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The temporal dynamics of the oxygen uptake (V̇O2) during moderate exercise has

classically been related to physical fitness and a slower V̇O2 dynamics was associated

with deterioration of physical health. However, methods that better characterize the

aerobic system temporal dynamics remain challenging. The purpose of this study was

to develop a new method (named mean normalized gain, MNG) to systematically

characterize the V̇O2 temporal dynamics. Eight healthy, young adults (28 ± 6 years

old, 175 ± 7 cm and 79 ± 13 kg) performed multiple pseudorandom binary sequence

cycling protocols on different days and time of the day. The MNG was calculated as the

normalized amplitude of the V̇O2 signal in frequency-domain. The MNG was validated

considering the time constant τ obtained from time-domain analysis as reference. The

intra-subject consistency of the MNG was checked by testing the same participant on

different days and times of the day. The MNG and τ were strongly negatively correlated

(r = −0.86 and p = 0.005). The MNG measured on different days and periods of the

day was similar between conditions. Calculations for the MNG have inherent filtering

characteristics enhancing reliability for the evaluation of the aerobic system temporal

dynamics. In conclusion, the present study successfully validated the use of the MNG

for aerobic system analysis and as a potential complementary tool to assess changes in

physical fitness.

Keywords: oxygen uptake kinetics, frequency domain, PRBS, aerobic system, fitness

INTRODUCTION

The study of the oxygen uptake (V̇O2) kinetics deals with the ability of data modeling to describe, in
mathematical terms, the temporal characteristics of the aerobic response to the challenge of a step
increase in work rate (Ẇ) (Hughson, 2009). Time-domain kinetic analysis has some limitations
due to the white Gaussian noise associated with breath-by-breath fluctuation (Lamarra et al., 1987)
that adds uncertainty to time-domain index predictions estimated from a single test dataset. To
increase signal-to-noise ratio, studies commonly repeat similar tests multiple times within the same
session (Ozyener et al., 2001; Beltrame et al., 2016; Christensen et al., 2016) or on different days
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(Whipp et al., 1982; Keir et al., 2014a) and average repetition-
like transitions before time-domain data modeling. However,
it is time consuming to repeat multiple similar exercise
protocols until reproducible data are obtained. In addition
to multiple repetition-like transitions, studies have applied
frequency-domain data filtering before time-domain kinetic
analysis (Harper et al., 2006; Schlup et al., 2015). Despite reducing
the confidence interval of estimated time-domain parameters, the
exponential data fitting procedure after filtering still deals with
explicit modeling where model parameters are assumed a priori
(Eßfeld et al., 1987). Therefore, new methods for the extraction
of indexes related to aerobic system temporal dynamics without
the need of model assumption should be investigated.

An attractive alternative to multiple repetitions of step
transitions for evaluating the kinetic behavior of the aerobic
energy supply system is the pseudo-random binary sequence
(PRBS) in which Ẇ varies between two levels which are normally
constrained to the light to moderate intensity exercise domains
(Eßfeld et al., 1987; Hughson et al., 1990; Beltrame and Hughson,
2017a). The V̇O2 response to PRBS protocols is evaluated in the
frequency-domain filtering out non-periodic signals associated
with white noise, improving the extraction of parameters
related to the aerobic system dynamics. The influence of inter-
breath noise in the V̇O2 dynamics commonly occurs at higher
frequencies that can be neglected during the frequency-domain
analysis, theoretically increasing the biological significance of
the estimated indexes. The attractiveness of the PRBS approach
results from the potential to gain a quantitative index of kinetics
from fewer exercise testing sessions in comparison to time-
domain approaches (Hughson et al., 1991; Yoshida et al., 2008).

To date, there are few studies of the variability of the
methodology and the requirements for precision in estimation
from PRBS testing (Edwards et al., 2001, 2003; Koschate et al.,
2016). In support of recent findings (Beltrame and Hughson,
2017a,b; Beltrame et al., 2017a), the purpose of this study was
to describe in detail the computation of the mean normalized
gain (MNG) and to test its consistency to characterize the V̇O2

kinetics during random exercise in humans. The MNG will be
validated against the time-domain approach, and checked for
intra-subject consistency by applying multiple PRBS protocols
on different days and times of the day. In addition, the MNG
was also evaluated considering different number of repeated tests
averaged together before data modeling and different filtering
techniques.

The hypothesis of this study was that the V̇O2 dynamics
characterized by MNG during random exercise would be similar
to the dynamic indices obtained by time-domain analysis, even
with fewer exercise repetitions. In addition, we hypothesized that
MNG was independent of the testing day and the time of the
day, demonstrating therefore that it can be used to evaluate the
individual aerobic response during random exercise in humans.

Abbreviations: a0, Baseline; a1, Steady state amplitude; f1, Fundamental

frequency; gAmp, System gain; h, Harmonic number; MNG, Mean normalized

gain; MRT, Mean response time; PRBS, Pseudorandom binary sequence; τ , Time

constant; TD, Time delay of the exponential function; τs, Time constant of

simulations; V̇O2, Oxygen uptake; Ẇ, Work rate.

These results could set the stage for advancing frequency domain
analyses outside the confines of the research laboratory to assess
kinetics, and therefore an index of physical fitness, in activities
common to daily living or athletic training.

MATERIALS AND METHODS

Study Design
Eight healthy, young adults (28 ± 6 years old, 175 ± 7 cm, and
79 ± 13 kg), who were not athletically trained, participated in
this study. All participants visited the laboratory four separate
times to complete submaximal exercise protocols. The study was
approved by the Office of Human Research of the University of
Waterloo and was in agreement with Declaration of Helsinki.
Participants provided written informed consent after receiving
full study details and being made aware that they could withdraw
at any time without penalty.

On each visit, three successive PRBS sequences were
completed in a single, continuous session. The signal related to
the first PRBS in each visit was excluded a priori as a warm-
up (Hughson et al., 1990) and the remaining PRBS protocols
were numbered in sequence (1–8) and considered under separate
conditions defined by their time of day (morning and afternoon,
separated by 6 h) and by their different days (day 1 and day 2,
separated by 1 week) to test consistency of the V̇O2 dynamics
characterization. The datasets were also analyzed considering
different filtering methods for pre-processing including moving
average, multiple tests averaging and low-pass filtering (see
Table 1).

Pseudorandom Binary Sequence Exercise
Test (PRBS)
All exercise tests were performed on an electrically braked cycle
ergometer controlled by an external, pre-programmed module
(Lode Excalibur Sport, Lode B.V., Groningen, Netherlands).
The PRBS protocol (Figure 1B) was generated by a digital
shift register with an adder module feedback (Bennett et al.,
1981; Hughson et al., 1990; Beltrame and Hughson, 2017b)
(Figure 1A). The target Ẇ (reached after <1.5 s of transition
following a modification of the ergometer controller) was 25 or
100 W, and the cadence was maintained at ≈ 1 Hz. As described
in Figure 1, the PRBS protocol comprised 15 units (25 or 100W)
for 30 s (total of 450 s for each PRBS). According to previous
studies (Beltrame and Hughson, 2017a,b), the highest Ẇ used
in the current study (i.e., 100 W) is constrained to moderate
intensity exercise thus avoiding the presence of system distortions
that might influence the system temporal analysis.

Data Acquisition and Analysis
The V̇O2 data were measured breath-by-breath by the Vmax

system (CareFusion, San Diego, CA, USA) that estimates the air
volume through a low resistance mass flow sensor (accuracy of
>97%), the O2 pressure by an electro-chemical cell (accuracy
of >99%), and the CO2 pressure by an infrared light with
a thermopile (accuracy of >99%). The gas concentrations
and air volume/flow were calibrated following manufacturer’s
specifications before each test. The raw breath-by-breath
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TABLE 1 | Description of the pseudorandom binary sequence (PRBS) protocols (1–8) used to test the influence of some conditions and data pre-processing over the

oxygen uptake dynamics.

Conditions Factor PRBS evaluated

Consitency Time of the day Morning Average of 1+2+5+6

Afternoon Average of 3+4+7+8

Day Day 1 Average of 1+2+3+4

Day 2 Average of 5+6+7+8

Filtering Moving average 3 s 1

5 s 1

7 s 1

Repetitions without low-pass filtering 1 repetition 1

2 repetitions Average of 1+2

3 repetitions Average of 1+2+3

4 repetitions Average of 1+2+3+4

5 repetitions Average of 1+2+3+4+5

6 repetitions Average of 1+2+3+4+5+6

7 repetitions Average of 1+2+3+4+5+6+7

8 repetitions Average of 1+2+3+4+5+6+7+8

Repetitions with low-pass filtering 1 repetition 1

2 repetitions Average of 1+2

3 repetitions Average of 1+2+3

4 repetitions Average of 1+2+3+4

5 repetitions Average of 1+2+3+4+5

6 repetitions Average of 1+2+3+4+5+6

7 repetitions Average of 1+2+3+4+5+6+7

8 repetitions Average of 1+2+3+4+5+6+7+8

V̇O2 data were linearly interpolated second-by-second by the
interpolation transform in SigmaPlot 12.5 software (Systat
Software, San Jose, CA, USA)

When appropriate, different filtering techniques were applied
over V̇O2 data. The moving average filtering level varied between
different window sizes (3, 5, or 7 s) and the low-pass filter
considered a cutoff frequency of 0.075 Hz following previous
literature (Harper et al., 2006; Schlup et al., 2015). Filters
were implemented in Origin 9.1 software (OriginLab Corp.
Northampton, MA, USA). Afterwards, the V̇O2 data were time
aligned and ensemble-averaged to obtain a single response
per participant from different combinations of repetitions as
described in Table 1.

Frequency Domain Analysis
The MNG was calculated based on the frequency-domain data
transformation (Hughson et al., 1990). The datasets used for
MNG calculations are described in Table 1; however, the last
condition (low-pass filtering) was not tested due to the embedded
filtering characteristics of the MNG estimation that has a cut-off
frequency lower than 0.075 Hz (explained below).

The first step in the calculation of MNG required frequency
domain analysis at each of the first four harmonics. Data
from the exercise input (Ẇ) and output (V̇O2) were analyzed
using a standard Discrete Fourier Transformation algorithm
(Smith, 1999). The following sinusoidal function was solved for

harmonics 1–4 as described previously (Hughson et al., 1990):

V̇O2(t) = a0 + 2 ∗
∑4

h=1

(

Ah ∗ cos
(

2π ∗ h ∗ f1 ∗ t
)

+ Bh ∗ sin
(

2π ∗ h ∗ f1 ∗ t
))

(1)

where t is the time of the PRBS, a0 is average response during
the entire PRBS, f1 is the fundamental frequency calculated as the
inverse of the protocol length of 450 s (i.e., 1/450 or 0.0022 Hz).
As depicted in Figures 1C,D, the f1 can be defined as the lowest
frequency evaluated and the subsequent frequencies were defined
by the product between f1 and the harmonics (h). Harmonics are
integer numbers that define howmany complete sinusoidal cycles
into which the time series signal was decomposed. The Ah and
Bh are the cosine and sine amplitudes for a given harmonic h,
respectively. From Ah and Bh, the sinusoidal amplitude (Amp)
was computed for each h (Figure 1D) by:

Ampn =

√

A2
h
+ B2

h
(2)

The system gain was calculated at each h (gAmph) from the
relationship for the individual input:output relationships at that
harmonic by the ratio:

gAmph = V̇O2Amph/ẆAmph (3)
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FIGURE 1 | (A) Illustration of the 4-stage shift register used to generate the pseudorandom binary sequence protocol (PRBS). The module addition feedback (
∑

)

sums the first and fourth stage values and tests the “if” statement. The value is then inserted into the first stage and the entire system shifts to the right, and the

sequence repeats after 15 values. Each unit is maintained for 30s to create the PRBS protocol in the time-domain (B). The system input stimulates the oxygen uptake

(V̇O2) response (−), here represented by the mean signal of all participants (n = 8) during the first visit. The V̇O2 data regarding the first PRBS sequence (warm-up)

were excluded a priori. (C) To illustrate the frequency domain analysis, Fourier transformations were used to decompose the V̇O2 time-domain response of the

second PRBS sequence into amplitudes of sinusoidal functions at specific frequencies (i.e., harmonics). The amplitudes of the system input (i.e., work rate in Watts)

and output (i.e., V̇O2) at different frequencies are displayed in (D).

Isolating Temporal Dynamics from the
Frequency Domain Responses
The MNG was calculated based on the normalization of
individual harmonic gains. As illustrated by the arrow between
Figures 2A,C, the system gains were normalized as a percentage
of the gAmp at h1 (i.e., gAmp1) (Hoffmann et al., 1994; Beltrame
andHughson, 2017a,b). This normalization isolated the temporal
dynamics of the system by removing the influences of the total
gain (i.e., steady-state gain) across the harmonic amplitudes
(Hoffmann et al., 1992). Therefore, based on a previous concept
(Shmilovitz, 2005; Beltrame et al., 2017a; Beltrame and Hughson,
2017a,b), the new index of system dynamics called mean
normalized system gain (MNG, expressed in % in Figure 2D) was
obtained by the average of the normalized system gains (smaller
arrow in Figure 2C) of the harmonics 2, 3, and 4 (h= 2, 3, and 4)
following the equation:

MNG = (
∑4

2
gAmph/3 ∗ 100)/gAmp1. (4)

Time-Domain Analysis
The time-domain analysis of the V̇O2 data was conducted on a
segment of the PRBS for comparison to the MNG obtained by
frequency domain analysis. The data window length for time-
domain analysis included the final 10s of a 90s period of 25
W followed by 120s at 100 W (starting at the 180th second of
the PRBS protocol). This exercise window corresponded to the
longest period without input variation, thus the best window for
time-domain analysis within the PRBS protocol. The following
equation was used to fit the V̇O2 data (Hughson and Morrissey,
1982; Whipp et al., 1982):

V̇O2(t) = a0 + a
(

1− e−(t−TD)/τ
)

(5)

where t is time; a0 is the baseline at 25 W; a is the steady
state amplitude at 100 W; τ is time constant (i.e., the “speed”
of the system) and TD is the time delay of the exponential
function onset. The initial data associated with the cardio-
dynamic component (20 s) were excluded before data fitting. The
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FIGURE 2 | (A) Mean ± SD of 10 simulations of the system gain (gAmp) calculated in the frequency domain from data generated using 10 different values of system

time constants (τs), amplitudes and baselines (see Table 2). (B) linear (– –) relationship between τs and the average absolute oxygen uptake gain at each tested

harmonic (h) for each of the 10 simulations. (C) mean ± SD of data displayed in A normalized by the gAmp at h1. The mean normalized gain (MNG) was calculated as

the mean of the gAmp between h2, h3, and h4 (please see text and Equation 4). (D) relationship between τs and MNG. This relationship was fitted by a linear (– –) and

sigmoid (–) function. Notice in (D) that the normalization procedure isolated the relationship between amplitude and τs from other sources of system distortion such as

system gain and baseline. The correlation coefficient “r” was used to indicate the degree of correlation between τs and MNG. Please see text for further details

regarding the sigmoid function.

mean response time (MRT) was calculated by adding t and TD
(Macdonald et al., 1997). The quality of the fitting was assured
by the analysis of squared error, coefficient of determination (r2),
95% confidence interval band (CI95) of the model (Fawkner et al.,
2002; Keir et al., 2016) and the significance level (p-value) of
the estimated parameters. The comparison between MNG and
τ , both derived from measured V̇O2 data, has the purpose to
experimentally support the expected correlation between both
parameters (further demonstrated by computer simulations). It
is worth to mention that this study was not designed to obtain
τ under ideal condition since the dataset used for this purpose
was, and must be for a fairer comparison between indexes, nested
within the PRBS protocol. Therefore, the time domain approach
was only used as a supplementary analysis to validate this new
index (i.e.,MNG) estimated from frequency domain response.

In silico Simulations: MNG vs. Time
Constant
Simulations of the V̇O2 response stimulated by PRBS input
were performed to determine the relationship between the time
constant (for the simulations denoted τs) andMNG, derived from
time- and frequency-domain analysis, respectively. Similarly
to τs, MNG should extract information regarding the V̇O2

system adaptation speed from random exercise stimulus which
ultimately is associated with aerobic fitness (Hagberg et al., 1980;
Powers et al., 1985; Chilibeck et al., 1995; Hughson, 2009).

As previously described elsewhere (Hoffmann et al., 2013;
Beltrame and Hughson, 2017a), an algorithm was created to
simulate the V̇O2 response to PRBS considering the function
described above in the Time-domain analysis section. This
algorithm assumed a linear static and dynamic V̇O2 gain (Eßfeld
et al., 1991; Hoffmann et al., 1992) with no time delay, as expected
in muscular V̇O2 response (Hoffmann et al., 2013). Firstly,
ten simulations were generated by arbitrarily selecting different
combinations between a0, a1 and τs as described in Table 2.
The average Amp gain between the analyzed frequencies and the
MNG are also described in Table 2. For further discussion, the
physiological range of τ and τs was defined as 10 < τ and τs <
100 s.

The system gains (Figure 2A) are dependent in the

simulations on the values of a0 and a1 (amplitude components)

as well as τs (speed component). Since the extraction of the
system temporal characteristics (such as τs) is the goal of our

index, a0 and a1 can be considered as confounding factors. Thus,

as shown in Figure 2B, the simple average of the absolute gains
across the tested frequencies was not able to perfectly predict
τs; however, the normalization method used to obtain the MNG
was able to better isolate τs from the different system gains and
baselines (Figure 2D). In addition to the simulations that used
a physiological range of the parameters, more simulations were
performed to further investigate the expected behavior of the
relationship between MNG and τs. These simulations (n = 10)
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TABLE 2 | Description of the parameter used for the computer simulations and

the parameters obtained by frequency-domain analysis.

Simulation 1 2 3 4 5 6 7 8 9 10

a0 (ml·min-1) 300 400 350 250 200 150 125 350 250 330

a1 (ml·min-1) 700 800 750 900 750 600 800 600 750 650

τs (s) 15 45 25 21 39 52 42 35 48 19

Average gAmp (ml.

min-1Ẇ−1)

7.9 5.2 7.0 9.0 5.4 3.5 5.5 4.6 4.6 6.8

MNG (%) 86 58 74 79 61 54 59 64 56 81

a0, baseline; a1, steady state amplitude; τs, exponential time constant of the simulations;
gAmp, gain amplitude; MNG, mean normalized gain amplitude.

used a constant a0 and a1 but varied τs to extreme values (0.001,
0.1, 1, 5, 15, 35, 80, 200, 500, and 1500 s). Different combinations
of harmonics (i.e., h′s) to calculateMNG (derived from equation
4) were also tested. Specifically, the following combinations
between h were tested for theMNG calculation: 2 ≤ h ≤ 3, 2 ≤ h
≤ 4, 2 ≤ h ≤ 5, and 2 ≤ h ≤ 10. The relationship between MNG
and τs (Figures 2D, 3) was described by a sigmoid function.
The x-axis scale in Figure 3 was converted to log10 for a better
visualization of this relationship.

If more normalized gains from the simulated linear systems
are considered intoMNG calculation (equations in Figure 3), the
sigmoid is shifted to left and the plateau for longer τs became
smaller. However, the physiological range (arrow in Figure 3)
of τs was always located at the approximately-linear portion of
the sigmoid, independently of the number of harmonics used to
calculate MNG. The improvements (measured by the r-value)
from the sigmoidal to the linear fitting was minimal (or 0.9%
as displayed in Figure 2D). Therefore, considering the model
degree of freedom, the physiological range in τ , and the error
associated with the τ estimation from real data, the relationship
between MNG and τ was simplified to a linear relationship
(– –, in Figures 2B,D). The system analysis of the current
study was limited to the fourth harmonic (Figure 2A, h = 4 or
0.008 Hz) because the V̇O2 data, and presumably the aerobic
system response, can be analyzed as a first order linear system
(Hoffmann et al., 1992). It is important to adhere to the linearity
principle to avoid misinterpretation about the V̇O2 dynamics
that might not be driven directly by work rate effect on the
metabolic response but by circulatory distortions at frequencies
higher than ≈0.01 Hz (Hoffmann et al., 1992). Kinetics analyses
and data simulations were performed by a certified (#100-314-
4110) LabVIEW associated developer (National Instruments,
Austin, TX, USA).

Statistical Analysis
According to Shapiro-Wilk test, most of the data were normally
distributed. The MNG, τ and MRT were compared between
different conditions (time of day, or different days) by paired
t-test. One way repeated measures ANOVA was used to test
the impact of the moving average filtering level on MNG
by comparing different average window sizes (3, 5, or 7 s)
applied over the first PRBS protocol with the signal from
this same protocol without filter. The MNG was compared

FIGURE 3 | Computer simulations were performed to generate different

oxygen uptake (V̇O2) responses considering different values of time constant

(τs) that defines the speed of the V̇O2 adjustment to random exercise. The

V̇O2 data were transformed to frequency domain and the mean normalized

gain amplitude (MNG) was obtained considering the normalized system gain

obtained from different frequency ranges. The equations describe how the

MNG was obtained from the V̇O2 data. The x-axis scale was converted to

log10 for a better visualization of the sigmoidal characteristics of the

relationship between MNG and τs. The symbols “•” represent the simulated

data from Figure 2D. Please see Equation (4) and text for further details

regarding the equation parameters and procedures. Notice that the linear

portion of the sigmoid function is always located at the physiological portion of

tau values (i.e., from 10 to 100 s).

between different exercise repetitions (1–8) by one way repeated
measures ANOVA. Statistical differences in τ andMRT obtained
from different exercise repetitions (1–8) with or without low-
pass filtering were assessed by two way repeated measures
ANOVA. Student-Newman-Keuls method was selected for post-
hoc analysis. When appropriate, sample size was calculated using
Student t-test or paired t-test as reference test and considering
the SD of the MNG or τ , both estimated from eight exercise
repetitions without filtering, with the power set at 0.8. The
linear correlation was measured by Pearson product-moment
correlation coefficient (r) and coefficient of determination (r2).
The agreement level was assessed by Bland-Altman plot and
CI95 (Altman and Bland, 1983). The CI95 of τ and MNG was
obtained as 1.96∗SD of the group response and, for the sake
of comparison between these parameters, the CI95 was reported
as percentage of the group mean. For all statistical tests, the
statistical significance (p) was set at <0.05. Statistical analysis was
conducted in SigmaPlot 12.5 software (Systat Software, San Jose,
CA, USA).

RESULTS

MNG vs. τ

The parameters from time-domain analysis (a0, a1, τ , and TD)
and the MNG obtained by frequency-domain analysis based on
different exercise repetition combinations and frequency filtering
levels are reported in Table 3. The parameter estimates of τ and
MRT were not statistically (p > 0.05) different between different
exercise repetitions, nor were they different with or without
low-pass filtering.
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TABLE 3 | Parameter obtained by time-domain oxygen uptake analysis considering different combinations of exercise repetitions (1–8) with our without low-pass filtering

(0.075 Hz).

Repetitions 1 2 3 4 5 6 7 8

WITHOUT LOW-PASS FILTERING

a0 888 ± 132 892 ± 121 903 ± 143 924 ± 141 932 ± 134 941 ± 135 944 ± 130 955 ± 123

a1 790 ± 215 811 ± 176 766 ± 98 759 ± 77 737 ± 69 740 ± 73 744 ± 63 733 ± 71

τ 34.1 ± 27.9 39.7 ± 18.9 34.5 ± 13.3 33.3 ± 10.9 31.2 ± 9.4 33.3 ± 10.7 34.5 ± 9.4 34.1 ± 10.2

TD 18.1 ± 12.4 14.7 ± 6.8 15.2 ± 4.5 15.2 ± 4.2 16.0 ± 4.1 15.8 ± 4.0 15.4 ± 4.1 15.8 ± 4.4

MRT 52.2 ± 20.1 54.4 ± 15.6 49.7 ± 13.4 48.5 ± 10.9 47.2 ± 9.7 49.1 ± 11.7 50.0 ± 10.5 50.0 ± 11.0

MNG 60 ± 9 57 ± 7 57 ± 7 56 ± 7 56 ± 7 56 ± 7 57 ± 7 58 ± 7

WITH LOW-PASS FILTERING (0.075 Hz)

a0 887 ± 138 902 ± 119 904 ± 147 924 ± 144 932 ± 136 940 ± 137 942 ± 132 955 ± 125

a1 797 ± 22 763 ± 12 768 ± 100 761 ± 79 740 ± 72 744 ± 75 748 ± 64 735 ± 72

τ 35.1 ± 29.4 33.2 ± 15.8 35.2 ± 13.8 33.8 ± 10.9 31.7 ± 9.50 33.7 ± 10.7 35.0 ± 9.35 34.5 ± 10.1

TD 17.7 ± 11.8 17.2 ± 8.4 14.9 ± 4.4 14.9 ± 4.0 15.8 ± 4.0 15.5 ± 3.9 15.1 ± 3.9 15.6 ± 4.2

MRT 52.8 ± 21.6 50.5 ± 12.7 50.2 ± 13.7 48.8 ± 11.1 47.6 ± 9.90 49.3 ± 11.9 50.2 ± 10.7 50.2 ± 11.1

The mean normalized gain (MNG) is also described for different exercise repetitions. a0, baseline; a1, steady state amplitude; τ , exponential time constant; TD, time delay of the
exponential function; MRT, mean response time.

FIGURE 4 | Relationship between time constant (τ ) calculated from low-pass

filtered oxygen uptake data and mean normalized gain (MNG). Both indexes

were obtained from eight repetitions for all participants (n = 8) of the

pseudorandom binary sequence test. The individual values (black circles), the

regression line (dashed) and 95% CI (solid thin lines) are shown in comparison

to the simulated data (solid thick line for MNG vs. τs as in Figures 2C).

Figure 4 shows the correlation between τ andMNG obtained
by time- and frequency-domain analysis, respectively. Both
parameters were obtained based on eight-repetition dataset and
τ was also obtained from low-pass filtered data. For visual
comparison, the simulated data displayed in Figure 2D are also
plotted in Figure 4. The MNG of the experimental data were
consistently less for all participants than the values obtained with
simulated data for any value of τ .

Influence of Time of Day and between Days
The τ , MRT, and MNG were not statistically different when
compared across time of day (p > 0.05) and between days (p
> 0.05). The relationship and the agreement level of the MNG

(Figure 5) and τ (Figure 6) obtained during the morning and
afternoon (Figures 6A,C) and in different days (Figures 6B,D).
The MNG was strongly correlated between the time of day
(morning vs. afternoon) and between days (day 1 vs. day 2).
The bias of the MNG calculation represented 4.92 and 5.57%
of the total MNG variation during the different time of the
day and between days, respectively. The CI95 were equivalent
to 18.21 and 13.78% of the total MNG variation of the sample
for the different time of the day and between days, respectively.
The τ was not correlated between the time of day (morning vs.
afternoon) possibly due to the outlier identified in Figure 6A

by the arrow. However, τ was strongly correlated between days
(day 1 vs. day 2). The bias of the τ calculation represented
9.11 and 5.58% of the total τ variation during the different
time of the day and between days, respectively. The CI95 were
equivalent to 95.28 and 47.28% of the total τ variation of the
sample for the different time of the day and between days,
respectively.

Influence of the Averaging Level and
Number of Repetitions
The different moving average filtering levels (3, 5, or 7 s) have
not impacted theMNG estimation during the first PRBS protocol.
The correlation coefficient r was 0.99 for all levels in comparison
to the signal without moving average filtering. In addition, the
bias and theCI95 between all filtering levels and the signal without
filtering was minimal (<≈1%).

Figure 7 illustrates the sample size needed to find statistical
significance for a given effect size (changes in MNG or τ )
by Student t-test (Figures 7A,B for MNG and τ , respectively)
or Paired t-test (Figures 7C,D for MNG and τ , respectively)
considering different number of repetitions averaged together
before data analysis (time or frequency-domain analysis). The
relationship between sample size and the effect size suggested an
exponential-decay-like function. The sample size of τ was more
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FIGURE 5 | Correlation between the mean normalized gain amplitude (MNG) estimated under the influence of different time of the day (A, Morning vs. Afternoon) and

different day of testing (B, Day 1 vs. Day 2). The agreement level between the factors plotted in (A,B) are displayed in (C,D), respectively. r, Pearson’s correlation level;

p, statistical significance level; and n, sample size.

FIGURE 6 | Correlation between the time constant (τ ) estimated under the influence of different time of the day (A, Morning vs. Afternoon) and different day of testing

(B, Day 1 vs. Day 2). The agreement level between the factors plotted in (A,B) are displayed in (C,D), respectively. The arrow indicates an outlier. r, Pearson’s
correlation level; p, statistical significance level; n, sample size.
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FIGURE 7 | Relationship between effect size of the mean normalized gain amplitude (MNG) or time constant from low-pass filtered data (τ ) with the sample size

needed to find statistical significance by student t-test (A,B) or paired t-test (C,D) considering different number of exercise repetitions (symbols). The desired power

and the significance level considered for the sample size calculations were 0.8 and 0.05, respectively.

dependent on the number of repetitions in comparison to MNG
in both tests (Student and Paired t-test).

The repeatedmeasures ANOVA showed that theMNG, as well
as τ , were not statistically different (p > 0.05) between different
exercise repetitions. However, as depicted in Figure 8, the CI95
normalized by the group mean response of τ and MNG differed
when different numbers of PRBS were ensemble-averaged before
data analysis. As expected considering the short data window and
model degree of freedom, the τ CI95 was extremely high when
only one exercise repetition was considered for data modeling.
After that, the τ CI95 stabilized after four exercise repetitions at
≈70% for both, with or without low-pass filter. If we consider
that the aerobic system temporal dynamics were unchanged
across different exercise repetitions, the observed τ CI95 of 70%
in filtered data can be interpreted as an intrinsic variability
originating from time-domain data modeling and from variable
aerobic fitness of the participants. On the other hand, the
MNG CI95 seemed to be independent of the number of exercise
repetitions and it was stable at ≈30% which indicated a lower
method-originated variability, isolating variations of aerobic
fitness from the calculation distortions. Therefore, the actual
variability of the aerobic system temporal dynamics, understood
as aerobic fitness, seems to be approximately 40% around the
mean.

DISCUSSION

In agreement with our initial hypothesis, the calculation of
MNG was able to characterize the temporal dynamics of

V̇O2 to random exercise input being strongly correlated with
the time-domain indicator, τ , obtained in the same persons.
The MNG eliminated the expected differences in static gain
between individuals by expressing the dynamic response as a
percentage of the fundamental harmonic value. The comparison
of MNG against the time-domain V̇O2 kinetics analysis was
shown to be independent of the period of the day, the day
of the test, the filtering technique used and the number of
exercise repetitions ensemble-averaged before data analysis. The
detection of differences inMNG was independent of the number
of exercise repetitions for differences higher than ≈8% which
correspond to a τ variation of ≈15 s. Further, these data are
important for the experimental design of further studies by
informing the number of repetitions necessary according to
an expected effect size (Figure 7). In addition, as reported in
Figure 8, MNG seemed to be, in comparison with τ , ≈50% less
susceptible to noise than time-domain analysis thus isolating
better the temporal dynamics of the aerobic response to changes
in energy demand.

The breath-by-breath fluctuation (Lamarra et al., 1987) during
exercise transitions adds uncertainty to time-domain parameter
prediction, mainly from a single test dataset. The confidence
interval of the estimated τ , and therefore the “sensitivity” to
identify aerobic fitness differences, depends on the V̇O2 signal-
to-noise ratio (Lamarra et al., 1987; Keir et al., 2014b), the
model complexity (i.e., the degree of freedom) (Motulsky and
Ransnas, 1987) and the selected data window (Bell et al., 2001;
Murias et al., 2011). To increase signal-to-noise ratio, studies
commonly repeat similar tests multiple times within the same
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FIGURE 8 | Relationship between the confidence interval (CI95, reported as

percentage of the mean) of the time constant (τ ) and mean normalized gain

(MNG) obtained from different numbers of exercice repetitions. The τ was

obtained from raw and filtered (0.075 Hz) oxygen uptake data. The τ CI95
stabilized at ≈70% after four exercise repetitions while the MNG CI95 was

constant at ≈30% across all exercise repetitions.

session (Ozyener et al., 2001; Christensen et al., 2016) or on
different days (Whipp et al., 1982; Keir et al., 2014a) and average
repetition-like transitions before time-domain data modeling.

The frequency-domain analysis has some advantages over the
time-domain approach. Firstly, no explicit data modeling with a
degree of arbitrariness is necessary (Eßfeld et al., 1987) since the
V̇O2 time series can be decomposed, and therefore rebuilt from
the infinite sum of its harmonic components (Hughson et al.,
1990). Second, the random noise associated with V̇O2 measured
at the mouth (Lamarra et al., 1987) is filtered when transferred
into frequency space, diminishing the impact of the inter-breath
oscillations over the V̇O2 dynamics characterization.

The early studies from Eßfeld et al. (1991) and Hoffmann et al.
(1992) were the first to normalize the system gain amplitudes
by the amplitude at the fundamental harmonic (i.e., gAmp1 in
Equation 4). They successfully showed that a faster V̇O2 kinetics
maintained a higher normalized gain across the frequency
spectrum. However, since the focus of their experiments was
to investigate possible aerobic system controllers, no further
comparisons were carried out to explore the applicability of
this normalization for the V̇O2 temporal dynamics assessment.
Other studies used the absolute system gain to infer about
V̇O2 dynamics (Eßfeld et al., 1987; Hughson et al., 1990,
1991). In fact, the use of absolute gains may be sufficient for
intra-subject comparisons since the system static gain seems to
remain constant as the aerobic system “speeds up” after training
(Christensen et al., 2016). However, for the comparison between
subjects by an absolute index such as τ , the gain must be
normalized.

We demonstrated by computer simulations (Table 2,
Figure 2) that MNG was able to characterize the temporal
characteristics of the aerobic system by comparing MNG with
τs. The MNG refined the ability of the Fourier transformation to

separate the system dynamic gain from the static gain, isolating
therefore the rate at which the aerobic system supplies the energy
demand (i.e., power) from the capacity of the aerobic system to
supply the demand at steady state. The latter is susceptible to
inter-individual variability which confounds the interpretation
of the temporal dynamics based on the system absolute gains (as
demonstrated in Figure 2B).

In the experimental data (Figure 4), we demonstrated that the
MNG was significantly correlated to τ (used as reference). The
τ calculated from eight repetitions and low-pass filter still has
an intrinsic non-physiological variability that could be associated
with the low signal-to-noise ratio as a consequence of noise,
short data window and/or elevated modeling degrees of freedom.
The CI95 of the τ estimated from eight repetitions and low-pass
filtered (0.075 Hz) data between all participants (n = 8) was 19.8
s which represented 57% of the average τ -value. In contrast, the
MNG presented a lower variability in comparison to τ possibly
due to the inherent noise reduction and the lower degrees of
freedom of the proposed method. Consequently, only 75% of the
MNG variation could explain the variations in τ , both calculated
based on eight exercise repetitions (Figure 4). However, we
demonstrated (Figure 8) that ≈30% of the τ variability (from
total of ≈60%) seems to be a consequence of data modeling
by comparing MNG and CI95. This might be occurring because
τ , as an explicit parameter, has an intrinsic degree of freedom
originating from V̇O2 data modeling (Motulsky and Ransnas,
1987). Therefore, based on Figure 8, theMNG seemed to “isolate”
aerobic system temporal dynamics from noise better than τ

obtained from V̇O2 time-domain analysis, even after eight
repetitions and filtering. In addition, in agreement with previous
research (Keir et al., 2014b), the CI95 of τ was more dependent on
the number of exercise repetitions in comparison toMNG where
the CI95 was independent of exercise repetitions.

The biological significance of τ and MNG was also
demonstrated in Figures 5, 6 by estimating these indexes at
different conditions described inTable 1. The temporal dynamics
of the V̇O2 response, and presumably the aerobic fitness, should
not suffer major changes between periods of day or the day
of testing. However, MNG (Figure 5) seems to have lower
variability associated to the method of choice in comparison to
τ (Figure 6) which is in accordance to Figures 7, 8. In addition,
the participant identified as an outlier (arrow in Figure 6A)
was not apart from the group response in Figure 5A (MNG).
Therefore, the unexpected behavior of the V̇O2 dynamics
during the exercise transition used for τ estimation was not
“transferred” to MNG because the source of this distortion was
not periodic.

As demonstrated in Figure 4, the relationship between τ and
MNG was systematically below the simulated data (MNG vs.
τs, Figures 4, 2C). There are two possible explanations for this.
Firstly, following Hoffmann et al. (2013) and as expected to occur
in the muscle, the simulations were generated based on a non-
delayed exponential response (single time constant τs, no TD).
However, the V̇O2 response at the mouth is classically described
as a delayed exponential response (single time constant τ with
a TD). The addition of the TD term to the fitting model is
a mathematical way to account for the “latency” period when
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the muscle responses have not started to be expressed at the
mouth level due to circulatory transit time. Like the phase shift
obtained from frequency-domain analysis (Eßfeld et al., 1987),
the parameter TD has an elevated variability between subjects
without main physiological relevance. Therefore, comparing the
exponential characteristics (i.e., τ ) of the V̇O2 response at the
mouth to the simulated data τs appears to show an incorrect
gain amplitude generated at the muscle in higher frequencies
effectively “slowing down” the response in frequency domain
(i.e., lower MNG-values). A possible way to account for this
issue is to consider the sum of τ and TD, or the mean response
time (MRT), as the “effective” muscular V̇O2 time constant
measured at the mouth level (Linnarsson, 1974; Whipp and
Ward, 1990). In comparison to Figure 4 and as depicted in
Figure 9, the addition of TD term brings the relationship between
MRT and MNG in line with the simulated data. Despite the
apparent differences in r and p-values for the MNG vs. MRT
compared to the MNG vs. τ (r = −0.802, p = 0.016 and r =

−0.855, p = 0.006 respectively for 8 repetitions), the CI95 and
the squared error were not statistically different (p > 0.05 by
paired t-test) considering the individual responses. Therefore,
the inclusion of the TD did not alter the relationship between
MNG and the time-domain dynamics indicators (τ or MRT).
It is known that TD does not carry biological information
(Eßfeld et al., 1987; Hoffmann et al., 2013) and its inclusion is
commonly related to data modeling strategy (Whipp and Ward,
1990).

An alternative explanation of why the MNG based on the
experimental data is below the simulated data (Figure 4) is
based on the V̇O2 system linearity. The V̇O2 measured at
the mouth presented a certain degree of energy dispersion
across the spectrum due to circulatory distortions and/or all
the assumptions that are necessary to obtain an estimate
of V̇O2 from ventilatory and gas concentration signals. In
contrast, the data simulation was based on a purely linear
system that did not present any source of distortion beyond
the one related to the exercise stimulus. In the simulations,
all energy applied to the system was perfectly converted
into the same-order output response by the superposition
law, maintaining a higher gain across the frequencies. The
possibility exists that even in the range of input stimulation
frequencies assumed to result in linear output (V̇O2) (Hoffmann
et al., 1992) that non-linearities exist effectively lowering the
system response at the higher frequencies. It was previously
speculated (Hughson et al., 1990; Hoffmann et al., 1992) that
distortions of the circulatory system which includes O2 stores
oscillations, variable muscle-to-lungs transit time and blood
venous volume (Hoffmann et al., 2013) might influence the
expression of the V̇O2 dynamics at the mouth level at high
frequencies.

Another advantage of MNG over time-domain-derived
temporal indexes is that it does not require an arbitrary decision
for data modeling regarding the length of the cardio-dynamic
phase that is variable between participants (Murias et al., 2011).
The MNG is estimated from periods longer than 112 s thus this
index does not reflect the cardio-dynamic components during
exercise transitions.

FIGURE 9 | Relationship between mean response time (MRT ) calculated from

filtered oxygen uptake data and mean normalized gain (MNG). Both indexes

were obtained from eight repetitions for all participants (n = 8) of the

pseudorandom binary sequence test. As the individual values (black circles),

the regression line (dashed) and 95% CI (solid thin lines) are shown in

comparison to the simulated data (solid thick line for MNG vs. τs as in

Figure 2C).

LIMITATIONS

The intrinsic degree of uncertainty associated with τ estimated
from the exponential modeling precludes the use of τ as a “gold
standard” method to validate the use ofMNG to assess the system
temporal dynamics. The CI95 of the relationship between τ (and
MRT) with MNG might be influenced by the elevated CI95 of τ

estimation (and TD for MRT). Therefore, there is an expected
source of error also in the reference method (time-domain)
which complicates the validation method. Our data showed that
a faster V̇O2 response will be translated to a higher MNG or a
lower τ and MRT; however, the ability of the MNG to extract
this information from V̇O2 data seemed optimized and more
sensitive to detect differences in the system temporal dynamics
due to its inherent filtering characteristics and the lower degrees
of freedom.

As a Fourier transformation criterion, the proposed method
assumes a symmetrical V̇O2 dynamic between the exercise onset
and recovery transitions. However, the V̇O2 signal may be
composed of asymmetries between these two phases during
exercise intensities higher than moderate (Ozyener et al., 2001;
Markovitz et al., 2004). The highest intensity used in the current
study (100 watts) was restricted to moderate intensity (Bennett
et al., 1981; Eßfeld et al., 1987; Hughson et al., 1988); therefore,
the MNG can be compared to the τ obtained from the V̇O2

response during the onset exercise transition.
Although the frequency range selected in the current study

limits the V̇O2 response to a range where the system linearity
is reportedly preserved (Hoffmann et al., 1992) the MNG might
still be susceptible to system non-linearities originating from
circulatory distortions or some sort of periodic noise can be
present at higher frequencies. Further studies might explore the
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application of specific filtering techniques (Eßfeld et al., 1987;
Hoffmann et al., 1992) to remove noises/responses uncorrelated
to exercise in order to increase even more the precision of the
proposed index to characterize the temporal dynamics of the V̇O2

response. However, consistent with the purpose of this index,
we successfully showed that a faster aerobic response can be
characterized by a higher MNG since that the majority of the
evaluated harmonics were probably linear. These results should
also be verified across a wider range of participants with differing
levels of physical fitness and health status.

CONCLUSION

Characterization of physical fitness has classically been
conducted by measurement of maximal V̇O2 (Astrand and
Saltin, 1961; Drake et al., 1968). Varying levels of physical
fitness and the effects of training programs are also associated
with differing kinetics of adaptation of V̇O2, expressed by
τ , to the challenge of a step increase in Ẇ (Phillips et al.,
1995). The temporal characteristics of the oxygen uptake
(V̇O2) dynamic during moderate exercise have previously been
related to maximal aerobic power (Beltrame and Hughson,
2017b) and a faster V̇O2 response was associated with a better
aerobic fitness (Powers et al., 1985; Norris and Petersen,
1998), functional mobility (Alexander et al., 2003), and disease
prognosis (Borghi-Silva et al., 2012). This study, beyond
demonstrating how to compute, validated a new method to
assess V̇O2 dynamics in random exercises more typical of daily
life.

The MNG can be used to identify changes in the temporal
aerobic system dynamics. The applicability of our findings may

extend beyond controlled exercise protocols as shown with
simulated activities of daily living (Beltrame et al., 2017a) and
in freely moving daily life (Beltrame et al., 2017b). Indeed,
MNG has the potential importance to rehabilitation programs,
exercise prescription and fitness evaluation where the temporal
dynamics of the aerobic response might be related to aerobic
power (Beltrame and Hughson, 2017b). The inherent filtering
characteristics, the need for no model assumption and the low
variability between days and time of the day seems to make
MNG attractive for the evaluation of the aerobic system temporal
dynamics. Additionally, because MNG is expressed as a percent
of the fundamental harmonic, it can be applied to comparisons of
system dynamics across the variables contributing to the delivery
and utilization of oxygen independent of their formal units. In
conclusion, the present study successfully validated the use of
the MNG as a tool for aerobic system analysis based on random
exercise stimulus.
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