least one histone
modification signal ≥10, the H3K4me1/H3K4me3 count ratios
in the TSS intervals were calculated. Furthermore, the read
count for these two histone modifications were permutated,
and random H3K4me1/H3K4me3 ratios were calculated. This
process was repeated 10000 times. LincRNAs with the observed
H3K4me1/H3K4me3 ratio more than 95 or <5% rank in the
random ratio distribution were considered as high confident
lincRNAs and canonical lincRNA, respectively.

Construction of Feature Sets
Genomic Features
CGI (CpG Island) and 7 repeat elements of mouse annotations
in mm9 version were collected from UCSC (Details are shown in
Table 1 and Supplementary Table 1). The coverage ratio of CGI
and repeat elements for TSS intervals and gene body regions of
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TABLE 1 | Genomic, epigenomic and regulatomic data used in the prediction

model.

Features Cell type Scource Data type

Histone modifications

(Active modifications: H3k4me1,

H3k4me2, H3k4me3, H3k9ac, H3k27ac,

H3k36me3, H3k79me2, H3k64ac,

H3k122ac,

Repressive modifications: H3k9me3,

H3k20me3, H3k27me3)

ESCs GEO ChIP-Seq

DNA methylation ESCs GEO ChIP-Seq

Repeat elements (DNA, LINE, SINE, LTR,

Low complexity, Satellite, Simple repeat)

– UCSC mm9 Bed format

CpG Island – UCSC mm9 Bed format

TFs (Pol2, NelfA, Spt5, Ctr9, Smad1, E2f1,

Tcfcp2I1, CTCF, Zfx, STAT3, Klf4, Esrrb,

c-Myc, n-Myc, GFP, p300, Suz12, nanog,

Oct4, Sox2, Smc1, Smc3, Med12, Med1,

Nipbl)

ESCs GEO ChIP-Seq

lincRNAs in training set were calculated as the genomic features
for model training.

Epigenomic Features
DNA methylation and 12 histone modifications for mouse ESCs
were collected for predictive model training (Details are shown
in Table 1 and Supplementary Table 1). For DNA methylation,
the average β value for the probes in TSS intervals and gene
body regions were calculated, respectively. The coverage ratio
of each histone modification was also be calculated by using
the read mapped in TSS intervals and gene body regions of
training lincRNAs. DNA methylation and histone modifications
were used as the epigenomic features with the value range from 0
to 1.

Regulatory Features
We also collected 25 TF ChIP-Seq data of mouse ESCs (Details
are shown in Table 1 and Supplementary Table 1). And for the
regulatory features, TF binding coverage ratio for TSS intervals
and gene body regions were calculated by the reads mapped in
the relevant regions, respectively.

Building the Predictive Model Based on
Regularized Regression
The predictive model for elincRNAs was built based on
regularization regressionmodel. Regularization regressionmodel
could avoid the over-fitting by penalizing high-valued regression
coefficients, and which is also known as the shrinkage method.
It is important for suppressing over-fitting problems in machine
learning. Moreover, there are many characteristic variables in
the regression model that do not contribute to the response
variables. Therefore, feature selection is required for the
predictive model. The regularization regression function was as
follows (Equation 1):

∑n

i=1
yi = β0 +

∑P

j=1
βjxij (1)

Where yi represents the i th inputted lincRNA. When yi > 0, the
lincRNA was considered as elincRNA; if yi < 0, the linRNA was
considered as canonical lincRNA.xij represents the j th feature of
the i th inputted lincRNA (yi), and βj (j=1,. . . ,p) represents the
contribution degree of the j th feature for the inputted lincRNA.
If βj > 0, it means that the j th feature is contributing factor
for elincRNAs. Otherwise, it means that the j th feature is a
contributing factor for canonical lincRNAs.

The regularization algorithm uses a cyclical coordinate
descent method to obtain an optimized objective function L(β)
by continuously optimizing each parameter and iterating until
convergence. The objective function L(β) (Equation 2) is defined
as combination of loss function [Residual Sum of Squares (RSS),
Equation 3] and penalty term Pα(β) (Equation 4), which both
named as penalized residual sum of squares (PRSS).

L (β) = RRS+ Pα (β) (2)

RSS =
∑n

i=1
(yi − β0 −

∑P

j=1
βjxij)

2 (3)

Pα (β) =
∑P

j=1
[
1

2
(1− α)β2

j + α|βj|] (4)

The objective function L(β) is minimized to estimate the vector
of regression coefficients βj, j=1,. . . ,P.

A norm, L1–norm (L1 norm regularization), L2–norm (L2
norm regularization) or the combination of L1-norm and L2-
norm could be added to the loss function of the regularization
method as the penalty term. When α =1, the penalty term L1-
norm is added into loss function, and the regulated regression
model is lasso regression with the objective function L(β) as
follows (Equation 5):

Llasso (β1, . . . ,βP) =
∑n

i=1
(yi − β0 −

∑P

j=1
βjxij)

2

+λ1

∑P

j=1
|β j| (5)

If α=0, L2-norm penalty is added into loss function, and the
regulated regression model is Ridge regression whose objective
function L(β) as follows (Equation 6):

Lridge (β1, . . . ,βP) =
∑n

i=1
(yi − β0 −

∑P

j=1
βjxij)

2

+λ2

∑P

j=1
β2
j (6)

If 0 < α < 1, combination of L1- and L2- norm is added into
RSS, and the regulated regression model is elastic net regression
(Equation 7).

Lelastic−net (β1, . . . ,βP) =
∑n

i=1
(yi − β0 −

∑P

j=1
βjxij)

2 + λ1

∑P

j=1
|β j| + λ2

∑P

j=1
β2
j

(7)

Through the addition of a norm penalty, the model could
obtain the optimal process of solving the function, thus prevent
the over-fitting phenomenon and perform the feature selection.
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The best combination of contributing factors for elincRNA
identification could be prioritized with the lowest mean squared
error. In this study, the predictive model for elincRNAs based
on regularization regression was performed by R package
Glmnet (https://cran.r-project.org/). The selection of α value for
regularized regression model was determined by the minimized
the error value which generated by cross-validation.

Model Evaluation
The 10-fold cross-validation and independent testing set were
used to estimate the robustness of the predictive model. Training
set was divided into 10 equal sized subsets, and 9 subsets were
used as training set for model building, while the remaining one
subset was used as the validation data for testing the model.
This process was repeated for 10 times, in which each single
subset was used as the validation data. Moreover, the ROC
(Receiver Operating Characteristic) curve and PR (Precision-
Recall) curve were drawn, respectively. ROC curve was drawn
by plotting the sensitivity (also named as true positive rate, or
recall) against the 1-specificity (also known as false positive rate)
at various threshold settings. The PR (Precision-Recall) curve
was performed by measuring the precision (positive predictive
value) against sensitivity at various threshold settings. The AUC
(area under the curve) values of ROC curve and PR curve were
calculated, which were used to estimate the classification effect
of the model. The closer the AUC value is approached to 1, the
better performance of the prediction model gets.

The Independent Testing Set
To collect a comprehensive enhancer list, the vista enhancers
of human and mouse were obtained. The genomic sequences
of human enhancers were aligned to mouse genome (mm9)
using blat program with the threshold 0.85. All the annotations
of mouse genomic and the sequence conversed enhancers were
overlapped with mouse lincRNAs, expected for the lincRNAs
which identified as the high confidence set. And the lincRNAs
covering more than half of an enhancer were considered as the
elincRNAs. In the same method, the EPD promoter annotations
of human and mouse were collected, and the human promoter
sequences were aligned intomouse genome (mm9). The collected
promoter set was compared with the mouse lincRNA set, and
the lincRNAs which were overlapped with more than half
of the collected promoters were considered as the canonical
lincRNAs. In total, 37 elincRNAs and 69 canonical lincRNAswere
obtained and used as the testing set for assessing performance of
predictive models.

Identify Enriched TF Regulations for
elincRNAs and Canonical lincRNAs
TF is thought to regulate elincRNAs or canonical lincRNAs, if a
certain TF motif is enriched in the corresponding TSS intervals.
TF motif data was used to analyze specific transcriptional
regulation of elincRNAs and canonical linRNAs. In total, 358
mouse TF bindingmotif PWMs (PositionWeightedMatrix) were
collected form HOCOMOCO (HOmo sapiens COmprehensive
MOdel COllection) Mouse v11 CORE (Kulakovskiy et al., 2018).
AME (Analysis of Motif Enrichment) was used to detect enriched

motifs in the TSS regions of lincRNAs with the statistically
significance by Fisher’s exact test (Bailey et al., 2015). FIMO (Find
Individual Motif Occurrences) was used to screen the given TF
motifs occurred in the TSS regions of elincRNAs and canonical
lincRNAs (Bailey et al., 2015). One elincRNA/canonical linRNA
was considered to be regulated by a TF, if this TF motif
occurred in the TSS interval of elincRNA/canonical lincRNA,
and the ChIP-Seq peak of TF was also observed within
elincRNA/canonical lincRNA.

RESULTS

Identifying High Confidence Sets of
elincRNAs and Canonical lincRNAs
It is widely acknowledged that, H3K4me1 and H3K4me3
are well-known active chromatin markers for enhancers and
promoters, respectively. Thus, the two histone modification
markers H3K4me1 and H3K4me3 within TSS intervals of
the lincRNAs were interrogated. The average profiles of
H3K4me3 and H3K4me1 in TSS intervals of 4,157 annotated
lincRNA transcripts in mouse ESCs were shown in Figure 1A,
revealing that the lincRNA TSS intervals were enriched
by H3K4me3 and H3K4me1 with the pattern of bimodal
and unimodal distribution, respectively (Figure 1A). Further,
H3K4me1 and H3K4me3 intensities for lincRNA TSS intervals
were investigated and shown in Supplementary Figures 1A,B.
Unlike those lincRNAs displayed the mRNA-like promoter
histone signatures, there was another lincRNA subset marked
high H3K4me1 and low H3K4me3, which were enhancer-like
histone signatures (Supplementary Figures 1A,B). H3K4me1
and H3K4me3 modification tags were counted in TSS intervals
of these lincRNAs. The values of H3K4me1/H3K4me3 ratio were
calculated, and the results showed that, more than 50% lincRNA
TSS intervals were modified with low H3K4me1/H3K4me3 ratio
(Figure 1B), which was consistent with the mRNA-like promoter
feature. In addition, 27.41% lincRNAs were modified with high
H3K4me1 (H3K4me1/H3K4me3 ≥ 2), which was enhancer
signature. More interesting, through analyzing 1284 known
lincRNAs with FPKM ≥ 0.5 in mouse ESCs by the LOESS (local
polynomial regression) method, we draw the conclusion that
the lincRNA expression levels were related with both H3K4me1
and H3K4me3 (Figure 1C). Particularly, canonical lincRNA
expression levels might be higher than elincRNAs (Figure 1C).
The results above were revealed that, the expressed lincRNAs
were associated with the Histone modification H3K4me1 or
H3K4me3 enriched in their TSS intervals.

LincRNAs could be divided into enhancer-associated and
canonical lincRNAs by chromatin signatures H3K4me1 and
H3K4me3 of TSS intervals (Signal et al., 2016). The reads of
the two histone modifications in the 1,284 expressed lincRNA
TSS intervals were counted for the subsequence analysis
(Details were shown in Methods). As the result shown that,
a bimodal distribution was presented for H3K4me1/H3K4me3
ratio for the lincRNAs, which was consistent with the results
above (Figure 1D). It was revealed that expressed lincRNAs
were associated with both H3K4me3 and H3K4me1. For
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FIGURE 1 | Identification of elincRNAs and canonical lincRNAs with high confidence. (A) Density plots showing the distributions of H3K4me1 and H3K4me3 in known

lincRNA TSS intervals. (B) Analysis of the H3K4me1/H3K4me3 ratio and the corresponding lincRNAs (C) Correlation analysis of the H3K4me1/H3K4me3 ratio and

expression levels of the corresponding lincRNAs. (D) The identification of elincRNAs and canonical lincRNAs. (E) Heatmap showing the distributions of H3K4me1 and

H3K4me3 in TSS intervals of identified elincRNAs and canonical lincRNAs. (F) Dots plots showing the log2 (H3K4me1/H3K4me3) ratio in TSS intervals of identified

elincRNAs and canonical lincRNAs.

identifying the high confidence sets of elincRNAs and canonical
lincRNAs, the signal intensities of H3K4me1 and H3K4me3 for
these expressed lincRNAs were permutated, and the random
H3K4me1/H3K4me3 ratios were calculated. This process was
repeated for 10,000 times, thus, the distribution curve of random
H3K4me1/H3K4me3 ratios could be performed with the normal
distribution (black line in Figure 1D). The ratio values with
the rank of 95 and 5% in the random distribution were
used as the thresholds for elincRNAs and canonical lincRNAs,
respectively (red dotted lines in Figure 1D) (Details were shown
in Methods). By this method, 224 elincRNAs and 112 canonical
lincRNAs were identified as the high confidence sets. The
chromatin signatures of elincRNAs and canonical lincRNAs were
investigated, as expected that, elinRNAs enriched H3K4me1
and depleted of H3K4me3 in TSS intervals (Figure 1E), as well
as, H3K4me1/H3K4me3 ratios were >2 (Figure 1F). On the
contrary, the canonical lincRNA TSS intervals were marked with
low H3K4me1 and high H3K4me3 whose ratio values were
<0.5 (Figures 1E,F). The intensity profiles of H3K4me1 and
H3K4me3 for elincRNA and canonical lincRNA, was consistent
with the previous studies (Supplementary Figures 1C,D).

To estimating the high confident sets of elincRNAs and
canonical lincRNAs, two data of chromatin states identified by
chromHMM in mouse ESCs were obtained (Yue et al., 2014;
Bogu et al., 2015). The high confident elincRNAs or canonical
lincRNAs with the coverage more than 0.3 by the relevant
chromatin states were considered as the overlapped elincRNAs
or canonical lincRNAs, respectively. For the chromatin states
of Bogu’s research, the number of elincRNAs overlapped by
enhancer-like chromatin states were 103 (45.98%), while the
of canonical lincRNAs overlapped by promoter-like chromatin
states were 109 (97.32%) (Supplementary Figure 2A). Further,
the random overlap distributions of elincRNAs and canonical
lincRNAs were also acquired, through overlapping the random
genomic regions equally with the observed lincRNA transcripts,
using the corresponding chromatin state regions in the same
criterion. And this process was repeated 10,000 times for
Bogu’s chromatin state data. It was revealed that the observed
overlapped numbers were far from the random overlapped
distributions (Supplementary Figure 2A). For Yue’s chromatin
states data (Yue et al., 2014), elincRNAs and canonical lincRNAs
were estimated by the same method. ElincRNAs and canonical
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lincRNAs overlapped by enhancer- and promoter-like chromatin
states were 121 (54.02%) and 112 (100.00%), respectively,
which were also far from the random distributions in the
same method (Supplementary Figure 2B). Thus, the results
indicated that the sets of elincRNAs and canonical lincRNAs
identified would be used as the high confidence sets for the
subsequence analysis.

Constructing a Novel Approach to Identify
elincRNAs by Integrating Multi-Omic
Features
For comprehensively characterizing and identifying elincRNAs,
we integrated multi-dimensional features to build predictive
model for elincRNAs. Genomic, epigenetic and regulatory
features were collected, including CGI (CpG Island), 7 types of
repeat elements, DNAmethylation, 12 histone modifications and
25 TFs derived from the public sources (Details were shown in
Table 1 and Supplementary Table 1). Regularization regression
model was performed to acquire the best combination of features
for predictive model (Figure 2A). The high confident sets of
elincRNAs and canonical lincRNAs were used as the positive and
negative training set for identifying elincRNAs.

To examine the ability of different omic features to identify
elincRNAs, we assessed the performance of predictive models
combining distinct features, including sequence features (CGI
and repeat elements), epigenomic features and regulatory
features. Based on regularized regression model, the predictive
models constructed by genomic, epigenomic or regulatory
features alone were performed well. The results of 10-fold
cross validation for each predictive model were shown in
Supplementary Table 3, separately. When 25 TFs were used
as the model features, the accuracy was 0.897, which was
the lowest value in all of these models. The AUC values
of ROC and PR curves were 0.931 and 0.959, respectively
(Supplementary Table 3 and Figures 2B,C). The accuracy
of the predictive model based on CGI and repeats features
was 0.923, which was slightly higher than TFs’ model
(Supplementary Table 3 and Figures 2B,C). We observed
that the model constructed by histone modifications alone
and the combination with DNA methylation achieved
the accuracies of 0.989 and 0.997, respectively. And the
AUC values of ROC and PR curves were all more than
0.99 (Supplementary Table 3). This indicated that the
three different features could contribute to identifying
elincRNAs. However, it was shown that the TFs might not
be the crucial factors for identifying elincRNAs. It was a
remarkable fact that, among the TF features, P300 (EP300)
which was a co-activator binding to enhancers was not
identified as the contributing factor for elincRNAs, possibly
because P300 also could be enriched in active promoter
regions (Heintzman et al., 2007). Furthermore, genomic
characteristics performed better, and the predictive model with
epigenomic features performed best (Supplementary Table 3

and Figures 2B,C). Further, to build the predictive model,
the different combination of omic features were considered.
The model constructed by the combination of genomic

features, histone modifications and TFs was performed almost
as well as the histone modification alone (accuracy was
0.989) (Supplementary Table 3). Moreover, when removed
the TF feature, the predictive model with the combination
of genomic and histone modifications performed similarly,
with the equal accuracy 0.989. By combining all the features,
the performance of the predictive model was a little better.
Particularly, the predictive model with histone modification and
DNA methylation performed best with the highest accuracy and
AUCs values (Supplementary Table 3 and Figures 2B,C). This
indicated that epigenomic features including DNA methylation
and histone modifications might be crucial for identifying
the elincRNAs.

An independent data was also used to estimate the
performance of the models (Figure 2A). The vista enhancers
of human and mouse were collected to obtain a comprehensive
enhancer list (Details were shown in Methods). In total,
37 elincRNAs and 69 canonical lincRNAs were obtained
and used as the testing set for assessing the performance
of predictive models. For the testing set, the predictive
models with the combined features performed better than
those with different feature alone (Supplementary Table 4).
Predictive models with the combinations of genomic,
histone modifications or with addition of the regulatory
features got the better performances, with the accuracies
of 0.755 and 0.774 respectively (Supplementary Table 4).
And their AUCs values of ROC and PR curves were also
better than the models with the different omic feature
alone (0.668 and 0.444 for model with TF features, 0.815
and 0.608 for model with sequence feature) (Figures 2D,E,
and Supplementary Table 4). These results showed the
advantages of the integration of multi-omic features. It is
noteworthy that the predictive model with the combination
of histone modifications and DNA methylation acquired the
best performance. And the accuracy achieved 0.859, which
was a little higher than the model with all features (the
accuracy was 0.858) (Supplementary Table 4). The results
revealed that epigenetic features were the crucial signatures
for elincRNAs. In brief, by combining DNA methylation
and histone modifications, the regularized regression model
performed effectively, which represented a novel approach to
identify the elincRNAs.

According to the above analysis, the regularized regression
model combining the histone modifications and DNA
methylation performed best. The appropriate parameter α

was interrogated for the optimal predictive model with the
combination of epigenetic features. And the results were shown
in Supplementary Figure 3, using the model contributing above,
when the parameter α of regularized regression model was
equal to 1, it was lasso regression model whose parameter λ

was equal to 0.0016 with lowest mean squared error 0.0070
(Supplementary Figure 3A). However, the mean squared
errors of ElasticNet and Ridge models were all higher than
lasso model (Supplementary Figures 3B–D). Thus, when
α =1, lasso model with the DNA methylation and histone
modifications was used as the most effective predictive model to
identify elincRNAs.
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FIGURE 2 | The construction of regularization predictive model (A) Workflow of predictive model for identifying elincRNAs. (B,C) The average ROC (B) and PR (C)

curves for 10-fold cross validation of the predictive models with different features. (D,E) The ROC (D) and PR (E) curves for the testing set of the predictive models

with different features.

Both Histone Modifications and DNA
Methylation Are Important Features
Biased on lasso model with the optimized parameter α, seven
specific features among the 26 epigenetic features in TSS and gene
body regions of lincRNAs, were identified for elincRNAs and
canonical lincRNAs, respectively (Figure 3A). The regression
equation, comprised of positive and negative regression
coefficients, which represented the different contribution of
features for identifying elincRNAs and canonical lincRNAs,
respectively (Figures 3A,B) (Details were shown in Methods).
The detailed regression equation was as follows:

y = 2.0860+ 5.79× x1 + 3.16× x2 + 0.53× x3 + 0.46× x4

−5.17× x5 − 4.13× x6 − 0.87× x7

In the equation, x1, x2, x3and x4represented TSS_DNA
methylation, TSS_H3K4me1, Body_DNA methylation and
Body_H3K122ac, respectively, which were contributing
factors for elincRNAs. In addition, x5, x6and x7represented
Body_H3K36me3, TSS_H3K9ac and TSS_H3K4me3, which
were contributing factors for canonical lincRNAs.

Further, based on the regression coefficients, we interrogated
the contribution of the identified features for the predictive
model. ElincRNAswere positively relative with TSS_methylation,
TSS_H3K4me1, Body_methylation and Body_H3K122ac
features (Figures 3A,B). As expected, H3K4me1 in TSS regions
was the significant signature to predict elincRNAs whose
contribution rate was 3.16. However, the greatest contribution
feature for identifying elincRNAs was TSS_methylation with
contribution rate 5.79 (Figure 3B). The results showed that
DNA methylation of the TSS intervals contributed more to
elincRNAs identification than H3K4me1 of the TSS intervals.

The body_methylation feature could also be the predictor for
elincRNAs, with the contribution rate of 0.53 (Figure 3B).
Moreover, the DNA methylation signal intensities of TSS
and body regions of elincRNAs and canonical lincRNAs were
further compared. Indeed, the average DNA methylation
levels of elincRNAs were significantly higher than canonical
lincRNAs (Figures 3C,D), which was corresponding with
previous results. In the study of Kundaje et al., they showed
that the average DNA methylation of active enhancers was
significantly higher than that of active TSSs (Roadmap
Epigenomics et al., 2015). DNA methylation was enriched
in both TSS and body regions of elincRNAs. In TSS and body
regions of training and testing sets, the expression levels of
elincRNAs were significantly lower than that of canonical
lincRNAs, in both training and testing sets (Figure 3E),
which was consistent with the expectations. The above results
indicated that DNA methylation might be a crucial signature
for elincRNAs identification. In addition, histone modification
body_H3K122ac, was also identified as the lincRNA-related
feature with value of the contribution rate of 0.46 (Figure 3B),
which was consistent with recent researches that H3K122ac
could mark active enhancers (Pradeepa et al., 2016). However,
H3K27ac was not identified as the predictor of elincRNAs
in the feature selection process of the predictive model.
In the predictive model with histone modifications alone,
TSS_H3K27ac was recognized as the significant marker for
elincRNAs with the contribution rate of 0.20, which was higher
than TSS_H3K122ac (contribution rate of 0.10), but lower than
body_H3K122ac (contribution rate of 2.34) and TSS_H3K4me1
(contribution rate of 3.39) (Supplementary Figure 4). This
was in accordance with Pradeepa’s study that a set of active
enhancers was uncovered which was marked by H3K122ac
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FIGURE 3 | The predictive model for elincRNA identification with the specific features. (A) Feature selection of the predictive model for elincRNA identification based

on epigenetic features. (B) The contribution rates of the identified epigenetic features of predictive model based on the regression coefficients. (C,D) DNA methylation

levels in the TSS (C) and body (D) regions of elincRNAs and canonical lincRNAs of training set and testing set in predictive model. (E) Expression levels of elincRNAs

and canonical lincRNAs of training set and testing set in predictive model. **P < 0.01.

but lack H3K27ac (Pradeepa et al., 2016). Further, the active
enhancers marked by H3K27ac were also enriched with
H3K122ac (Pradeepa et al., 2016). It was suggested that the
predict efficiency of H3K27ac for elincRNAs might be less than
TSS-enriched DNA methylation and body-enriched H3K122ac.
Thus, the combination of TSS_methylation, TSS_H3K4me1,
Body_methylation and Body_H3K122ac could be the significant
signatures for elincRNAs.

On the other hand, canonical lincRNAs were relevant with
TSS_H3K4me3, TSS_H3K9ac and Body_H3K36me3. As the
canonical marker for promoters, TSS_H3K4me3 still had the
great significant contribution for the identification of canonical
lincRNAs with the contribution rate of 5.17 (Figure 3B).
TSS_H3K9ac was also identified as the characteristic feature for
canonical lincRNAs with the contribution value 4.13 (Figure 3B),

which was an active regulatory marker of with preference for
promoters (Consortium, 2012; Roadmap Epigenomics et al.,
2015). Moreover, body_H3K36me3, which was an Pol II
elongation marker associated with transcribed portions of active
genes (Consortium, 2012), was also remarkable for canonical
lincRNAs with contribution rate of 0.87 (Figure 3B). In addition
to that, H3K36me3 was also found to be associated with
active enhancers and be likely to correlate with enhancer
RNA transcription (Consortium, 2012), however, H3K36me3
didn’t be identified as the effective feature to mark elincRNAs.
Therefore, through the regularization regression model, new
features were identified to mark elinRNAs (TSS_methylation,
Body_methylation and Body_H3K122ac), besides H3K4me1. It
could characterize elinRNAs better, and could be helpful for
identifying elincRNAs.
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FIGURE 4 | Identification of elincRNAs based on the predictive model with specific epigenetic features. (A) Identification of elincRNAs from known lincRNA set by the

predictive model. (B) Identification of elincRNAs from predicted lincRNA set expressed in mouse ESCs by the predictive model. (C,D) Examples for elincRNAs

ENSMUST00000133824 (C) from known lincRNA set used as training set, and TCONS_00171204 (D) from predicted lincRNA set expressed in mouse ESCs

identified by predictive model. (C,D) Were produced using IGV (Integrative Genomics Viewer), and the green transparent shadows represent the transcript regions of

the examples.

Prediction of elincRNAs Based on
Regularization Regression Model
For distinguishing more annotations of elincRNAs from
canonical lincRNAs, elincRNAs and canonical lincRNAs were
identified, using lasso model with the identified epigenetic
features. Firstly, among the 3702 known lincRNAs which were
not used as training and testing sets for predictive model, 589
elincRNAs and 507 canonical lincRNAs were identified by using
the identified epigenetic features (Figure 4A). Moreover, the
predictive model was applied to another lincRNA set, which
contained 6701 putative lincRNAs in mouse ESCs that we
previously identified (Liu et al., 2016). As result, 3140 elincRNAs
and 885 canonical lincRNAs were identified (Figure 4B).

An identified elincRNA ENSMUST00000192129 sourced
from known lincRNA set, which was located in reverse strand
of Chr 1. And the specific epigenetic features were shown in
Supplementary Figure 5A. Although H3K4me1 in TSS regions
was poor, H3K122ac and DNA methtylation were enriched
in the body region with no canonical lincRNA’ features. The
overlapped transcript ENSMUST00000192129 was an elincRNA
identified in training set with the representative features
of elincRNAs (Supplementary Figure 5A). Another elincRNA
ENSMUST00000133824 used for model training was shown
in Figure 4C, which was marked by the elincRNA specific
features, and covered with a FANTOM5 annotated enhancer.

A putative lincRNA TCONS_00171204 expressed in mouse
ESC was identified as an elincRNA with only one exon
(Figure 4D). This elinRNA was overlapped with an annotated
enhancer with significant epigenetic features (Figure 4D). To
mark a contrast with the elincRNAs, a canonical lincRNA
ENSMUST00000180932 used for model training was shown
in Supplementary Figure 5B, and this lincRNA was marked
with high H2K9ac and H3K4me3 in TSS region with de
H3K36me3 covered in body region. Thus, we obtained a relative
comprehensive elincRNA set for mouse ESCs.

Characterization of elincRNAs and
Canonical lincRNAs
The results above revealed that elincRNAs could be distinguished
from canonical lincRNAs by specific epigenomic features.
We detected that if there are any other different features
between elincRNAs and canonical lincRNAs. By combining
the high confident and predict elincRNAs and canonical
lincRNAs, 3990 elincRNAs and 1573 canonical lincRNAs were
collected (Figures 5A,B). And then, the elincRNAs and canonical
lincRNAswere compared and characterized from various aspects.
Firstly, the comparison of transcript length for elincRNAs and
canonical lincRNAs were performed and the median values for
elincRNAs and canonical lincRNAs were 1490.433 and 1550.179,
respectively (Supplementary Figure 6A). It was indicated that
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FIGURE 5 | Characterization of elincRNAs and canonical linRNAs. (A) ElincRNA set, and (B) Canonical lincRNA set, including training set, testing set, and two

predicting sets. (C–F) The average profiles of CAGE reads (C), DNaseI signals (D), Pol II signals (E), and P300 signals (F) around the TSS regions of elincRNA and

canonical lincRNA sets.

the length of elincRNA transcripts was shorter than that of
canonical lincRNAs with statistical significance (KS test p-
value < 2.2E-16). Although with no statistical significance, the
expression level of elincRNAs was a little lower than that of
canonical lincRNAs (Supplementary Figure 6B), whose median
values of expression levels were 6.544 and 7.134, respectively.

The genomic features were investigated for elincRNAs
and canonical lincRNAs in the following analysis. It has
been confirmed that enhancers are generally less conserved
(Li et al., 2016), and the conservation of lincRNAs is
also significantly lower than protein-encoding transcripts
(Derrien et al., 2012). Therefore, it is necessary to interrogate
the sequence conservation of exon regions for elincRNAs
and canonical lincRNAs. The cumulative probability density
distributions of the average conservation for the exon sequences
of elincRNA and canonical lincRNA sets were shown in
Supplementary Figure 6C. The conservation score of elincRNAs
was significantly lower than that of canonical lincRNAs, whose
median values were 0.036 and 0.064, respectively. Further, the
coverage of CGIs (CpG Islands) in the TSS regions of these two
lincRNA sets were compared, and the results were shown in
Supplementary Figure 6D. It was found that, canonical lincRNA
TSS intervals enriched CGIs with the median coverage 0.237,
and elincRNA TSS intervals lacked the coverage of CGIs whose

median coverage was only 0.002. Moreover, the CGI coverage of
elincRNA TSS regions was much lower than canonical lincRNAs.

The average profiles of CAGE and chromatin modifications
in TSS intervals for elincRNAs and canonical lincRNAs were
compared. Although the CAGE intensity was significantly
lower than that of the canonical lincRNA TSS regions, it still
existed a peak in elincRNA TSS intervals (Figure 5C). DNase
I hypersensitive sites are acknowledged to be characterized by
open accessible chromatin. Thus, the DNaseI average profiles
of the TSS regions for the two transcript sets were compared
(Figure 5D). Similar results were obtained that elincRNAs and
canonical lincRNAs showed a unimodal distribution in the TSS
regions, but the enrichment of elincRNAs was significantly lower
than that of canonical lincRNAs (Figure 5D). The phenomenon
that the low abundances of the active signals in TSS intervals
might be related to the universal low expression abundances
of elincRNAs. Moreover, we compared PolII and P300 for TSS
intervals of elincRNAs and canonical lincRNAs, and the results
indicated that elincRNAs and canonical lincRNAs had distinct
modification characteristics, respectively (Figures 5E,F).

Moreover, the coverage of repeat elements in TSS
intervals were analyzed, including three retrotransposons
(LINE, SINE and LTR) (Supplementary Figures 7A–C),
DNA transposons (Supplementary Figure 7D), and three
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tandom repeats (Satellite, Micro-satellite and Mini-Satellite)
(Supplementary Figures 7E–G). The coverages of these seven
repeat elements in TSS regions were significantly different
between elincRNAs and canonical lincRNAs, indicating that the
elincRNA TSS intervals might be enriched with repeat elements
expect for mini-Satellite (Supplementary Figures 7A–G).
Although CGI and repeat elements were not well predictors
for identifying elincRNAs, both CGI and repeat elements
were significantly different between the two lincRNA sets.
We compared the elincRNAs with 680 dbSUPER annotated
super-enhancers including 4343 constituents. The result showed
that 273 elincRNAs were overlapped with 164 super-enhancers
containing 426 constituents (Supplementary Figure 7H).
Among the 3990 elincRNAs, 308 were overlapped with
CAGE peaks or TSSs predicted by CAGE peaks of FANTOM
in both forward and reverse strands, which might be
bidirectional transcripts. Summarizing the results above, the
elincRNAs and canonical lincRNAs exhibited distinctly specific
transcript characteristics, sequence features and chromatin
modification features.

ElincRNAs and Canonical lincRNAs Are
Regulated by Distinct TF Regulatory
Patterns
Since the distinct sequence features and chromatin modifications
around TSS intervals of elincRNAs and canonical lincRNAs, we
interrogated the TF regulatory functions on their TSS intervals.
Based on known TF motifs obtained from the HOCOMOCO
Mouse v11 CORE and JASPAR CORE (2018), the enrichment TF
motifs in TSS intervals for elincRNAs and canonical lincRNAs
were detected by using AME (Details were shown in Methods).

As a result, 52 TF motifs were enriched in elincRNA TSS
intervals, while 90 motifs were enriched in canonical lincRNA
TSS intervals with statistical significance (E-value < 0.05)
(Figure 6A). There were four TFs named as NANOG (Loh et al.,
2006), POU5F1 (OCT4) (Zhang X. et al., 2008), SOX2 (Kim
et al., 2008) and ESRRB (Festuccia et al., 2018), which were the
acknowledged proteins or regulators related to cell differentiation
and embryonic development, were enriched in the elincRNA TSS
regions. NANOG, POU5F1, and SOX2 were the core markers for
stem cells, which were essential to maintain mouse embryonic
stem cell pluripotency (Loh et al., 2006; Kim et al., 2008).
They bound 97.01, 86.21, 98.22, and 97.47% elincRNAs with
the statistical significance for NANOG, POU5F1, SOX2, and
ESRRB (Figure 6B). And, KLF4 existed among the canonical
lincRNA enriched TF sets with statistical significance, which was
a critical regulator for cell reprogramming and early embryonic
development in mouse (Ye et al., 2018).

Furthermore, only one TF motif ZN143 was common in
both elincRNAs and canonical lincRNAs enriched TF sets
(Figure 6A), indicating that elincRNAs and canonical lincRNAs
had specific regulatory patterns by binding the distinct TF
sets. By integrated the available ChIP-Seq data, we further
identified the regulatory relations of the TFs for the elincRNAs
and canonical linRNAs, and constructed regulatory network for
elincRNAs and caonical lincRNAs, respectively. An elincRNA

or a canonical lincRNA was considered to be regulated by a
certain TF, if the TSS intervals existed the predicted binding
sites and were covered by the corresponding ChIP-Seq peak.
The elincRNA regulatory network comprised 662 elincRNAs
(Figure 6C), while the canonical lincRNA regulatory network
comprised 567 canonical lincRNAs (Figure 6D).

Moreover, function enrichment results found that elincRNAs
and canonical lincRNAs were usually involved in the different
biological processes, via GREAT method based on the GO
BP annotation (Figure 6E, FDR<0.05). For these elincRNAs
regulated by ESC markers, they are significantly involved in
well-known functions related with stemness maintenance and
cell differentiation, including ormation of primary germ layer,
gastrulation, the morphogenesis, formation and development
of mesoderm, endoderm formation, stem cell differentiation
and so on. The elincRNAs were also enriched in several
GO BP terms related with Notch signaling pathway, which
have been discovered contributing to the formation, growth
(Rowan et al., 2008), and development of embryos (Rowan
et al., 2008; Fernandez-Valdivia et al., 2011; Djabrayan et al.,
2012), even could play crucial functions in the embryonic cell
differentiation (Ben-Shushan et al., 2015). While, the canonical
lincRNAs regulated by KLF4 tended to regulate basic biological
functions, such as nucleus organization, posttranscriptional
regulation of gene expression, which were also important
for life function maintenance (Figure 6E). Summarizing the
results above, elincRNAs and canonical lincRNAs had the
specific regulatory patterns, and elincRNAs might be involved
in development specific biological processes while canonical
lincRNAs played the basic biological functions.

DISCUSSION

In this study, we developed a novel approach to identify
elincRNAs by integrating multi-omic data. We first revealed
that expressed lincRNAs could be marked by two common
active chromatin modifications H3K4me1 and H3K4me3. And
then, several epigenetic features were identified as the signatures
for elincRNAs and canonical lincRNAs by lasso regression
model. Besides the common acknowledged features H3K4me1
and H3K4me3, more specific features were recognized in
our predictive model. For example, DNA methylation and
H3K122ac could be the novel signatures to mark elincRNAs,
and H3K9ac and H3K36me3 could be the makers for canonical
lincRNAs. Unexpectedly, DNA methylation contributed much
more than H3K4me1 in the TSS intervals for mouse ESCs.
TSS_ and body_DNA methylation were both significant features
for elincRNAs, which was consistent with the previous study
that the DNA methylation level of active enhancers were
commonly higher than active promoters (Roadmap Epigenomics
et al., 2015). And in Charlet’s study, it was shown that DNA
methylation could co-exist with H3K27ac at enhancers and
super-enhancers, but not at promoters (Charlet et al., 2016).
DNA methylation play important roles in cell differentiation,
embryonic development and complex diseases (Su et al., 2018;
Yu et al., 2019). Thus, DNA methylation might play unexpected
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FIGURE 6 | Dissecting the specific transcriptional regulation of elincRNAs and canonical lincRNAs. (A) Venn plot for enriched TF motif of elincRNA and canonical

lincRNA sets. (B) Representative TF motifs in TSS regions of elincRNAs and canonical lincRNAs. (C) Specific TF regulatory network for elincRNAs by representative

TFs. (D) Specific TF regulatory network for canonical lincRNAs by representative TFs. (E) The GO BP enrichment for elincRNAs and canonical lincRNAs regulated by

representative TFs, respectively.

roles at enhancer regions. In our predictive model, H3K27ac
was not identified as the significant feature to mark elincRNAs,
However, H3K122ac was recognized to enriched in the body
regions of expressed elincRNAs, which was consistent with the
previous study (Pradeepa et al., 2016). In Pradeepa’s study,
H3K122ac was identified as a novel signature for active enhancers
which were enriched with H3K27ac, and also could mark a
subset of active enhancers without H3K27ac enriched (Pradeepa
et al., 2016). Thus, H3K122ac might play the important roles
in elincRNAs. However, when removing DNA methylation from
the predictive model, TSS_H3k27ac could be identified as the
contributing factor for elincRNA, despite its contributing score
(coefficient) was less than H3K4me1 and H3K122ac. Thus,
the combination of features TSS_methylation, TSS_H3K4me1,
Body_DNAmethylation and Body_H3K122ac enrichment could

be the effective markers for elincRNAs. Therefore, the signature
sets for elincRNAs and canonical lincRNAs were much more
complemented and perfected, than the features H3K4me1 and
H3K4m3 alone.

When constructing the predictive model, we used the high
confident elincRNA sets identified by the H3K4me1/H3K4me3
ratios. Through the predictive model with identified epigenetic
features, we identified 589 expressed elincRNAs from the known
lincRNAs, and identified 3140 expressed elincRNAs from the
expressed lincRNA set in mouse ESCs (Liu et al., 2016). Along
with 224 elincRNAs in training set and 37 elincRNAs in
testing set, total 3990 elincRNAs were collected in mouse ESCs.
When interrogated the FANTOM5 annotated enhancers, 1179
enhancers were found covered by our identified elincRNAs.
We also compared the 3990 elincRNAs with the 147 lncRNAs
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that were demonstrated to affect the global gene expression
in Guttman’s study (Guttman et al., 2011), and 48 lncRNAs
could be covered by our identified elincRNAs, including 36
known lincRNAs and 58 predicted lincRNAs. Thus, the atlas of
elincRNAs depicted by the predictive model provided essential
for insight into the regulatory function roles of elincRNAs during
the embryonic development.

In the analysis for the specific regulatory patterns of
elincRNAs and canonical licnRNAs, we found that, there were
specific TF motifs enriched in elincRNAs or canonical lincRNA
TSS intervals. Further, the regulatory relationship of several
specific enriched TFs were validated by the corresponding ChIP-
Seq peaks in mouse ESCs, including NANOG, POU5F1, SOX2
and ESRRB, which were crucial regulators in circuitry controlling
ES cell state (Young, 2011). Thus, elincRNAs might be essential
component of the TF regulatory circuitry, which were involved
in the key regulatory functions of stem cells. Further, the analysis
of the elincRNAs and canonical lincRNAs regulated by the
specific TFs showed that elincRNAs tended to be involved in
the biological processes related with cell differentiation and
embryonic development. This indicated that elincRNAs might
play the crucial roles in mouse embryonic development.

In conclusion, this work provides a novel approach to identify
elincRNAs and canonical lincRNAs by combination of genomic,
epigenomic and regulatomic features based on the regularization
regression model. Specific epigenetic features were recognized
to mark elincRNAs and canonical lincRNAs, respectively. This
would help to supplement and improve the atlas of elincRNAs,
and dissect the crucial roles of elincRNAs in mouse embryonic
development and complex diseases.
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