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ABSTRACT
Pyropia pulchra (Hollenberg) S.C. Lindstrom & Hughey is a foliose seaweed in Bangiales order distrib-
uted in North America. We assembled the complete mitochondrial genome sequence of Pyropia pul-
chra (33,190bp), and annotated 26 protein-coding genes, 24 transfer RNAs, and 2 ribosomal RNAs. We
analyzed a maximum likelihood tree using conserved 23 mitochondrial genes from Bangiales species.
The mitochondrial phylogeny of Bangiales species shows a strong monophyletic relationship of genus
Pyropia, and the taxonomic position of P. pulchra within the genus.
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The red algal genus Pyropia J. Agardh belongs to Bangiales
order (Bangiophyceae, Rhodophyta) that includes the valued
marine aquaculture crop, worth over US $1 billion per year
(Blouin et al. 2011; Kim et al. 2014). As the economic signifi-
cance for cultivation, the cultivars are spread and mostly dis-
tributed in worldwide intertidal zones. The most Bangiales
species are morphologically simple that are grouped into fila-
mentous and foliose seaweeds, therefore there were many
taxonomically cryptic species classified by molecular phylo-
genetic studies (Sutherland et al. 2011; Kucera and Saunders
2012; Harden et al. 2016; Koh and Kim 2018). Especially,
diverse species were segregated from the previous larger and
polyphyletic genus Porphyra (Milstein and de Oliveira 2005;
Nelson et al. 2006; Blouin et al. 2011).

Pyropia pulchra (Hollenberg) S.C. Lindstrom & Hughey is
one of the foliose Bangiales species mainly distributed in
North America (British Columbia, California, Oregon; Kucera
and Saunders 2012; Augyte_ and Shaughnessy 2014), and this
species was discovered as a cryptic species from genus
Porphyra based on molecular marker and plastid multigene
phylogeny (Lee et al. 2016; Lindstrom and Hughey 2016). In
the previous study, to construct the plastid genome of P. pul-
chra, the herbarium specimen of P. pulchra (UC1879714; the
University of California at Berkeley, USA), collected at
the type locality (Moss Beach, California, USA), was used for
the genome sequencing, and they suggested a clear phylo-
genetic position of P. pulchra within the Bangiales (Lee et al.
2016). However, the phylogenetic position of P. pulchra using
mitochondrial genome is still unknown.

To construct the mitochondrial genome of P. pulchra
(UC1879714), we used the previously generated genome
data of P. pulchra (Lee et al. 2016), and contigs of the

mitochondrial genome were sorted by local BLAST search (e-
value cutoff ¼ 1.e–05). The consensus mitochondrial genome
of P. pulchra (33,190 bp, GC ¼ 30.7%; MT588076) was re-
assembled from the sorted contigs, and confirmed by the
read-mapping method using CLC Genomics Workbench
(v5.5.1, CLC bio, Aarhus, Denmark). In the complete mito-
chondrial genome of P. pulchra, putative open-reading
frames and conserved mitochondrial genes were manually
predicted by BLASTx search (e-value cutoff ¼ 1.e–05) with
codon table 4 (The Mold, Protozoan, and Coelenterate
Mitochondrial Code). Ribosomal RNAs (rRNAs) and transfer
RNAs (tRNAs) were predicted by the RNAmmer 1.2 Server
(Lagesen et al. 2007) and ARAGORN programs respectively
(Laslett and Canback 2004). A total of 26 mitochondrial pro-
tein-coding genes, 24 tRNAs, and 2 rRNAs is annotated in the
mitochondrial genome of P. pulchra (MT588076).

To construct the concatenated alignment of mitochondrial
genes, conserved 23 protein-coding genes from 13 Bangiales
and two outgroup species were used, and the genesets were
aligned by MAFFT (v7.313; Katoh and Toh 2008) with default
options. The Maximum Likelihood (ML) tree using the con-
catenated alignment was constructed by IQ-tree program
(v1.6.12; Nguyen et al. 2015) with the options as follows: the
gene partition information (-q), the model test (-m TEST), and
ultrafast bootstrapping with 1000 replications (-bb 1000). The
phylogenetic analysis shows a strong monophyletic relation-
ship of genus Pyropia with high bootstrap supports (Figure
1). In the ML tree, Pyropia nitida, P. endiviforlia, and P. kana-
kaensis are monophyly with P. pulchra (bootstrap support
100%), and this clade is clustered with the clade of P. perfo-
rata and P. haitanensis (bootstrap support 100%). The clade
of P. tenera, P. yezoensis, and P. fucicola is located as a basal
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within the genus Pyropia (Figure 1). There are relatively low
bootstrap supports in the clades of genus Wildemania and
Bangia (bootstrap support 50–56%; Figure 1). In addition, the
clade of genus Porphyra in the mitochondrial phylogeny is
located as basal within the Bangiales species (Figure 1) but in
the plastid multigene phylogeny of Bangiales species, a clade
of Wildemania schizophylla is located as a basal (Cao et al.
2018). To analyze a clear phylogenetic relationship of all gen-
era within Bangiales, further study is required based on more
mitochondrial genome data from the genera.
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Figure 1. Maximum likelihood (ML) tree using 23 concatenated mitochondrial
proteins from thirteen Bangiales and two florideophycean (outgroup) species.
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