
BRIEF REPORT

Sensitivity to value-driven attention is predicted by how we learn
from value

Sara Jahfari1 & Jan Theeuwes1

Published online: 29 June 2016
# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Reward learning is known to influence the auto-
matic capture of attention. This study examined how the rate
of learning, after high- or low-value reward outcomes, can
influence future transfers into value-driven attentional
capture. Participants performed an instrumental learning task
that was directly followed by an attentional capture task. A
hierarchical Bayesian reinforcement model was used to infer
individual differences in learning from high or low reward.
Results showed a strong relationship between high-reward
learning rates (or the weight that is put on learning after a high
reward) and the magnitude of attentional capture with high-
reward colors. Individual differences in learning from high or
low rewards were further related to performance differences
when high- or low-value distractors were present. These find-
ings provide novel insight into the development of val-
ue-driven attentional capture by showing how informa-
tion updating after desired or undesired outcomes can
influence future deployments of automatic attention.
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It is well known that attention can be captured automatically
by salience, past experiences, and learned reward associations
(Awh, Belopolsky, & Theeuwes, 2012). Reward-driven atten-
tional biases are known to develop as a consequence of im-
plicit stimulus–reward associations learned in the past

(Anderson, Laurent, & Yantis, 2011; Chelazzi, Perlato,
Santandrea, & Della Libera, 2013; Gottlieb, Hayhoe,
Hikosaka, & Rangel, 2014), are known to scale with the
learned value of past rewards (Anderson & Yantis, 2012;
Della Libera & Chelazzi, 2006), and increase stimulus salien-
cy for future decisions (Failing & Theeuwes, 2014; Ikeda &
Hikosaka, 2003; Kiss, Driver, & Eimer, 2009; Schiffer,
Muller, Yeung, & Waszak, 2014). However, despite the prog-
ress in understanding the consequences of reward on attention
and saliency, the underlying mechanisms by which reward
associations come to shape automatic value-driven attention
remain largely elusive.

Reward associations are learned through past experiences
where an event (e.g., choosing a stimulus) is linked to a prob-
abilistic outcome. Influential learning theories suggest that
when an organism receives new information (e.g., choice out-
come), current beliefs are updated in proportion to the differ-
ence between expected and actual outcomes (termed predic-
tion error, δ). Notably, the degree by which prediction errors
come to change stimulus–reward associations is determined
by an additional factor termed learning rate, α (Daw, 2011;
Sutton & Barto, 1998; Watkins & Dayan, 1992). Learning
rates describe the rate by which new information replaces
old and are fundamental to adaptive behavior. Higher learning
rates result in greater trial-to-trial belief adjustments after a
single instance of feedback and are linked to dopamine levels
within the striatum (Frank, Moustafa, Haughey, Curran, &
Hutchison, 2007) or activity changes within the anterior cin-
gulate cortex (Behrens, Woolrich, Walton, & Rushworth,
2007); a region known to evaluate prediction errors and choice
difficulty (cf. Brown & Braver, 2005; Shenhav, Straccia,
Cohen, & Botvinick, 2014).

We examined whether learning rates have a direct impact
on the development of value-driven attentional capture.
Studies focusing on the interaction between value and capture
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show differential effects for high- and low-value rewards.
Especially when learning is based on low value, subsequent
tests assessing capture show smaller or no effects (Anderson
& Yantis, 2012; Della Libera & Chelazzi, 2006).
Reinforcement studies provide a possible explanation for this
effect: cognitive models that are used to predict trial-to-trial
learning behavior generally show higher rates for positive out-
comes relative to negatives ones (Frank et al., 2007; Kahnt et
al., 2009). Hence, stimulus beliefs are updated more instantly
after positive outcomes and might underlie the stronger devel-
opment of attentional capture for high-reward value.

We hypothesized the sensitivity of value-driven attention to
be influenced by the weight that is put on learning from espe-
cially high-reward feedback. First, instrumental learning was
directly followed by an attentional capture task in which partic-
ipants searched for a shape singleton while a colored distractor
was present on half the trials. The color of the distractors was
the color most often receiving either a low or high reward in the
learning task (see Fig. 1). Value-based attentional capture was
expected to be strongest for colors previously associated with a
high-value. Separate learning rates for high and low value were
obtained by using a computational reinforcement-learning
model (see Fig. 2) that reliably predicted individual trial-to-
trial choices (see Fig. 3). High-value learning rates (αHigh) were
expected to predict slowing with high-value distractors, where-
as an explorative analysis focused on how learning from high-
or low-value outcomes relates to the differential experience of
high- and low-value distractors.

Method

Participants

Twenty-one participants (six males, mean age = 23 years,
range 18–31 years) with normal or corrected-to-normal vision
participated for a monetary compensation (M = 11.5, SD = 0.3
euros). Sample-size was based on previous studies focusing
on value-driven attentional capture (range = 16-26) (Anderson
et al., 2011). One participant was excluded from all analyses
because of chance-level performance. Informed consent was
obtained from all participants, and the local ethics committee
of the VU University Amsterdam approved all procedures.

Procedure

The experiment was run on a calibrated 19-inch CRT monitor
using OpenSesame (Mathôt, Schreij, & Theeuwes, 2012).
Color–reward associations were obtained using the learning
phase of a probabilistic learning task (Frank, Seeberger, &
O’Reilly, 2004). Subsequently, an attentional capture task
(Theeuwes, 1992) was presented to specify how learning in-
fluences attention (see Fig. 1).

Value-based probabilistic learning

Three color pairs (AB, CD, EF) were presented in random
order, and participants learned to choose one of the two color
stimuli (see Fig. 1a). Colors were selected from a subset of six
near-equiluminant colors (red, green, blue, yellow, purple, and
turquoise), with an approximate luminance of 27.2 cd/m2 (SD
= 5.2 cd/m2), and presented on a black background. For each
participant, the pairs blue–yellow, red–green and purple–tur-
quoise were randomly assigned to three categories (AB, CD,
EF) and counterbalanced in mapping (e.g., blue–yellow or
yellow–blue for AB). Probabilistic feedback followed each
choice to indicate a high (Bcorrect^ +0.10 points) or low
(Bincorrect^ +0.01 points) value. Choosing the high-value
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Fig. 1 Illustration of both tasks. (a) Two colors were presented on each
trial, and participants learned to select the colors that most often received
a high reward feedback (A, C, E) solely through probabilistic feedback
(probability of high reward is displayed beneath each stimulus). (b)
Participants reported the orientation of the line segment within the shape
singleton (the circle). On half the trials, one of the nontarget shapes was
rendered in the color of the stimulus most often receiving low (B) or high
(A) reward in the probabilistic learning task. (Color figure online)
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Color A lead to high rewards on 80% of the trials, whereas
selecting the low-value Color B lead to low rewards with
80%. Other ratios for high reward were 70:30 (CD) and

60:40 (EF). Participants were told that the total sum of points
earned would be transferred into a monetary reward at the end
of the experiment. Trials started with a white fixation cross

ri, t − 1 Qi, t P [S t ]

chi, t

α Hi α Li βi

α Hi α Li βi
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t = 1 ....., T
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Fig. 2 Bayesian graphical Q-
learning model for hierarchical
analysis. Φ () is the cumulative
standard normal distribution
function. The model consists of
an outer subject (i = 1…,N), and
an inner trial plane (t = 1,…,T).
Nodes represent variables of
interest. Arrows are used to
indicate dependencies between
variables. Double borders indicate
deterministic variables. Continues
variables are denoted with
circular nodes, and discrete with
square nodes. Observed variables
are shaded in gray

Fig. 3 Posterior distributions and model evaluations. The left plane
shows, group-level posteriors for all Q-learning parameters fit to either
all choice options (a), or only to trials with choice option AB (b). In the
right plane, the learning curve for choosing A over B, or P(A|AB), is

simulated for each participant with the derived parameters and evaluated
against the observed data for either fits to all choice options (c), or only
AB trials (d). Error bars represent SEM; β/100 for visualization
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followed by two colored squares (1.67° × 1.67° visual angle)
left and right of the fixation cross (2.1° distance to fixation).
Choices were highlighted by a white frame (3.33° × 3.33°
visual angle), and followed with feedback. Omissions or
choices longer than 1,250 ms were followed with the text Btoo
slow^ for 300 ms. A 30-trial practice session was conducted to
familiarize with the task (feedback: Bcorrect^ or Bincorrect^)
and followed by five blocks of 60 trials each (300 trials total;
equal numbers of AB, CD and EF).

Attentional capture

Participants searched for a unique circle shape (target) among
five square shapes (distractors). Responses were based on the
orientation of a vertical or horizontal line contained within the
circle (see Fig. 1b). On half the trials, both target and
distractors were presented in white (black background). For
the other half, one of the distractor squares was rendered in the
highly rewarded A-color or the low rewarded B-color. The
target (circle) shape was always presented in white. Trials
started with a white fixation cross followed by the search
display. This display showed the fixation cross, surrounded
by six shapes (1.67° × 1.67° visual angle) equally spaced
along an imaginary circle (5.2° radius). Feedback indicated
correct or incorrect responses. Participants started with a prac-
tice block of 20 trials, followed by 120 experiment trials.

Reinforcement learning model: Q-learning

The influence of learning rates on attentional capture was
investigated using the computational Q-learning algorithm
(Daw, 2011; Frank et al., 2007; Watkins & Dayan, 1992).
Because previous work has found stronger distractor effects
for stimuli associated with high rewards, we defined separate
learning rate parameters for high (αHigh) and low (αLow) value
feedback (cf. Frank et al., 2007; Kahnt et al., 2009). Q-
learning assumes participants will maintain reward expecta-
tion for each stimulus (A-to-F). The expected value (Q) for
selecting a stimulus i (could be A-to-F) on the next trial is then
updated as follows:

Qi t þ 1ð Þ ¼ Qi tð Þ þ αHigh ri tð Þ−Qi tð Þ½ �; if r ¼ 1
αLow ri tð Þ−Qi tð Þ½ �; if r ¼ 0

�
;

Where 0 ≤ αHigh / Low ≤ 1 represent learning rates, t is trial
number, and r = 1 (high) or r = 0 (low) reward. The probability
of selecting one response over the other (i.e., A over B) is
computed as:

PA tð Þ ¼ exp β � Qt Að Þð Þ
exp β � Qt Bð Þð Þ þ exp β � Qt Að Þð Þ ;

With 0 ≤ β ≤ 100 being known as the inverse temperature.

Bayesian hierarchical estimation procedure

The Q-learning algorithm was fit using a Bayesian hierarchical
estimation method where parameters for individual subjects are
drawn from a group-level distribution. This hierarchical struc-
ture is preferred for parameter estimation because it allows for
the simultaneous estimation of both group-level parameters and
individual parameters (Lee, 2011; Steingroever, Wetzels, &
Wagenmakers, 2013; Wetzels, Vandekerckhove, Tuerlinckx,
& Wagenmakers, 2010).

Figure 2 shows a graphical representation of the model.
The quantities ri, t− 1 (reward participant i on trial t - 1) and
chi, t (choice participant i on trial t) can be obtained directly
from the data. The quantities αHi (αHigh participant i), αLi

(αLow participant i) and βi are deterministic because we model
their respective probit transformations z ′ i (α′Hi, α′Li, β′i). The
probit transform is the inverse cumulative distribution func-
tion of the normal distribution. The parameters z ′ i lie on the
probit scale covering the entire real line. Parameters z ′ i were
drawn from group-level normal distributions with mean μz ′
and standard deviation δz ′. A normal prior was assigned to
group-level means μz0∼N 0; 1ð Þ, and a uniform prior to the
group-level standard deviations δz0∼U 1; 1:5ð Þ (Steingroever
et al., 2013; Wetzels et al., 2010).

Two parallel versions of the Q-learning model were imple-
mented to optimize fits to all trials (i.e., A-to-F), or only AB
trials (used in the attention task). Both models were imple-
mented in Stan (Homan & Gelman, 2014; Stan
Development Team, 2014). Multiple chains were generated
to ensure convergence, which was evaluated with the Rhat
statistics (Gelman & Rubin, 1992). Evaluations ensured con-
vergence for both fit procedures (i.e., all Rhats were close to
1). Figure 3 shows group-level posteriors (a, b), and data re-
covery evaluations (c, d).

The definition of two learning parameters was justified
with the evaluation of a hierarchical Q-model with only one
learning parameter, which was updated after each trial. Model
selection was based on individual and group-level Bayesian
Information Criterion (BIC), using a random-effects model on
the log likelihoods (Jahfari, Waldorp, Ridderinkhof, &
Scholte, 2015), and supported the use of two learning rates
with lower BIC values (BIC_group: Q_2alpha = 2964,
Q_1alpha = 3155; BIC_individual mean: Q_2alpha = 154,
Q_1alpha = 162).

Analysis

The choice for three probability pairs during training allowed us
to compute and differentiate both specific (only considering the
reliable 80–20 feedback) and general (across all contingencies)
learning rates for high and low rewards. The choice for AB
colors in the capture task was both pragmatic (considering the
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total number of distractor and nondistractor trials) and based on
the literature, as value-based attention is commonly studied with
a high reward contingency of 80%. Consistently, the attentional-
capture task only used the most distinct A and B colors from the
learning task (contingency 80–20). The relationship between
value-based capture and learning parameters (αHigh and αLow)
was evaluated with model fits to (1) only AB trials or (2) all A-
to-F trials. Because both learning parameters were restricted
between 0 and 1, Spearman’s rank correlation (rho) or partial
correlation (rhopcor) was used to evaluate capture–learning
relationships.

Results

Value-based learning and attentional capture

In the learning task, subjects reliably learned to choose the
most rewarded option from all three pairs. For each pair the
probability of choosing the better option was above chance (ps
< .001), and the effect of learning decreased from AB (M =
0.81, SD = 0.12) to CD (M = 0.73, SD = 0.17) to EF (M = 0.71,
SD = 0.15), F(1, 19) = 5.12, p = .036, η2par = 0.21.

A repeated-measures ANOVA, with the factor distractor
color (high-value, low-value, none) differentiated response
times (RTs) across the three conditions, F(2, 38) = 3.36, p =
.045, η2par = 0.15. Distractor trials with a high-value color
slowed RT in comparison to no-distractor trials, t(19) = 2.70,
p(Bonferroni corrected) = .043, and the effects of value on
performance was linear, F(1, 19) = 7.27, p = .014, η2par =
0.28 (see Fig. 4a). However, a direct comparison of the low-
value condition with either the high-value or no-distractor
condition showed no reliable effects. Distractors had no effect
on error rates, P(correct) high: M(SD) = 0.90(0.07), low:
M(SD) = 0.90(0.07), None: M(SD) = 0.92(0.05), p = .181.

Value-based attentional capture and learning rates

Next, we examined whether individual differences in the rate
of information updating after desired (αHigh), or undesired
(αLow) outcomes was predictive for the magnitude of automat-
ic capture. Evaluations of the Q-learning model showed both
fit-procedures to reliably predict individual trial-to-trial
choices during the learning task (Fig. 3c,d). Learning param-
eters derived from the models where then used to examine the
relationship with attentional capture (Table 1).

When the model was optimized to predict AB choices, re-
sults showed a strong relationship between αHigh and high-
value slowing (rhopcor = 0.69, p = .00007; Fig. 4b), while con-
trolling for the nonsignificant relationship between αLow and
high-value distractors (rhopcor = 0.09, p = 0.70). No significant
relationship was found between αHigh and capture with low-
value colors (p = .35). Hence, participants who updated their

beliefs robustly after high rewards (higher αHigh) experienced
more slowing when the distractor had the high-reward A color.
This relationship was very specific to high-value learning rates
and not predicted by the sampling/selection frequency of the A
color (% correct AB pairs) during learning (rho = 0.24, p = .31),
or the estimated belief (Q value A color) at the end of learning
(rho = 0.24, p = .30). No relationship was found between learn-
ing rates and slowing when the model was optimized to predict
all learning-task choices (A-to-F), with reward probabilities
80:20, 70:30, and 60:40 (all ps > .05).

Most nonreward studies find a significant slowing
effect for colored singletons. However, attentional cap-
ture for low-reward colored singletons is not always
found. We explored whether capture differences in RT
between high- and low-reward distractors relate to learn-
ing differences in relation to high- or low-reward out-
comes. Results showed larger differences between αHigh

and αLow (αH-L = αHigh – αLow) to predict larger RT
differences between high- and low-value distractors for
AB-model fits (rho = 0.47, p = .04; Fig. 4c) and all
trial model fits (rho = 0.59, p = .008). This relationship
remained reliable after the removal of the lowest point
for fits-to-all trials (rho = 0.52, p = .02), but was only
marginal for fits-to-AB trials (rho = 0.40, p = .09).

Discussion

This study relates the underlying mechanisms of reward learn-
ing to the development of value-based attentional capture. We
showed how learning from high- or low-value outcomes de-
velops into value-driven attentional biases. This finding sheds
light on a surge of recent results focusing on the consequences
of reward on attention. For example, value-driven capture is
generally stronger when learning is based on high values
(Anderson & Yantis, 2012; Chelazzi et al., 2013; Della
Libera & Chelazzi, 2006). This has been attributed to the
implicit assumption that high-value distractors capture atten-
tion more robustly than low-value distractors (Theeuwes &
Belopolsky, 2012). We refine this assumption by demonstrat-
ing how individual differences in learning relate to the mag-
nitude of value-driven attentional capture.

Our results show how value learning in a task that is
completely unrelated to visual search may develop in robust
value-driven capture. Such attentional biases were shown after
classic conditioning, and instrumental tasks with a direct re-
semblance to the capture task (Anderson et al., 2011; Della
Libera & Chelazzi, 2009; Hickey, Chelazzi, & Theeuwes,
2010), or a focus on next-trial decision modulations with pre-
viously rewarded distractors (Itthipuripat, Cha, Rangsipat, &
Serences, 2015). We extend current beliefs by showing how
instrumental learning can transfer into the automatic capture
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of attention for a single feature, irrespective of context (see
Anderson, 2014, for differences with classic conditioning).

Attentional selection plays an important role during learning,
and is especially useful if some information is more relevant
(e.g., Dayan, Kakade, & Montague, 2000). Here, high- and
low-value colors were always presented simultaneously during
learning. Importantly, the subsequent capture task only
showed reliable slowing effects for high-value colors.
Neurophysiological work has suggested selective attention to
suppress processing of undesired stimuli, which in effect may
imply that only the high-reward stimulus is processed (Moran
& Desimone, 1985). Optimal responses during learning could
involve attentional priority toward the desired high-value color
(leading to value-based capture), and suppression of the unde-
sired low-value color (reduced distraction in future tasks).

Higher learning rates represent stronger trial-to-trial belief
updates about the chosen stimuli and could motivate the ad-
vanced prioritization of the desired stimulus. This predicts par-
ticipants with a steep learning rate (for high-value outcomes) to
prioritize earlier and longer, and so experience more capture in
future tasks (Kahnt, Park, Haynes, & Tobler, 2014; Störmer,
Eppinger, & Li, 2014). Compatibly, we found belief updates
after high-value outcomes to predict the degree of capture with
high-value distractors. A final explorative analysis indicated
how learning rate differences from high- and low-value out-
comes relate to capture differences, given a low- or high-
value distractor. Participants who learned faster from positive
outcomes, experienced more capture from high- than from low-
value distractors. These findings indicate learning rates to

modulate selective attention during learning, and by doing so,
shape the experience of capture in future contexts.

Notably, the transfer of value into capture was sensitive to
both high value and feedback consistency. However, the dif-
ferential capture of attention with high- or low-reward
distractors was more sensitive to how we learn differentially
from reward magnitude in general. These probability specific
(i.e., transfer) and general (i.e., differential experience) rela-
tionships are novel and should be studied further to under-
stand the significance of either magnitude, or consistency, in
the development of automatic attention. For example, future
designs could use only high-value distractors, while feedback
consistency is varied during learning (O’Doherty, 2014).

This study provides novel prospects to incorporate both
computational and neuroscience theories in our understanding
of value-driven capture. For example, themagnitude of learning
from positive feedback is attributed to striatal dopamine levels,
whereas trial-to-trial adjustments after a single instance of neg-
ative feedback relate to elevated dopamine within the prefrontal
cortex (PFC; Frank et al., 2007). PFC learning effects are part of
a controlled learning systemwith a strong dependence onwork-
ing memory capacity (Collins & Frank, 2012), and increased
dopamine levels within PFC are reported to overstabilize work-
ing memory representations such that they persist over time
(Durstewitz, Seamans, & Sejnowski, 2000). The effects found
with high-value rewards could rely on higher dopamine levels
within the striatum, a region not restricted by memory decay or
capacity and central to the formation of Bhabit memory^
(Knowlton, Mangels, & Squire, 1996; Pasupathy & Miller,
2005). Consistently, elevated levels of dopamine in PFC could
selectively modulate the less intuitive learning rates after low-
value outcomes through the stabilization of working memory
representations, and so influence their transfer into future cap-
ture. High-value capture is recently linked to working memory
performances (Anderson et al., 2011), prediction (Sali,
Anderson, & Yantis, 2014), and dopamine (Anderson et al.,
2016; Hickey & Peelen, 2015). Future couplings between

Fig. 4 Individual differences in learning from high and low reward
predict slowing in value-based capture. (a) Distractor colors consistently
rewarded with high-value (High) slowed RT in comparison to no
distractor trials (None), and the effect of learned value on attention was
linear. Error bars reflect SEM; * = p(Bonferoni corrected). (b)

Relationship between αHigh and the magnitude of slowing caused by
the high-value distractor. (c) Individual differences in learning from
high- or low-value outcomes (αHigh-Low = αHigh – αLow) predicted RT
differences between high- and low-value distractors

Table 1 Posterior modes of the estimated Q-learning parameters

β αHigh αLow

Fit-to-AB 4.65 (0.97) 0.12 (0.12) 0.11 (0.26)

Fit-to-all 4.95 (1.55) 0.18 (0.18) 0.08 (0.20)
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dopaminergic learning and the formation of automatic attention
can have substantial implications for patient populations such
as those with Parkinson’s or attention-deficit/hyperactivity
disorders.
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