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Reconstruction of perceived faces from brain signals is a hot topic in

brain decoding and an important application in the field of brain-computer

interfaces. Existing methods do not fully consider the multiple facial attributes

represented in face images, and their different activity patterns at multiple

brain regions are often ignored, which causes the reconstruction performance

very poor. In the current study, we propose an algorithmic framework that

efficiently combines multiple face-selective brain regions for precise multi-

attribute perceived face reconstruction. Our framework consists of three

modules: a multi-task deep learning network (MTDLN), which is developed to

simultaneously extract the multi-dimensional face features attributed to facial

expression, identity and gender from one single face image, a set of linear

regressions (LR), which is built to map the relationship between the multi-

dimensional face features and the brain signals from multiple brain regions,

and a multi-conditional generative adversarial network (mcGAN), which is

used to generate the perceived face images constrained by the predicted

multi-dimensional face features. We conduct extensive fMRI experiments to

evaluate the reconstruction performance of our framework both subjectively

and objectively. The results show that, compared with the traditional methods,

our proposed framework better characterizes the multi-attribute face features

in a face image, better predicts the face features from brain signals,

and achieves better reconstruction performance of both seen and unseen

face images in both visual effects and quantitative assessment. Moreover,

besides the state-of-the-art intra-subject reconstruction performance, our

proposed framework can also realize inter-subject face reconstruction to a

certain extent.
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Introduction

Reconstruction of perceived objects from brain signals is
a hot topic in brain decoding, and it is also an important
application in the field of brain-computer interface these days.
So far, researchers have been able to reconstruct perceived
objects such as contours (Thirion et al., 2006; Miyawaki
et al., 2008), colors (Brouwer and Heeger, 2009), numbers
(Van Gerven et al., 2010), letters (Van Gerven et al., 2010;
Schoenmakers et al., 2013; Du et al., 2017), natural scenes
(Naselaris et al., 2009; Ren et al., 2021; Gaziv et al., 2022)
and even dynamic movie clips (Nishimoto et al., 2011; Wen
et al., 2018; Le et al., 2021). Among these reconstructed
objects, the most exciting one is face. Face is the most
important and complex “object” that we perceive in our
daily life. Reconstruction of perceived faces has important
practical significance in areas such as understanding the
cognitive mechanisms, detecting the cognitive impairment and
reconstructing suspects’ face in criminal investigation.

However, compared to common objects, reconstruction of
perceived face faces many challenges. First, unlike common
objects that contain mostly low-level visual features, the visual
feature information of faces is focused on high-level, which
is difficult to recover (Hershler and Hochstein, 2005). Second,
unlike common objects that present only one kind of attribute,
face can represent multiple facial attributes, such as expression,
identity, gender, and so on (Gauthier et al., 2000). The
reconstruction of faces should generate face images that is
able to distinguish between these facial attributes. Third, unlike
common objects elicit brain activities mainly in the primary
visual cortex, faces elicit brain activities mostly in high level
of visual cortex, which contain multiple local brain regions
selective for different facial attributes (Haynes and Rees, 2006).
The selection of these brain regions is key for perceived face
reconstruction, but has never been addressed before.

In the early days, reconstructing perceived faces mainly used
principal component analysis (PCA). In 2014, Cowen et al. used
partial least squares (PLS) to setup relationship between face
images and brain signals from human visual cortex. They are
the first to realize the perceived face image reconstruction from
the brain activities (Cowen et al., 2014). Lee and Kuhl (2016)
used PCA to reconstruct perceived faces from visual and parietal
cortex. In the same year, Nestor et al. (2016) combined PCA
and multidimensional scaling (MDS) to reconstruct perceived
face images. Chang and Tsao (2017) used PCA and linear
regression to reconstruct face images from neural activities of
monkey brain. With the rapid development of deep learning,
using convolutional neural networks (CNN) and generative
adversarial networks (GAN) as tools to reconstruct face images
has been a very successful attempt (Güçlütürk et al., 2017;
VanRullen and Reddy, 2019; Bao et al., 2020; Du et al., 2020;
Higgins et al., 2021; Dado et al., 2022). Among these studies,
the most representative work is VanRullen and Reddy (2019).

The authors first used a variational auto-encoder (VAE) model
to extract the face features from face image dataset, and then
used linear regression to map the activities of the brain onto
these face features. The face features were finally entered into
a conditional GAN model for generating perceived faces. The
method they used could clearly reconstruct perceived face image
from the brain signals. However, there was still a gap between
their reconstructed faces and the ground truth, especially in
representing multiple facial attributes such as expressions and
gender. To further improve the face reconstruction accuracy, a
new algorithmic framework is needed for fully considering the
multiple facial attributes and their associated neural activities at
multiple face-selective brain regions.

In this study, we propose a framework for precise perceived
face reconstruction. The framework consists of three modules:
multi-task deep learning network (MTDLN), linear regression
(LR) and multi-conditional generative adversarial network
(mcGAN). The MTDLN is developed to simultaneously extract
multi-dimensional face features attributed to facial expression,
identity and gender from an integrated face image dataset.
The LR maps brain signals from multiple face-selective brain
regions to the multi-dimensional face features attributed to
these multiple facial attributes. The mcGAN generates face
image from the multi-dimensional face features predicted
by the brain signals. The contribution of our proposed
framework is threefold: First, the combination of information
from facial identity, expression and gender, which characterize
more detailed portrayal of human faces; Second, the selective
use of brain signals from multiple brain regions of visual
cortex, which encode multiple facial attribute representation;
Third, the multiple constraints of GAN model based on
multi-dimensional face features for more accurate face image
reconstruction. We conducted extensive fMRI experiments to
evaluate the reconstruction performance of our framework
both subjectively and objectively. Our results showed that our
proposed framework can achieve state-of-the-art reconstruction
performance of both seen and unseen face images in both visual
effects and quantitative assessment.

Materials and methods

The reconstruction framework

Our face reconstruction framework consists of three
modules: MTDLN, LR, and mcGAN (see Figure 1). MTDLN is
the feature extraction module, which is developed purposely for
simultaneously extracting the multi-dimensional face features
attributed to expression, identity and gender. The LR set up
relationship between the brain signals and the face features,
which maps brain signals from multiple face-selective brain
regions to the multi-dimensional face features. The mcGAN is
the face generation module, which is used to reconstruct the
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perceived face images from the multi-dimensional face features
predicted by the brain signals. Each module is developed in
detail as follows.

Multi-task deep learning network
To extract the face features representing multiple attributes

of facial expression, identity and gender without bias, we
designed a multi-task network. The network has one input
of a single face image, and three outputs to identify the face
image’s expression, identity, and gender category, respectively
(see Figure 1B). Previous studies have reported that the better
the classification performance of the CNN model, the better
the model’s ability to extract the object features (Tang et al.,
2014; Sharma et al., 2018; Sahlol et al., 2020). In order to
extract the more accurate multi-dimensional face features, we
optimized both the multi-task CNN architecture and network
parameters so that we can find a “best-performing” multi-task
CNN model whose overall performance of classifying facial
expression, identity and gender reach the best.

We selected the architecture of VGG-Face (Parkhi et al.,
2015) as the basic single-task architecture and created a series
of multi-task CNN architectures. The multi-task architectures
differed in the layer at which the network is split into three
branches. The five max-pooling layers (each separating one
convolutional block) and the last three fully-connected layers
were selected as the split layers, and a total of eight candidate
multi-task network architectures were generated (see Figure 2).
We replaced its first two fully-connected layers from 4,096 to
512 dimensions, and defined the last fully-connected layer of
each output as 7, N and 2 dimensions, respectively. Here, seven
represents the seven basic facial expressions: fear, anger, disgust,
happiness, neutral, sadness, and surprise, N is the number of
facial identities for re-training the model, two represents the
gender categories of male and female.

For each candidate multi-task architecture, we fixed the
parameters of model’s shared layers with pre-trained VGG-Face
parameters, and re-trained the network parameters in layers of
three separated branches with fine-tuning.

To characterize the relative weight between tasks during the
multi-task learning, we defined a set of hyper-parameters (α1,
α2, and α3) in multi-task CNN’s loss function as:

Loss = α1∗loss1+ α2∗loss2+ α3∗loss3 (1)

where α1 + α2 + α3 = 1, lossi (i = 1, 2, 3) is the cross-entropy loss
functions for facial expression, identity and gender classification
tasks, respectively. To find the optimal set of hyper-parameters
(α1, α2, and α3), we manually adjusted the settings of α1 from
0.1 to 0.9 at an interval of 0.1. Given gender is a more general
representation of facial identity, we set α2 equals to α3. For each
setting, we trained the parameters of the multi-task architecture
and evaluated its overall classification performance across facial
expression, identity, and gender.

Facial expression and gender classification accuracy
were evaluated by comparing the predicted facial expression
categories to their real labels across all face images in the
validation set. Due to the “open-set test” (Scheirer et al., 2012),
which means the facial identities used in the training and testing
set are not allowed to be the same, facial identity classification
accuracy was evaluated using the same strategy as FaceNet
(Schroff et al., 2015). Specifically, we randomly selected 900
face image pairs belonging to the same identities and 900 face
image pairs belonging to different identities from the validation
set, then input the 1,800 face image pairs into the multi-task
CNN models. We extracted the unit response patterns from
the penultimate layer of multi-task CNN’s identity branch for
each image pair and calculated the Euclidean distances. The
1,800 face image pairs were separated into 10 groups, nine
used to define an Euclidean distance as the threshold and
one used to judge if the pair of face images belonged to the
same identity. We used 10-fold cross-validation to evaluate
overall facial identity classification accuracy. The network
parameters were set to train a fixed number of 500 epochs,
and for each epoch, we calculated the classification accuracy
for facial expression, identity and gender on validation set,
respectively. After the training epochs reached a stable state,
the peak classification accuracies of validation set were used to
represent the performance of the optimized CNN model.

Of all the (α1, α2, and α3) settings, we found that when
α1 = 0.4, α2 = α3 = 0.3, the multi-task network consistently
achieved the peak classification accuracy (see Table 1). We
therefore fixed this hyper-parameter setting for optimizing
each of the multi-task architecture. By training each of the
eight candidate multi-task CNN architectures defined above,
we found that the multi-task model shared the first four
blocks (the initial 11 convolutional layers) and separated the
following layers achieved overall best classification performance
(see Table 2). We termed this best-performing model as
“MTDLN” for multi-dimensional face feature extraction in our
reconstruction framework.

The network parameters were trained with the stochastic
gradient descent (SGD) optimization algorithm. The initial
learning rate was set to 0.001, the batch size was set to 32. Each
network was iterated for 500 epochs until it reached a stable
state. To reduce the risk of over-fitting, we implemented the L2-
regularization with the regularization rate of 0.001 for the first
fully-connected layer (in each of the three branches), and set the
dropout rate to be 0.5 for the second fully-connected layer (in
each of the three branches).

Multi-conditional generative adversarial
networks

Conditional generative adversarial networks (cGAN) (Mirza
and Osindero, 2014) has been used for face image generation
with conditional constrains (Chen et al., 2018; Lu et al., 2018;
Bi et al., 2019; Deng et al., 2020; Heo et al., 2021). Compared
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FIGURE 1

Schematic illustration of the perceived face reconstruction framework. (A) Algorithmic workflow. (B) The multi-task deep learning network
(MTDLN) module. (C) The multi-conditional generative adversarial network (mcGAN) module.

FIGURE 2

Schematic diagram of eight candidate multi-task network architectures for simultaneously classifying facial expression, identity, and gender.
The architectures vary at which layer the network is split into three branches, sharing no layers (A), one block (B), two blocks (C), three blocks
(D), four blocks (E), five blocks (F), five blocks and one fully-connected layer (G), and five blocks and two fully connected layers (H). Each bar
represents one convolutional neural network (CNN) layer. Specifically, the bars with red borders represent layers in the identity branch, the bars
with green borders represent layers in the expression branch, and the bars with blue borders represent layers in the gender branch. The
architecture (E) surrounded by a dashed line is the best-performing architecture.
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TABLE 1 Face classification performance of multi-task deep learning network (MTDLN) at varied task weights.

Weight settings Accuracy

Expression Identity Gender Expression (%) Identity (%) Gender (%)

0.2 0.4 0.4 94.29 97.89 100

0.4 0.3 0.3 95.71 98.00 100

0.6 0.2 0.2 94.29 97.80 100

0.8 0.1 0.1 94.29 96.94 100

The bold text represents the best-performing task weight setting and the optimal classification performance.

TABLE 2 Face classification performance of multi-task deep learning network (MTDLN) at varied architectures.

Sharing blocks Remaining blocks Accuracy

Identity (%) Expression (%) Gender (%)

0 8 95.14 21.43 55

1 7 96.72 27.14 55

2 6 95.76 86.43 58.57

3 5 95.76 96.43 100

4 4 98 95.71 100

5 3 95.86 82.14 99.29

6 2 95.86 85.00 99.29

7 1 95.84 85.00 99.29

The bold text represents the best-performing architecture and the optimal classification performance.

to traditional GAN (Goodfellow et al., 2020), it allows use of
additional information as latent variable input to constrain the
image generation process. Here we designed a multi-conditional
GAN (mcGAN) model, where face features representing
multiple facial attributes were introduced as multiple constraint
conditions. Therefore the mcGAN can realize more precise face
image reconstruction with the desired facial attributes.

Our proposed mcGAN module was developed on the
basis of deep convolutional generative adversarial networks
(DCGANs) (Radford et al., 2015; see Figure 3). For the
discriminator network, we added three fully-connected layers at
the end of the fourth convolutional layers paralleling the original
fully-connected layer, so that for each given face image, the
discriminator network can justify (1) is the image real or fake?
(2) Which expression category the face belongs to? (3) Which
identity category the face belongs to? (4) What gender the face
is? These improvements allow the discriminator to distinguish
not only real or generated face images, but between categories
of multiple face attributes. The loss function of the improved
discriminator is defined as:

max
D

LDGAN = Ex∼pd(x)
[
logD (x)

]
+Ez∼pz(z)

[
log (1− D (G (z)))

]
−λD{LBCE(tid,Dclassid (x))+LBCE(tid,Dclassid (G(z)) )

+LBCE(texp,Dclassexp (x))+LBCE(texp,Dclassexp (G(z)) )

+LBCE(tgen,Dclassgen (x))+LBCE(tgen,Dclassgen (G (z)))} (2)

where tid is the feature vector attributed to facial identity
extracted from MTDLN, texp is the feature vector attributed
to facial expression, tgen is the feature vector attributed to
gender, and λD is weight parameter. Z is the concatenation
of tid, texp, and tgen, LBCE (·) denotes the binary cross-
entropy function. x represents the real image and G(z) is the
corresponding generated one.

For the generator network, we added one fully-connected
layer before the first deconvolution layer, so that the network
can generate face images with the same size as input image from
three latent feature vectors. Besides, we added a mean absolute
error constraint, so that our generator can yield image more
similar to the real image. The loss function of the improved
generator is defined as:

min
G

LGGAN = Ez∼pz(z)
[
log(1−D (G(z)) )

]
+λGLMAE(G (z) , x)

(3)
where λG is the weight parameter, x represents the real image
and G(z) is the corresponding generated one, LMAE (·) denotes
the mean absolute error function. To select the most appropriate
hyper-parameters of λD and λG, we initially set the value of
λD to 10, and then gradually increased the value to 50 at an
interval of 10, so does for the selection of λG. By comparing
the model reconstruction performance at each setting, we found
that the model performed best when λD and λG were both
set to 20. We therefore set the fixed value of 20 for λD and
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FIGURE 3

Illustration of multi-conditional generative adversarial network (mcGAN) module structure.

λG. To reduce the risk of over-fitting, we adopted the one-
side label smoothing by setting the true label target value to
0.9, allowing the discriminator to learn more effectively to
respond to generator attacks. In addition, we set the batch size
to 16, which is relatively small and corresponds to introducing
randomness that makes mcGAN harder to overfit.

To verify the effectiveness of using conditional GAN in
generating face images with certain kinds of attributes, we first
conducted an ablation experiment by randomly generating a
series of white-noise data N(0,1), and entered these white-
noise data into the mcGAN for image reconstruction. The
reconstructed images are shown in Supplementary Figure 2,
and the quantitative evaluation of reconstruction performance
are shown in Supplementary Table 9. It is clearly shown in
the figure and table that using the randomly generated noise as
latent variable input does not produce any desired results.

To further verify the improvements of proposed
discriminator and generator, we conducted ablation
experiments. We used the following four methods to generate
the face images: (1) traditional cGAN model; (2) a cGAN
model with proposed generator while keeping traditional
discriminator; (3) a cGAN model with proposed discriminator
while keeping traditional generator; (4) proposed mcGAN. To
make a direct comparison, the input to these models used multi-
dimensional face features that were extracted from MTDLN.
The experimental results are shown in Table 3. We can see that
the proposed mcGAN achieved the best performance among all
four methods, indicating the effectiveness of mcGAN in precise
face image generation.

Linear regression
We used a set of linear regression models to establish the

mappings between the brain signals and the multi-dimensional
face features. Previous neuroimaging studies have shown that

face visual stimuli evoked several brain face-selective regions
in visual cortex, and these regions showed varied preferences
to facial expression, identity, and gender (Pessoa et al., 2002,
2006; Pitcher, 2014; Zhang et al., 2016; Shao et al., 2017). Based
on these cognitive evidences, we created three groups of brain
ROIs, each representing one facial attribute, we then established
the linear relationship between brain signals of each ROI group
and the face features of each certain face attribute, respectively.
Specifically, the mapping between expression ROI group and its
corresponding expression features is formulated as:

Texp = SexpWexp (4)

the mapping between identity ROI group and its corresponding
identity features is formulated as:

Tid = SidWid (5)

and the mapping between gender ROI group and its
corresponding gender features is formulated as:

Tgen = SgenWgen (6)

In the above three formulas, T is the vector of face features.
S is the brain signals from brain regions. W is the weight
matrix that links the brain signals to the face features. W can
be estimated with the following formula in the training phase:

W = (STS)
−1

STT (7)

Reconstruction workflow
For the three modules of our proposed framework, the

MTDLN and mcGAN were trained by using only face image
dataset and no brain signals were required, while training the
LR required brain signals for the participation. Specifically,
there were three steps to train the proposed framework. First,
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TABLE 3 Face reconstruction performance with varied generator and discriminator of generative adversarial networks (GAN) model.

MSE SSIM PSNR

Traditional cGAN 3,276.81± 1,279.14 0.31± 0.04 13.28± 1.6

cGAN with improved discriminator 3,370.04± 1,280.61 0.35± 0.06 13.61± 1.61

cGAN with improved generator 3,468.39± 877.81 0.36± 0.05 12.87± 1.09

mcGAN 2,050.66± 760.42 0.53± 0.06 15.28± 1.53

The bold text represents the optimal reconstruction performance.

a multi-labeled face dataset was used to train the MTDLN,
and the multi-dimensional face features were extracted from
the MTDLN’s last two layers; Second, the multi-dimensional
face features were used as conditional constraints to train the
mcGAN; Third, the brain signals from multiple brain ROIs and
the multi-dimensional face features were used to train the LR
module. After all the parameters of the framework were well-
trained, face images were reconstructed by inputting the testing
brain signals into the framework. The prediction steps were as
follows: an independent set of brain signals were entered into
the LR module, and the multi-dimensional face features were
predicted. These features as constraints were then entered into
mcGAN to achieve precise face image reconstruction.

Multi-label face image dataset

Our face stimulus dataset consisted of 952 front view face
images that belong to 136 facial identities, each depicting
seven facial expressions: fear, anger, disgust, happiness, neutral,
sadness, and surprise, 60 individuals are female. These face
images were originally from Karolinska Directed Emotional
Faces (KDEF) dataset (Lundqvist et al., 1998) and Radboud
Faces Database (RaFD) dataset (Langner et al., 2010), and were
converted to gray-scale, normalized to have equivalent size,
luminance and contrast, and resized to 330 × 450 pixels, to
minimize the low-level visual differences. In total, 63 images
were removed without further analysis because these face images
represent children where gender could not be easily identified.
The following images were divided into training and validation
dataset at a rough ratio of 5:1, where the training dataset
containing 749 images was used to optimize the MTDLN and
mcGAN, and the validation dataset containing 140 images was
further divided into two parts, one for optimizing the LR and the
other for predicting face images.

Functional magnetic resonance
imaging data collection

Two healthy subjects (S1: male, 22-year-old; S2: female, 28-
year-old) participated in an event-related fMRI experiment, in
which each was shown 952 face images five times in five sessions

of 68 runs, taking a total of 12.5 scan hours for each subject.
During scanning, subjects performed one-back matching tasks
(pressing the left button if the current face image matched the
preceding one, and the right button if it did not) while they
viewed the face images. Each trial began with one of the 952 face
images for 1 s, followed by a gray cross fixation centered on the
black screen for a random duration of 4–6 s. The order of the
face images was randomized across the whole scans.

Besides the main fMRI experiment scans, each subject also
performed an independent face localizer fMRI experiment to
identify each individual’s face-selective regions. During the face
localizer runs, subjects viewed blocks of human faces, common
objects and scrambled images, and were asked to press the left
button if the current image matched the preceding one, and
the right button if it did not (one-back matching task). Each
block lasted 24 s, with a 16-s blank period between blocks.
Within a block, each image was presented for 500 ms, with 1-
s blank period between images. There were two blocks for each
condition per run, and the order of the blocks was randomized.
Each localizer run lasted 5 mins. The face images used in the
localizer runs were all neutral faces, and they differed from
those used in the main experiment. The face-selective regions
were defined in each individual subject by contrasting the fMRI
response to faces with that to objects (p < 0.001, uncorrected).
Our identified face-selective regions included occipital face area
(OFA), fusiform face area (FFA), anterior inferotemporal cortex
(aIT), posterior superior temporal sulcus (pSTS) and amygdala,
which was quite consistent with many previous studies localized
face-selective regions (Kanwisher et al., 1997; McCarthy et al.,
1997; Harris et al., 2012, 2014). The brain regions in primary
visual cortex (V1) were also included. These ROIs were defined
by drawing a sphere with a radius of 6 mm (roughly including 56
voxels) around the activation peak or within the primary visual
cortex. The schematic diagram and the location for each ROI
are shown in the Supplementary Figure 1 and Supplementary
Table 10. All participants gave informed consent according to a
protocol approved by the research ethics committee at institute
of biophysics, Chinese Academy of Sciences.

Imaging data were collected using a Siemens 3.0 Tesla
scanner with an 8-channel head coil. The functional images were
acquired with a single-shot interleaved gradient-recalled echo
planar imaging sequence to cover the whole brain (TE = 30 ms;
TR = 1,500 ms; flip angle = 70◦; matrix size = 72 × 72; voxel
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size = 2 mm3
× 2 mm3

× 2 mm3; 72 oblique axial slices).
High-resolution anatomical images were also acquired from
each subject (1 mm × 1 mm × 1 mm voxels, TR = 2,350 ms,
TE = 3.14 ms, 176 sagittal slices).

fMRI data were preprocessed as follows: Data from the first
four TRs from each run were discarded. The remaining volumes
were de-obliqued, slice-time corrected, realigned, normalized to
the mean signal value. A gamma function with a peak of one
was used for the hemodynamic response function, and a general
linear model was established for each of the 952 face images for
each scan run. The baseline and head movement parameters
were regressed out in the general linear model (GLM). The
parameter estimates of the hemodynamic response evoked by
each face at each voxel were extracted in the identified face-
selective ROIs.

Reconstruction performance
evaluation

To quantify the performance of the perceived face
reconstruction, we used several methods to evaluate the
reconstruction performance objectively and subjectively.

Objective evaluation
For objective evaluation, we used a series of evaluation

matrix: mean square error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity (SSIM) metrics, to evaluate
the reconstruction performance (Wang et al., 2004). Specifically,
MSE measures the distance between the reconstructed image
and the ground truth in pixel space, which can be calculated as:

MSE =
1
N

∑N

i

(
xi − yi

)2 (8)

where x is the reconstructed image, y is the ground truth
image, and n is the number of image pixels. PSNR measures
the ratio between the maximum possible value and the power of
distorting noise value that affects the quality of the image, which
can be calculated as:

PSNR = 10log10
MAX2

MSE
(9)

where MAX is 255 in our experiment. PSNR can be considered
as a deformation of MSE, and the higher its value, the better
the quality of the reconstructed image. SSIM is used to quantify
the perceived image quality where image structure is taken more
into account. SSIM is calculated as:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

where µx and µy denote the mean intensity values of x and y,
respectively; σx

2 and σy
2 denote the variances of x and y, σxy

denotes the covariance of x and y, C1 and C2 are constants. The

SSIM value, scale 0–1 and is one only if the reconstructed image
is identical to the ground truth.

To statistically test the evaluation matrix, e.g., SSIM, we
defined a “SSIM accuracy”. For each reconstructed face image,
we first calculated the SSIM value between the ground truth
(original face image stimulus) and the reconstructed image as
“SSIM1”. We then randomly picked a face image in the dataset
other than the ground truth (distractor), and calculated the
SSIM value between the distractor image and the reconstructed
image as “SSIM2”. Reconstruction was successful and was
assigned to 1 when SSIM1 was higher than SSIM2, and
reconstruction failed and was assigned to 0 when SSIM1 was
lower than SSIM2. The “SSIM accuracy” was calculated as the
proportion of successful reconstruction pairs among all 140
testing image pairs. We repeated this procedure 40 times, and
obtained 40 “SSIM accuracy” observers for each reconstructed
face image. We then summarized the SSIM accuracy across all
reconstructed face images to perform a one-sample t-test against
the null hypothesis of 0.5 SSIM accuracy value (FDR corrected).

Subjective evaluation
To evaluate the reconstruction performance more

comprehensively, we also conducted the subjective evaluation.
We recruited 30 participants to assess the similarity between the
reconstructed face images and their ground truth. Participants
were presented with samples of paired images (reconstructed
face image and its ground truth), and were instructed to rate
the degree to which the reconstructed faces look similar to
the original images by giving empirical scores from 0 to 10, in
the perspectives of identity, expression and gender. 10 means
that the participant is confident that the face image pair is
from the same face category, 5 means that the participant is
uncertain if the face image pair belongs the same face category
or not, and 0 means the participant is confident that the face
image pair is from totally two different face categories. For
each reconstructed face image, we got 30 empirical scores for
each attribute. These empirical scores were statically evaluated
by performing a one-sample t-test against the null hypothesis
of an empirical score of 5. The same procedure was used
to subjectively test the reconstruction performance of facial
expression, identity and gender, respectively.

Experiments and results

Reconstruction from face features

To estimate the effectiveness of our proposed MTDLN
module in extracting the multi-dimensional face features,
and its impact on the reconstruction performance, we
first reconstructed face images with the multi-dimensional
face features that were extracted directly from MTDLN,
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FIGURE 4

Representative samples of reconstructed faces from five different feature-extraction models. From top row to bottom row: PCA, VAE (VanRullen
and Reddy, 2019), pre-trained VGG-Face, re-trained VGG-Face, multi-task deep learning network (MTDLN), and Ground truth.

which means this part of the experiment did not involve
any brain signal.

Besides MTDLN, we also examined four commonly used
feature extraction models that appeared in previous references
(Parkhi et al., 2015; Chang and Tsao, 2017; Ming et al., 2019;
VanRullen and Reddy, 2019), and compared these models’
performance with that of MTDLN in reconstructing perceived
face images. These models included PCA (principle component
analysis), VAE (variational autoencoder), pre-trained VGG-
Face, and re-trained VGG-Face. For PCA (Chang and Tsao,
2017), we used the face images in the training dataset to
span a 749 dimensional eigen-face space, and calculated the
“eigen-score” vector of the first 521 (consistent with MTDLN
feature dimension) principal components for each face image
as the face feature. The eigen-score face feature was then
used as a conditional constrain on the cCAN model for face
image generation. For VAE, we used a pre-trained variational
autoencoder described in VanRullen and Reddy (2019) to extract
the 1,024-dimensional latent vector for each face image. The
latent vector was then further used as conditional constrain to
be entered into cCAN for face image generation. For pre-trained
VGG-Face, we extracted the 2622-dimensional feature vector

from the last fully-connected layer of the pre-trained VGG-
Face (Sahlol et al., 2020) to the cGAN model for face image
reconstruction. For re-trained VGG-Face, we fine-tuned three
single-task VGG-Face networks to perform facial expression,
identity and gender classification tasks, respectively. For fair
comparison with MTDLN, each single-task network’s initial 11
convolutional layers were fixed and only the late layers including
one convolutional block and three fully-connected layers were
re-trained. We then extracted the feature vectors from the
last fully-connected layer of each of the three networks. These
feature vectors were concatenated and were entered into cGAN
model for face image reconstruction.

The reconstructed faces and their evaluation metrics are
illustrated in Figure 4 and Table 4. As shown in the figure,
the face images reconstructed by PCA contained only face
contours and their facial attributes of expression, identity, and
gender were unrecognizable. The face images reconstructed by
VAE and pre-trained VGG-Face contained very blurry faces
with facial attributes barely recognizable. Surprisingly, the re-
trained VGG-Face failed to generate face images. This may
due to the three-independent single-task VGG-Face networks
that were not well-trained with our relatively small size of
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TABLE 4 Quantitative evaluation of reconstruction performance by
using five different face-feature extraction models.

Methods Objective evaluation Subjective
evaluation

SSIM Empirical scores
(exp, id, and gen)

PCA 0.37± 0.05* (2.69, 2.65, 3.44)

VAE 0.51± 0.08* (4.95, 4.40, 6.00*)

pre-trained VGG-Face 0.45± 0.06* (6.25*, 5.58, 7.46*)

re-trained VGG-Face 0.21± 0.06 (1.22, 1.01, 1.31)

MTDLN 0.53± 0.06* (8.50*, 8.10*, 9.17*)

exp, expression; id, identity; gen: gender.
*p < 0.05.

training dataset. By comparison, the proposed MTDLN were
trained with the same size of training dataset, and the face
images reconstructed by MTDLN represented multiple vivid
facial attributes and were the closest to the ground truth among
all extraction models. The quantitative results of evaluation
metrics (see SSIM evaluation in Table 4 and all three evaluation
metrics results of SSIM, MSE, and PSNR in Supplementary
Table 1) show that re-trained VGG-Face performed worst
and its reconstruction was significantly below chance level
(p = 0.14). The reconstruction of PCA, VAE, pretrained VGG-
Face and MTDLN were significantly above chance level (for
all four models, p < 0.001, FDR corrected), in which MTDLN
performed best among all the examined models. By subjective
evaluation of the reconstruction performance with empirical
scores from 30 recruited participants, we found that the faces
generated by PCA and re-trained VGG-Face were inconsistent
with ground truth in terms of all three facial attributes
(p > 0.99). The faces generated by VAE and pre-trained VGG-
face were consistent with ground truth in terms of gender,
but inconsistent with ground truth in terms of expression and
identity (VAE: expression p = 0.55; identity p = 0.90; gender
p = 0.027; pre-trained VGG-Face: expression p < 0.001; identity
p = 0.079; gender p < 0.001, FDR corrected). In contrast, the
faces generated by MTDLN were clearly consistent with ground
truth in terms of all three attributes of expression (p < 0.001),
identity (p < 0.001) and gender (p < 0.001), p values were FDR
corrected.

Reconstruction from brain activities

Our proposed framework can realize perceived face
reconstruction not only within (intra-subject reconstruction)
but also across subjects (inter-subject reconstruction). In the
intra-subject reconstruction, we trained the reconstruction
framework with brain signals from one subject, and predict
the perceived faces with independent brain signals from the
same subject. In the inter-subject reconstruction, we train the

reconstruction framework from one subject’s brain signals and
predict the perceived faces with another subject’s brain signals.

Intra-subject experiments
We used a set of fMRI signals from each individual subject

to train its relationship with the multi-dimensional face features,
and used an independent set of fMRI signals from the same
subject to predict the face features. The predicted face features
were then entered into the well-trained mcGAN for perceived
face image reconstruction.

Reconstruction of seen images

We used the brain neural responses evoked by the 140 face
stimuli from three fMRI runs’ data to train the parameters of LR
module, and used the neural responses evoked by the same 140
face stimuli from two remaining fMRI runs’ data to predict the
multi-dimensional face features. Previous neuroimaging studies
have reported that amygdala and pSTS located in the dorsal
visual pathway were involved in coding facial expression, FFA
and aIT in the ventral visual pathway were involved in coding
facial identity (Pessoa et al., 2002, 2006; Pitcher, 2014; Zhang
et al., 2016; Shao et al., 2017), OFA was involved in coding the
holistic face information (Pitcher et al., 2007; Rhodes et al., 2009;
Zhang et al., 2012; Shao et al., 2017), while V1 was involved
in processing low-level visual information (Hubel and Wiesel,
1977; Magnussen, 2000; Benoit et al., 2010). Based on these
cognitive evidences, we used a strategy to combine the ROIs
according to their preference to certain facial attributes. ROIs
were assigned into three groups, group 1 included V1, OFA,
amygdala and pSTS, for decoding facial expression; group 2
included V1, OFA, FFA and aIT, for decoding facial identity;
group 3 included ROIs that were the same as in group 2,
for decoding gender. We trained linear regression parameters
between brain signals from each ROI group and each dimension
of face features representing one of the three face attributes,
respectively. The predicted face features were concatenated
to constitute the multi-dimensional face features and were
further entered into the mcGAN for face image generation.
Figure 5A shows the reconstructed face images from each of
the two subjects’ fMRI signals, which appear realistic and quite
similar to the ground truth from the visual point of view. The
quantitative evaluation of the reconstruction performance with
SSIM (see SSIM evaluation in Table 5A and all three evaluation
metrics results of SSIM, MSE, and PSNR in Supplementary
Table 3) indicates that our proposed framework can effectively
reconstruct the perceived face images from individual subjects
(p < 0.001 for both subject1 and subject2, FDR corrected).
However, our subjective evaluation of the reconstruction with
empirical scores shows that only gender can be significantly
reconstructed, but not expression and identity (subject1:
expression p = 0.15, identity p > 0.99, gender p < 0.001;
subject2: expression p > 0.99, identity p > 0.99, gender
p < 0.001, FDR corrected). In addition, we also reconstructed
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FIGURE 5

Intra-subject perceived face reconstruction from functional
magnetic resonance imaging (fMRI) signals. (A) Reconstruction
of seen faces from brain activities in each individual subject.
(B) Reconstruction of unseen faces from brain activities in each
individual subject. Sub1: subject 1 (top row); Sub2: subject 2
(middle row); Ground truth: original face image stimuli (bottom
row).

TABLE 5 Quantitative evaluation of seen (A) and unseen (B) face
images reconstruction from intra-subject functional magnetic
resonance imaging (fMRI) signals.

Objective evaluation Subjective
evaluation

SSIM Empirical scores
(exp, id, and gen)

A Sub1 0.39± 0.08* (5.27, 3.74, 6.10*)

Sub2 0.38± 0.07* (3.89, 4.05, 6.43*)

B Sub1 0.40± 0.06* (4.83, 2.96, 4.38)

Sub2 0.38± 0.07* (3.96, 4.00, 6.38*)

exp, expression; id, identity; gen, gender.
*p < 0.05.

the seen face images from intra-subject fMRI signals using PCA,
VAE, pre-trained VGG-Face, and re-trained VGG-Face. The
quantitative evaluation of the reconstruction performance is
shown in Supplementary Table 7. The representative samples
of reconstructed seen faces are shown in Supplementary
Figures 3, 4. According to the results, it is clearly shown that our
proposed framework can achieve state-of-the-art reconstruction
performance in both visual effects and quantitative assessment.

To what extent such ROI combination strategy contribute
to the final reconstruction performance? To verify this, we
also tested two other strategies to combine ROIs. In Strategy
1, we extracted fMRI signals only from the primary visual
cortex (V1). In Strategy 2, we extracted fMRI signals from

all ROIs. We extracted the fMRI signals from these ROI
combinations to predict the face features for face reconstruction.
The reconstruction results for the three strategies of ROI
combinations are shown in Table 6 (all three evaluation metrics
results of SSIM, MSE, and PSNR in Supplementary Table 2). It
can be observed that our proposed ROI combinations achieved
better performance than the other two ROI combination
strategies (paired t-test, proposed vs. Strategy1: p < 0.001
for subject1, p = 0.34 for subject2; proposed vs. Strategy 2:
p = 0.089 for subject1, p = 0.0024 for subject2), indicating that
the selective use of brain signals from attribute-sensitive brain
regions improved the face reconstruction.

Furthermore, we added a series of experiments to
demonstrate how the face reconstruction performance
could be improved by adding the gender or expression
attributes. Firstly, we reconstructed the face images from all
the brain regions relevant to face processing by using the
framework with the identity attribute as the constraint (termed
“Strategy 3”). Secondly, we reconstructed the face images
from all the brain regions relevant to face processing by using
the framework with identity and gender attributes as the
constraints (termed “Strategy 4”). Thirdly, we reconstructed
the face images from all the brain regions relevant to face
processing by using the framework with identity and expression
attributes as the constraints (termed “Strategy 5”). Fourthly,
we reconstructed the face images from all the brain regions
relevant to face processing by the framework with identity,
expression and gender attributes as the constraints, which
had been termed as “Strategy 2” in our initial manuscript.
Together with the reconstruction of our selective use of
brain signals from attribute-sensitive brain regions, we used
the five different strategies as constraints to examine the
reconstruction performance from brain signals. Finally, we
compared the reconstruction performance among these
five strategies.

Our results showed that, compared with Strategy 3,
both Strategy 4 and Strategy 5 performed significantly better
(p < 0.005, paired t-test), indicating that the constraints
of expression and gender significantly contributed to the
improvement of the reconstruction performance. Compared
with Strategy 4, Strategy 2 performed significantly better
(p < 0.005), indicating that the constraint of expression
still significantly contributed to the improvement of the
reconstruction performance with the constraints of identity and
gender. Strategy 2 did not significantly outperform Strategy
5 (p = 0.793 for subject1, p = 0.757 for subject2), indicating
that gender constraint did not significantly contribute to
the improvement of reconstruction performance under the
premise of identity and expression constraints. Compared with
strategy 2, our proposed strategy performed significantly better
(p< 0.005), indicating that the selective use of brain signals from
attribute-sensitive brain regions significantly contribute to the
improvement of reconstruction performance.

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.1015752
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1015752 October 20, 2022 Time: 14:39 # 12

Hou et al. 10.3389/fnins.2022.1015752

TABLE 6 Quantitative evaluation of reconstruction performance with three different ROI combination strategies.

Brain ROIs Subjects SSIM

Strategy 1 id/gen/exp: V1 Sub1 0.36± 0.08

Sub2 0.36± 0.07

Strategy 2 id/gen/exp: V1, OFA, amygdala, STS, FFA, and aIT Sub1 0.38± 0.08

Sub2 0.37± 0.07

Our proposed strategy id/gen: V1, OFA, FFA, and aITexp: V1, OFA, amygdala, and STS Sub1 0.39± 0.08*

Sub2 0.38± 0.07*

exp, expression; id, identity; gen, gender.
*p < 0.05.

Reconstruction of unseen images

To further assess the robustness of our reconstruction
framework, we challenged to reconstruct the unseen face images,
which means the face images used to optimize LR parameters
were not used for prediction. Of the 140 face stimuli, 126 face
images and their corresponding fMRI signals from all 5 runs’
data were used to train the LR weight and the remaining 14
images’ fMRI data were used for reconstruction (10-fold cross
validation). The fMRI signals were extracted from the three ROI
groups as mentioned in the above sub-section “reconstruction
of seen images”. Figure 5B shows the reconstructed face
images, which are visually similar to the ground truth. For the
quantitative assessments of the reconstruction, we compared the
evaluation metrics of reconstructed face images with the ground
truth, and found significant similarities between them (one-
sample t-test, p < 0.001 for both subject1 and subject2, FDR
corrected), indicating that the framework can also effectively
reconstruct unseen face images (see SSIM evaluation inTable 5B
and all three evaluation metrics results of SSIM, MSE, and
PSNR in Supplementary Table 4). According to the empirical
scores, we found gender but not expression and identity can
be significantly recognized from the reconstructed images (one-
sample t-test, subject1: expression p = 0.70, identity p > 0.99,
gender p > 0.99; subject2: expression p > 0.99, identity
p > 0.99, gender p < 0.001, FDR corrected). Overall, these
results indicated that the proposed framework is highly robust
and can reconstruct unseen face images with discriminative
facial attributes from fMRI signals of multiple brain regions.
In addition, we also reconstructed the unseen face images from
intra-subject fMRI signals using PCA, VAE, pre-trained VGG-
Face, and re-trained VGG-Face. The quantitative evaluation of
the reconstruction performance is shown in Supplementary
Table 8. The representative samples of reconstructed unseen
faces are shown in Supplementary Figures 5, 6. According to
the results, it is clearly shown that our proposed framework
can achieve state-of-the-art reconstruction performance in both
visual effects and quantitative assessment.

Inter-subject experiments
To explore the feasibility of establishing a reconstruction

framework that can be generalized to different participants,

we also conducted the inter-subject reconstruction experiment.
We used one subject’s fMRI signals to train the reconstruction
framework and another subject’s fMRI signals to reconstruct
the perceived faces. Specifically, we used PCA to span a 56-
dimensional eigen-space using the fMRI signals of one subject.
We then used LR to establish the linear relationship between
the eigen coordinates of the fMRI signals in this eigen-
space and the corresponding image features, i.e., the fMRI
signals of this subject are used to train our reconstruction
framework. Similarly, a portion of the fMRI signals from
another subject (test subject) was also used to span a 56-
dimensional eigen-space using PCA, and then we built a
transformation of the two eigen-spaces based on the neural
responses elicited by the same visual stimuli in the same
brain regions of both subjects. In this way, when using
the test subject’s brain fMRI signals for prediction, we first
transform the feature vector of the fMRI signals in its eigen-
space to the eigen-space established by the framework training
subject’s fMRI signals, and then predict the face image’s
feature vector based on the feature coordinates of the signal
in the eigen-space of the training framework, and achieve
face reconstruction.

Reconstruction of seen images

We first used the fMRI responses to the 140 face stimuli
from subject 1’s 5 run data to train the framework and the
fMRI responses to the same face stimuli from subject 2’s
data to reconstruct the perceived faces. The process was then
exchanged between the two subjects, i.e., the fMRI response
from subject 2 was used to train the framework and the
fMRI response from subject 1 was used for reconstruction. By
visualizing the reconstructed faces (Figure 6A), we found that
although the face image quality is not ideal, all faces present
recognizable expression, identity, and gender. The results from
the evaluation metrics (see SSIM evaluation in Table 7A and
all three evaluation metrics results of SSIM, MSE, and PSNR
in Supplementary Table 5) showed that face images can be
significantly reconstructed from subject 1’s fMRI data using the
framework trained with subject 2’s fMRI signal, however, the
reverse is not true (one-sample t-test, p = 0.032 for subject1,
p = 0.91 for subject2, FDR corrected). According to the empirical
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FIGURE 6

Inter-subject face reconstruction from functional magnetic
resonance imaging (fMRI) signals. (A) Reconstruction of seen
faces from brain activities in both subjects. (B) Reconstruction of
unseen faces from brain activities in both subjects.
Model2_Sub1: Reconstruction of faces from subject 1’s brain
activities using the framework trained with subject 2’s fMRI data
(top row); Model1_Sub2: Reconstruction of faces from subject
2’s brain activities using the framework trained with subject 1’s
fMRI data (middle row). Ground truth: original face image
stimuli (bottom row).

TABLE 7 Quantitative evaluation of seen (A) and unseen (B) face
image reconstruction from inter-subject functional magnetic
resonance imaging (fMRI) signals.

Objective evaluation Subjective
evaluation

SSIM empirical scores
(exp, id, and gen)

A Model2_Sub1 0.35± 0.08 (3.32, 3.09, 4.44)

Model1_Sub2 0.36± 0.08 (2.88, 2.81, 5.03)

B Model2_Sub1 0.37± 0.07 (3.44, 2.85, 4.36)

Model1_Sub2 0.38± 0.07 (3.63, 2.65, 4.39)

Model2_Sub1 means training the framework with the fMRI response of subject 2 and
predicting the faces with subject 1. Model1_Sub2 means training the framework with the
fMRI response of subject 1 and predicting the face images with subject 2.
exp, expression; id, identity; gen, gender.
*p < 0.05.

scores, we found none of the three facial attributes can be
significantly recognized (one-sample t-test, subject1: expression
p > 0.99, identity p > 0.99, gender p = 0.96; subject2: expression
p > 0.99, identity p > 0.99, gender p = 0.46, FDR corrected).

Reconstruction of unseen images

We also examined the inter-subject unseen face
reconstruction (see Figure 6B). The fMRI responses to a
subset of face stimuli from one of the subjects were used to train

the framework and the fMRI responses to the remaining face
stimuli from another subject were used for face reconstruction.
We found no significant reconstruction performance either
quantitative assessment or subjective evaluation of empirical
scores (see SSIM evaluation in Table 7B and all three evaluation
metrics results of SSIM, MSE, and PSNR in Supplementary
Table 6).

Taken together, these results indicated that the proposed
framework can only reconstruct faces across subjects to a certain
extent, and there is still room for our proposed reconstruction
framework to improve, when facing fMRI data from different
stimulus sources and different subjects.

Contributions of brain regions
Though our current study addresses the methodology of

face reconstruction from brain signals, the neural responses of
brain signals at different local brain regions are decisive factors
determining the reconstruction performance. As a typical
kind of brain decoding method, perceived faces reconstruction
provides an effective way to vividly explore the neural substrates
of face perception. Here, we used our framework to estimate
the contribution of each brain ROI to the reconstructed faces
representing multiple attributes of facial expression, identity,
and gender, to further explore the neural mechanism of
multiple facial attribute perception in different regions of
human visual cortex.

Here, we identified a reconstruction accuracy. The fMRI
responses from each brain ROI were extracted to predict the
multi-dimensional face features of expression, identity and
gender, respectively, using LR module. The predicted face
features were then compared with the “ground truth” face
features elicited from MTDLN. For each test image’s each
facial attribute, we used Euclidean distance to measure the
similarity between pairs of face features. Besides the comparison
of its predicted face features with the ground truth, we also
randomly chose a distractor image other than the test image,
and compared the predicted face features with this distractor
image’s face features with Euclidean distance. If the value
of Euclidean distance between the predicted features and
ground truth is lower than that of the value between the
predicted features and distractor image’s features, we defined
this face image’s facial attribute as recognizable, otherwise
unrecognizable. The reconstruction accuracy was calculated
as the proportion of successfully recognized facial attributes
among all the 140 test images. The procedure was repeated 40
times and 40 reconstruction accuracy values were obtained for
the statistical analysis.

We used the reconstruction accuracy of each ROI to
represent the contribution of the ROI to the final reconstruction
performance. Figure 7 shows the contribution of each of
the six brain regions to the reconstruction of three facial
attributes. As can be seen in the figure, FFA and aIT provided
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FIGURE 7

Reconstruction accuracy of each brain region of interest to facial expression, identity and gender. The two subplots represent performance
from brain signals of Subject 1 (A) and Subject 2 (B), respectively. Bars represent group-average accuracy (±SEM across 40 pairs). Black dashed
line indicates the chance level reconstruction accuracy of 50%. *Indicates group-level significance p < 0.05.

significant contributions to facial identity reconstruction (one-
sample t-test, aIT: 53.00% for subject 1 with p < 0.001,
FFA:52.04% for subject 2 with p < 0.001, FDR corrected),
and pSTS and amygdala provided the significant contribution
to facial expression reconstruction (one-sample t-test, pSTS:
52.29% for subject 1 with p < 0.001, amygdala: 51.85% for
subject 1 with p < 0.001, amygdala: 51.45% for subject 2
with p < 0.001, FDR corrected). This result is consistent
with many previous studies indicating that FFA and aIT were
involved in facial identity encoding, and amygdala and pSTS
were involved in encoding facial expression (Zhang et al.,
2016). Meanwhile, the brain regions that showed significant
contributions to facial identity reconstruction also showed
significant contribution to gender reconstruction, which is not
surprising, for gender can be understood as a special label of
facial identity.

Discussion

In our current study, we proposed a novel framework for
reconstruction of perceived face images from brain activity. Our
framework consists of three modules: (i) an optimized multi-
task deep learning network, which is used to simultaneously
extract the multi-dimensional face features attributed to facial
expression, identity and gender from one single face image,
(ii) a set of linear regression models, which are used to
establish the mappings between the brain signals and the multi-
dimensional face features, (iii) a multi-conditional generative
adversarial network, which is used to generate the face images
constrained by the predicted multi-dimensional face features.
The experimental results demonstrated that the proposed

framework can achieve the state-of-the-art reconstruction
performance of both seen and unseen face images, and
the reconstruction performance of face images was greatly
improved than that of the traditional methods in both visual
effects and quantitative assessment.

One contribution in our current study is that we optimized
a multi-task deep neural network model, which we termed
as “MTDLN”, to extract the multi-dimensional face features
from one single face image. In VanRullen and Reddy (2019),
VAE model was used to extract the face features from face
image dataset, the face features were finally entered into
a conditional GAN model for generating perceived faces.
However, there is still a gap between their reconstructed faces
and the ground truth, especially in representing certain kinds
of facial attributes such as expression and gender. In this
respect, our work goes beyond VanRullen et al. in exacting
the facial attributes. Compared to four commonly used feature
extraction methods, our experiment results demonstrated that
our MTDLN module achieved substantial improvements in
face feature extraction. Moreover, our method could clearly
reconstruct perceived face images from the brain signals,
especially in representing multiple facial attributes: expression,
gender, and identity.

Another contribution is that our framework builds a bridge
between different brain regions in human visual cortex and
multi-dimensional face features representing multiple facial
attributes contained in the face images. Existing methods
often ignore the multiple facial attributes represented in
face images, which evoke very different neural response
patterns in different brain regions of the visual cortex.
We thus established a set of linear relationships between
brain signals of these ROIs and the multi-dimensional face
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features representing these facial attributes to characterize these
mappings. The results showed that the selective use of brain
signals from attribute-sensitive brain regions improved the face
reconstruction. In addition, we also explored the contribution of
different brain ROIs to the perceived face reconstruction. Our
result indicated that pSTS and amygdala provided significant
contribution to facial expression reconstruction, and FFA and
aIT provided significant contribution to facial identity and
gender reconstruction. These findings provide strong evidence
supporting the neural theory that facial attributes of expression
and identity are processed in two distinct neuroanatomical
pathways in primate visual cortex (Zhang et al., 2016), thus
helping us better understand the neural mechanism underlying
the face perception.

Besides, we also used our framework to estimate the
contribution of each brain ROI to the reconstructed faces
representing multiple attributes of facial expression, identity,
and gender. Our results showed that FFA and aIT provided
significant contributions to facial identity reconstruction, and
pSTS and amygdala provided the significant contribution to
facial expression reconstruction. Many previous studies have
also explored the coding of face-selective areas to different facial
attributes. Pessoa et al., 2002, 2006 performed fMRI studies in
healthy subjects and found that amygdala was able to accurately
discriminate between different expressions. Using transcranial
magnetic stimulation (TMS), Pitcher (2014) found that the
pSTS and rOFA contributes to facial expression recognition.
Zhang et al. (2016) used fMRI and support vector machine
pattern classification analysis to reveal that the decoding of facial
emotion and facial identity occurs in different neural substrates:
the amygdala and STS for the former and FFA and aIT for the
latter. Shao et al. (2017) used condition-rich and single-image
analysis approach to conclude that FFA showed high face-
category selectivity, pSTS showed evidence of face-exemplar
sensitivity, and OFA might be a transitional stage between
general and face-selective information processing. Our result is
consistent with these studies indicating that FFA and aIT were
involved in coding facial identity, and amygdala and pSTS were
involved in coding facial expression (Pessoa et al., 2002, 2006;
Pitcher, 2014; Zhang et al., 2016; Shao et al., 2017). Meanwhile,
the brain regions that showed significant contributions to facial
identity reconstruction also showed significant contribution to
gender reconstruction, which is not surprising, for gender can
be understood as a special label of facial identity. Thus, our
results provide strong evidence for the idea of dissociation
of neural pathways mediating facial expression and identity
discrimination in the human brain (Bruce and Young, 1986;
Young et al., 1993; Haxby et al., 2000).

Our framework cannot only reconstruct the seen face
images (the testing face images appear in training the framework
parameters while their corresponding fMRI signals are from
different scan runs), but also achieve excellent reconstruction
performance for the unseen face images (the testing face images

do not appear in training our framework parameters). This
is due to the fact that we constructed a multi-dimensional
face feature space based on a large sample size of multi-
label face dataset, representing multiple facial attributes of
expression, identity, gender, and theoretically, any single face
image’s three attributes could be well represented in the face
space, and therefore an excellent face reconstruction effect
could be achieved based on the face features predicted by the
fMRI signal even if they are unseen face images. In addition,
although our method achieved outstanding performance on
intra-subjects, it does not work very well on inter-subjects
perceived face reconstruction, which may be due to two factors:
first, the neural response patterns elicited by the same face
images on different subjects are too different, and the current
method we use is not sufficient to achieve such inter-subject
face reconstruction; second, the quality of the fMRI signal
differs among different subjects. Therefore, how to achieve
inter-subject face reconstruction and make our reconstruction
framework more universal and practically applicable is a key
point of our next research.
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