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ABSTRACT: We propose a novel statistical approach to
improve the reliability of 1H NMR spectral analysis in complex
metabolic studies. The Statistical HOmogeneous Cluster Spec-
troscopY (SHOCSY) algorithm aims to reduce the variation
within biological classes by selecting subsets of homogeneous 1H
NMR spectra that contain specific spectroscopic metabolic
signatures related to each biological class in a study. In SHOCSY,
we used a clustering method to categorize the whole data set into
a number of clusters of samples with each cluster showing a
similar spectral feature and hence biochemical composition, and
we then used an enrichment test to identify the associations
between the clusters and the biological classes in the data set. We
evaluated the performance of the SHOCSY algorithm using a
simulated 1H NMR data set to emulate renal tubule toxicity and
further exemplified this method with a 1H NMR spectroscopic study of hydrazine-induced liver toxicity study in rats. The
SHOCSY algorithm improved the predictive ability of the orthogonal partial least-squares discriminatory analysis (OPLS-DA)
model through the use of “truly” representative samples in each biological class (i.e., homogeneous subsets). This method
ensures that the analyses are no longer confounded by idiosyncratic responders and thus improves the reliability of biomarker
extraction. SHOCSY is a useful tool for removing irrelevant variation that interfere with the interpretation and predictive ability
of models and has widespread applicability to other spectroscopic data, as well as other “omics” type of data.

Nuclear magnetic resonance (NMR)1 and/or mass spec-
troscopy (MS)2,3 based metabolic profiling studies are

usually analyzed by multivariate statistical methods that have
been developed to identify specific metabolic signatures
contributing to different biological classes within a data set
such as disease versus healthy. Typically, unsupervised
approaches such as principal component analysis (PCA)4 are
used for identifying outliers and detecting analytical variation/
drift within data sets. The PCA scores plot indicates
similarities/dissimilarities between samples, and the loadings
plot identifies the metabolites that contribute most to the
clustering pattern. Subsequently, supervised algorithms such as
orthogonal partial least square discrimination analysis (OPLS-
DA)5 are then applied to optimize the classification and extract
potential biomarkers for each class. To assess the OPLS-DA
model and to prevent overfitting, 7-fold cross validation and
permutation testing are often used. The 7-fold cross-validation
Q2 statistic is calculated by leaving every seventh sample out
and predicting them back in the model; thus, Q2 measures the

similarity between the predicted data and the real data.
Permutation tests randomly assign samples to classes and
recalculate the model: the random reassignments of samples to
classes are repeated for a large number of times in order to
ascertain the likelihood of the actual results being obtained by
chance. As a rule of thumb, the closer the Q2 value is to 1, the
better the predictive ability of the OPLS-DA model, and the
model actual Q2 value should be significantly higher than the
Q2 obtained by permutation test.
Although there are numerous examples of successful

applications of OPLS-DA1,2,6 and related techniques for
metabonomic data sets,7 the complexity of biological data,
particularly for human studies with multiple sources of
environmental and genetic variation, can compromise the
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analysis. Similarly, for animal studies, the diversity of response
to stimuli may vary even when studies are carried out in a
highly homogeneous environment and in animals of the same
genetic strain. Recent publications have demonstrated consid-
erable variation in responses to drug treatment in both
animal8,9 and human10,11 studies. Some individuals have been
shown to be more susceptible to drug toxicity8 and some
respond better or more quickly to drug treatment than others.12

This phenomenon prompted the evolution of pharmacometa-
bonomics:8 the prediction of response to an intervention based
on their predose metabolic profiles.10,13 In these scenarios,
OPLS-DA modeling may generate suboptimal results, as the
samples in each class are usually assumed to be homogeneous.
One method of addressing inhomogeneity is to use

autoclustering methods such as K-means,14 self-organizing
mapping (SOP),15 and nearest-neighbor clustering,16 where
these approaches group the samples based on their similarity.
Although these methods have been employed in “omics”
studies,17−22 two issues are yet to be rectified: first, clusters of
homogeneous samples may not be relevant to the biological
question of interest; and second, the identity of each cluster,
which may constitute the homogeneous core of a biological
class, is not specifically determined by the clustering algorithm.
Moreover, the clustering methods applied previously in
metabonomics studies were mainly used to aid the extraction
of metabolic information and to identify molecules of interest
with regard to defining a particular condition. For example,
Robinette et al.23 developed CLuster Analysis Statistical
SpectroscopY (CLASSY), which aims to cluster the peaks
from the same molecule by the correlation of the spectroscopic
variables, whereas Blaise et al.24 used the ratio of covariance and
correlation of the variables to achieve it. Statistical TOtal
Correlation SpectroscopY (STOCSY)25 has been used to
recover structural metabolic information, and its extension,
SubseT Optimization by Reference Matching (STORM),26

utilizes an iterative selection of homogeneous subsets of spectra
to improve structural elucidation by reducing variation across
inhomogeneous spectral data sets.
Here we adopt a similar principle to STORM in combination

with OPLS-DA and an enrichment test to address the issues
associated with the autoclustering methods stated above to
reduce the variation of the data set and enhance robust
biomarkers selection. In our proposed algorithm, Statistical
HOmogeneous Cluster SpectroscopY (SHOCSY), OPLS-DA
is first applied to identify the potential common spectral
features related to different biological classes of interest. We
then employ the K-means clustering approach to cluster the
spectra based on the potential discriminatory biomarkers. This
ensures the K-means clusters have similar metabolic features to
the biological classes. An enrichment test27−29 that evaluates
which biological class is over-represented in each K-means
cluster is then employed. The enrichment test thus associates
clusters to specific biological classes and identifies the samples
that constitute homogeneous cores for the specific biological
class. The whole procedure is performed iteratively, and in each
iteration, a new set of common spectral features are obtained.
This enables identification of the “true” metabolic character-
istics representative of each biological class within the data set
to be uncovered. The algorithm converges when the cross-
validation Q230 of the OPLS-DA model based on the
homogeneous representatives of biological classes is maximal.
An OPLS-DA model based on these core homogeneous
subsets, without spectra contributing idiosyncratic responses,

will have an improved predictive ability and potentially a more
robust selection of biomarkers.
Initially, we evaluate the SHOCSY algorithm using a

simulated 1H NMR spectral data set and then exemplify the
method using a rodent hepatoxicology study, in which treated
animals were known to show variable degrees of response.31

■ MATERIALS AND DATA ANALYSIS
Simulated NMR Spectra.We used simulated NMR spectra

designed to emulate Paraquat toxicity, reflecting damage to the
renal proximal tubules. To evaluate our algorithm, we generated
a total of 12 data sets with different sizes (N = 30, 100, and 500
spectra in each biological class) and different proportions of
idiosyncratic responders. Compared to the control class, the
Paraquat toxicity spectra were designed with increased signals
intensity for lactate (δ 1.32, doublet (d), δ 4.10, quartet (q)),
and L-alanine (δ 1.46, d, δ 3.76, q) and reduced signal
intensities for creatinine (δ 3.03, singlet (s), δ 4.05, s) and
citrate (δ 2.53, d, δ 2.65, d). To introduce variable responses
within the Paraquat toxicity class, 5%, 10%, 33.3%, and 50%
spectra within the Paraquat toxicity class were designed to
mimic resistance to the poisoning intervention. This was
achieved by setting the intensities of the above four biomarkers
to similar intensities to those in the control class. In addition,
we also simulated metabolic variation across the whole data set
that was irrelevant to the response to Paraquat toxicity.
Variation was introduced in the intensities of signals relating to
hippurate (δ 3.96, d, δ 7.54, triplet (t), δ 7.62, t, δ 7.82, double
doublet (dd)), glycine (δ 3.54, s), trimethylamine-N-oxide (δ
3.25, s), L-histidine (δ 3.16, dd, δ 3.23, dd, δ 3.98, dd, δ 7.09, d,
δ 7.90, d), and phenylacetylglutamine (δ 1.92, multiplet (m), δ
2.11, m, δ 2.26, t, δ 3.66, q, δ 4.19, m, δ 7.37, t, δ 7.43, t, δ 7.90,
d). The variation was evenly distributed in both control and
Paraquat toxicity classes. An illustration of the means and
variances in signal intensities for these metabolites are shown in
Supporting Information Table S-1 for N = 30, and these were
proportionally expanded for all other data sets. All spectral data
sets were generated using MetAssimulo software.32 Within the
software package, the HMDB database33 and a local NMR
standard spectra database were used to extract information for
1H NMR metabolite signals. The concentrations of the
remaining metabolites were simulated using the same Gaussian
distributions for the whole data set. Each simulated spectrum
covered a chemical shift region of δ 0−10 with 27 679 spectral
variables. The peak shift Δδ was set by using the default
parameters of the software package and signal-to-noise ratio (S/
N) was set to 100. The simulated spectral data were mean
centered and scaled to unit variance prior to normalization by
the probabilistic quotient normalization (PQN) method using
the median spectrum from the whole data set as a reference.34

Hydrazine Toxicology Study. This study formed part of
the Consortium for Metabonomic Toxicology (COMET)
project. Details of this study can be found in Lindon et al.35

Briefly, three groups of male Sprague−Dawley rats, N = 50 in
each group, were administered a single dose of either saline
(control) or hydrazine hydrochloride in saline at 90 mg/kg or
30 mg/kg (high and low dose interventions, respectively).
Urine samples collected over the following nine time periods
were analyzed by 1H NMR spectroscopy: t1 = −8 to 0 h, t2 = 0
to 8 h, t3 = 8 to 24 h, t4 = 24 to 48 h, t5 = 48 to 72 h, t6 = 72 to
96 h, t7 = 96 to 120 h, t8 = 120 to 144 h, and t9 = 144 to 168 h.
Half of the rats were killed at 48 h postdose for histology,
leaving 25 rats in each group after t5.
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NMR Spectroscopy. Each 200 μL of urine sample was added
to 200 μL of phosphate buffer containing 10% deuterium oxide.
1H NMR spectra of urine were acquired on a Bruker DRX600
spectrometer operating at 600.13 MHz 1H observation
frequency using the BEST (Bruker Efficient Sample Transfer)
5 mm flow-injection probe for sample delivery and analysis.
One-dimensional (1D) NMR spectra of urine samples were
acquired using a solvent presaturation pulse sequence to
suppress the residual water resonance. Sixty-four free induction
decays (FIDs) were collected into 64 k data points, at 300 K,
using a spectral width of 12019 Hz, with an acquisition time of
2.04 s, giving a total pulse recycle delay of 3.04 s. These data
were zero-filled by a factor of 2, and the FIDs were multiplied
by an exponential weighting function equivalent to a line
broadening of 0.3 Hz prior to Fourier transformation (FT).
Pretreatment of NMR Spectra. The raw spectral data were

loaded using the BATMAN R package.36 The spectra were
referenced to an internal standard (sodium 3-trimethylsilyl-
[2,2,3,3-2H4]-propionate, TSP). The spectral regions contain-
ing water and urea resonances were excluded, leaving chemical
shift ranges from δ 0.24−4.48 and δ 5.96−9.96. The spectra

were visually checked, and those with poor water suppression
and hence distorted baselines were excluded. The resulting
numbers of spectra included in the multivariate analysis are
given in Table S-2 in Supporting Information. Each spectrum
consisted of 27 679 variables with a bin width 0.0003 ppm. As
with the simulated data, these spectral data were mean-centered
and scaled to unit variance before normalization using the
median PQN method.

Data Analysis. Using the simulated data set, we aimed to
evaluate whether the correct discriminatory variables for
“toxicity” could be identified. Here, we considered a spectral
variable to be discriminatory if the p-value of the correlations
between the spectral variable and the OPLS-DA scores vector37

was smaller than μp and the OPLS-DA loading weight6 was
larger than μw. As there are initially no established values for μp
and μw, we used 1.85 × 10−6 for μp (corresponding to 0.05 after
Šidaḱ correction38), and we used the simulated data sets to
establish an appropriate μw value. We subsequently applied the
same μw in the hydrazine toxicity study. Using these criteria, we
evaluated if we could correctly identify the homogeneous and
idiosyncratic responders within the simulated data sets and

Figure 1. Schematic diagram of the SHOCSY algorithm for a data set consisting two biological classes. The closed circles and rectangles denote
homogeneous samples; and the open circles and rectangles denote idiosyncratic samples.
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compared the performance of SHOCSY to standard OPLS-DA
method for their sensitivity, specificity, and overall accuracy.
PCA scores plots were employed to provide an overview of the
whole data set as well as to map the homogeneous and
idiosyncratic subsets individually. The predictive ability of the
OPLS-DA models built on the homogeneous subsets were
compared to the model based on the whole data set, using 7-
fold and double cross-validation Q2.39 Permutation tests were
calculated by randomly assigning classes to the samples, and
remodelling was repeated 50 times. To establish the model
significance, the Q2 statistics for the actual model was compared
to the empirical null distribution obtained from the permuted
Q2.
Statistical HOmogeneous Cluster SpectroscopY

(SHOCSY). The proposed algorithm consists of four steps, in
which Step 1−3 are performed iteratively: (i), identifying
discriminatory spectral variables by OPLS-DA; (ii), clustering
of spectra based on the discriminatory variables by K-means;
(iii), identifying homogeneous subsets using an enrichment
test; and (iv) extracting discriminating metabolic features based
on the homogeneous subsets.
Step 1: Standard OPLS-DA analysis is performed to identify

potential discriminatory spectral variables. A spectral variable is
classified as discriminatory when the p-value of the correlations
between the spectral variable and the OPLS-DA scores <1.85 ×
10−6 and at the same time, its OPLS-DA loading weight >0.3,
where this cutoff point was found to be appropriate for all the
simulated data sets. In SHOCSY, the whole data set is only
used in Step 1 of the first iteration. Subsequent iterations use
subsets of the data set showing similar metabolic features.
Step 2: K-means method is applied to categorize the data set

into a few clusters. We assume each biological class could
potentially consist of two clustersone cluster showing the
dominant metabolic features as identified in step 1 and another
lacking these metabolic features. We therefore cluster the data
set to model the dominant metabolic features by the “K”-means
method. In K-means clustering, the NMR spectral data are
grouped to minimize within-group diversity but maximize
between-groups diversity by Euclidean distance. Thus, for a
biological class that is highly homogeneous, all the spectra can
be clustered in one cluster showing the dominant metabolic
features. However, for a biological class that is heterogeneous,
two clusters can be formed (i.e., a cluster of spectra showing the
dominant metabolic features and another cluster of spectra
lacking these metabolic features). Consequently, for a data set
consisting of two biological classes, a total of up to four clusters
may be generated.
Step 3: A hypergeometric enrichment test is used to identify

the dominant cluster for each biological class and thus
associates clusters to specific biological classes within the data
set. This enables the identification of spectral data with
dominant metabolite features. Here, the cluster is considered
dominant for a biological class when p ≤ 0.05 and thus
considered as the homogeneous subset for that specific
biological class. The other clusters with p > 0.05 are therefore
considered idiosyncratic responders. However, when both
clusters of a biological class show p > 0.05, the algorithm
ceases to work, and this indicates that no dominant metabolic
feature can be identified for this biological class. The identified
homogeneous subsets for each biological class from the first
iteration are fed back to Step 1 of the algorithm. In the
subsequent iteration, a new set of discriminatory spectral
variables are identified using these homogeneous subsets from

each biological class. Subsequently, new K-means clusters are
formed to generate updated homogeneous subsets. When the
“truly” homogeneous subsets have been identified, the iteration
will stop as the predictive ability of the OPLS-DA model is
maximized (Figure S-1).
Step 4: The homogeneous subsets with maximal Q2 are used

to identify the potential discriminatory variables. The OPLS-
DA model based on these homogeneous spectra will enable a
more robust selection of biomarkers.
A schematic diagram describing the SHOCSY algorithm, for

a data set containing two biological classes, is shown in Figure
1. All calculations and the SHOCSY algorithm were written in
MATLAB (R2012a, Mathworks, Natick, U.S.A.) environment.
The matlab code identifying the homogeneous and idiosyn-
cratic responders is available on request.

■ RESULTS AND DISCUSSION
Evaluation of the Performance of the SHOCSY

Algorithm on a Simulated NMR Spectral Data Set. The
SHOCSY algorithm was evaluated by varying the μw while
fixing μp = 1.85 × 10−6 (0.05 after Šidaḱ correction). Using the
simulated data sets, we found that a μw value ranging from 0.2
to 0.6 was able to correctly identify all four metabolite signals
corresponding to “Paraquat toxicity”. When the μw value was
increased to >0.7, these models only identified three
metabolites as biomarkers. This demonstrates that a high μw
value increases the risk of excluding genuine biomarkers. We
therefore adopted a conservative cutoff value, μw = 0.3, for the
remaining analyses to ensure reliable biomarker signature
selection. However, the standard OPLS-DA only identified
creatinine and citrate even a low μw of 0.2 was used when the
proportion of idiosyncratic spectra is >33.3%.
The PCA scores plot based on the whole data set (N = 30 in

each biological class with 50% idiosyncratic spectra) shows that
some spectra in the simulated Paraquat group cocluster with
the control class (Figure 2a). We then evaluated the ability of
the SHOCSY algorithm to correctly identify the homogeneous
and idiosyncratic subsets within the data set. SHOCSY was
found to be highly reliable (Figure 2b) and more robust than
standard OPLS-DA approach. SHOCSY showed an overall
accuracy of ≥0.94, sensitivity ≥0.94, and specificity ≥0.80
irrespective of data set size and the extent of idiosyncratic
responders. This was not the case for the standard OPLS-DA
approach, where the overall accuracy fell to 0.75 and with poor
specificity (Supporting Information Table S-3). The median 1H
NMR spectra of the homogeneous control, idiosyncratic
responders, and homogeneous responders are shown in Figure
2c. It can be clearly seen that the idiosyncratic responders had
similar spectral features to those of the control. In addition, the
homogeneous responders manifested an increase in lactate and
L-alanine but a reduction in the intensity of creatinine and
citrate signals. When the proportion of idiosyncratic responders
is low (e.g., 5%), both 7-fold and double cross-validation
methods show comparable results for the standard OPLSDA
approach (Supporting Information Table S-4). As the
proportion of idiosyncratic responders increases, the Q2

decreases progressively. However, when the homogeneous
subgroups were used, both the 7-fold and double cross-
validation generated comparable Q2 values and remained high
(>0.78, permutation test of p < 10−5 for all data sets). These
high Q2 values are due to the exclusion of idiosyncratic
responders from the data set, which removes irrelevant
responses from the model and thus improves the predictivity
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of the model. Moreover, with 50% idiosyncratic spectra, the L-
alanine and lactate signals in the standard OPLSDA were
obscured by the interference samples in the data sets and thus
did not significantly differentiate the toxicity class from control.
The loading coefficient plots (Figure 2d,e) show that the
loading weights for these four metabolite signals were higher in

the model based on homogeneous subsets (r2 > 0.7) than those
of the whole data set (r2 > 0.5, N = 30).

Application of SHOCSY to a Rat Hydrazine Toxicity
Study. The SHOCSY algorithm was used to identify
homogeneous subsets from a hydrazine study in rats. The
responses were highly homogeneous for all time points except
t7 (96−120 h) and t8 (120−144 h) for high dose and t5 (48−72
h) for low dose. SHOCSY was able to identify four and nine
spectra as idiosyncratic responders from the high dose
hydrazine for t7 and t8, respectively. Furthermore, nine spectra
from the hydrazine low dose data at t5 were identified as
“idiosyncratic” responders. No idiosyncratic animals were
identified in the control groups. We therefore focused our
subsequent analyses using the time points where variation in
responses to hydrazine toxicity was more evident (t7 and t8 for
high dose; and t5 for low dose). As we have shown that 7-fold
and double cross-validation methods obtained comparable
results using the simulated data sets, we therefore only applied
the 7-fold cross-validation for the analysis of the hydrazine
toxicity study.
The Q2 value of the OPLS-DA model obtained from the

whole data set of the high dose hydrazine class was 0.88 for t7
and 0.77 for t8 (permutation test p < 105). The model statistics
improved to 0.94 for t7 and 0.96 for t8 (permutation test p <
10−5) when homogeneous subsets were used rather than the
whole class. For the low dose, the Q2 for t5 data slightly
improved from 0.75 based on whole data set to 0.77 based on
the homogeneous subsets (permutation test p < 10−5).
The OPLS-DA model coefficient plots of the whole data set

and the homogeneous subsets at t8 after administration of a
high dose of hydrazine showed both endogenous metabolites as
well as hydrazine-related metabolites as potential discriminatory
biomarkers (Figure 3). On the basis of the defined criteria (i.e.,
p < 1.85 × 10−6 and loading weight >0.3), the following
metabolites were identified from the whole data set: N-α-acetyl-
citrulline (δ 4.13, m, δ 3.11, t, δ 2.03, s, δ 1.8, m, δ 1.66, m, δ
1.52, m), 2-aminoadipic acid (δ 3.77, t, δ 2.26, t, δ 1.89, m, δ
1.64, m), citruline (δ 3.76, t, δ 3.15, quintet, δ 1.88, m, δ 1.52,
m), 2-oxoglutarate (δ 3.01, t, δ 2.45, t), creatinine (δ 4.05, s, δ
3.04, s), creatine (δ 3.94, s, δ 3.04, s), glycine (δ 3.54, s), and
hippurate (δ 7.73, d, δ 7.64, t, δ 7.55, t, δ 3.97, d). Two
additional discriminatory biomarkers were also uncovered when
the OPLS-DA model based on homogeneous subsets was used
(Figure 3c,d). These were diacetyl hydrazine (δ 2.07, s) and
beta-alanine (δ 3.19, s, δ 2.56, t). This was made possible as the
exclusion of idiosyncratic responders reduced the variability of
the data set and thus potential discriminatory biomarkers were
not obscured by overlapping signals in confounded spectra.
The use of the subset optimization algorithm therefore
provided a clearer description of the potential discriminatory
biomarkers. As the focus of our current work is to demonstrate
how SHOCSY works, the biological interpretation of these
metabolite signatures is beyond the scope of this paper but
relates to improved capture both of hydrazine metabolism
(diacetyl hydrazine) and the endogenous response to liver
toxicity (beta-alanine). Readers are referred to previous
publications.40,41

The median 1H NMR spectra showing the characteristics of
each homogeneous subset as well as the idiosyncratic
responders is shown in Supporting Information Figure S-2.
From the loading coefficient plots (Figure 3) and the median
spectra plots (Figure S-2), it can be seen that the homogeneous
responders showed metabolite signatures indicative of

Figure 2. PCA scores plots for principal components 1 and 2 using the
simulated data set of 30 spectra in each biological class with 50%
idiosyncratic responders for (a) the whole data set and (b) the
homogeneous and idiosyncratic subsets identified by the SHOCSY
algorithm. (c) The median 1H NMR spectral profiles of homogeneous
control (N = 30, red), idiosyncratic responders (N = 15, green), and
homogeneous responders (N = 15, blue) for aliphatic regions of the
spectrum. The OPLS-DA loading plots of the whole data set (d) and
the homogeneous data set (e). The metabolite signals pointing upward
correspond to those metabolites up-regulated in Paraquat toxicity, and
conversely, metabolite signals pointing downward correspond to those
metabolites down-regulated in Paraquat toxicity. The color bar defines
the weights of the corresponding discriminating biomarkers between
the control and Paraquat toxicity with “hotter” colors indicating a
higher correlation with class discrimination. Key: 1, lactate; 2, L-
alanine; 3, acetic acid; 4, phenylactylglutamine; 5, p-cresl sulfate; 6,
succinic acid; 7, citrate; 8, dimethylamine; 9, trimethylamine; 10,
creatinine; 11, trimethylamine-N-oxide; 12, L-histidine, 13, hippurate;
14, taurine; 15, glycine; 16, creatine; 17, glycolic acid. * indicates the
metabolic biomarker signals that correspond to Paraquat toxicity.
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hydrazine toxicity. The metabolic profiles of the idiosyncratic
responders were more similar to those in the control, as evident
by the high level of metabolites such as succinate and 2-
oxoglutarate (Figure S-2). The PCA scores plots of the median
metabolic time trajectory for these rats showed that these
idiosyncratic responders recovered from the hydrazine insult
quicker than the others (Figure 4). A similar trend was found
for the high dose t7 and low dose t5 data.
Benefits of the SHOCSY Algorithm. The SHOCSY

algorithm is efficient: an output for the simulated and hydrazine
data set was obtained in less than 60 s when we used a
computer with 16GB RAM with a Xeon 2.4 GHz preprocessor.
The algorithm converged within three iterations for all data
sets. This time taken for SHOCSY is comparable to a standard
OPLS-DA approach. However, the double cross-validation
approach took significantly longer (>15 h, Table S-4).
We also investigated the proportion of idiosyncratic

responders in a biological class that the algorithm can tolerate.
Using the simulated data sets, we varied the proportion of
idiosyncratic responders from 5% to 50%. We found the
SHOCSY algorithm could tolerate up to 50% of the spectra
showing idiosyncratic responses, without compromising the
validity of the model (Table S-3 and S-4). However, this was

not the case for standard OPLS-DA approach. Our results
showed that our algorithm will work despite extreme condition,
and therefore, it will be suitable for use in most biological data
sets, particularly those with high variation of nonresponders.
Having developed the SHOCSY algorithm, we applied it

successfully to a rodent NMR-based metabonomics study.
However, we envisage that the algorithm will be particularly
appropriate for spectral data generated from human studies,
where varying responses to intervention, such as drugs
treatments42−44 and susceptibility to side effects of drugs,13,45

have been observed. As the key goal of SHOCSY is for data
variation reduction to improve the reliability of multivariate
modeling and to enhance robust biomarkers selection, the
mathematical criteria can also be applied to other “omics”-
based data sets as well as other data types of spectroscopic data
(e.g., GC-MS or LC-MS). Furthermore, the proposed
algorithm could also be applied in combination with various
data analyses methods other than OPLS-DA.

■ CONCLUSION
The reliability of modeling and the extraction of biomarkers are
both critical aspects of metabolic profiling studies. Established
methods such as OPLS-DA can fail to correctly identify

Figure 3. OPLS-DA loading coefficient plots comparing control and hydrazine 90 mg/kg at 120−144 h for the following: (a) the aliphatic spectral
region and (b) the aromatic spectral region; for the whole data set (N = 23 for control and N = 18 for hydrazine class); (c) the aliphatic spectral
region and (d) the aromatic spectral region; for the homogeneous subsets (N = 23 for control and N = 9 for hydrazine class). Key: 1, N-α-acetyl-
citrulline; 2,2-aminoadipic acid; 3, citruline; 4, diacetyl-hydrazine; 5, succinate; 6, 2-oxoglutarate; 7, citrate; 8, creatinine; 9, creatine; 10, beta-alanine;
11, taurine; 12, glycine; 13, hippurate. * indicates the metabolic signals were identified as “biomarkers” of response to hydrazine based on the defined
criteria.
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relevant biomarkers when there is variation in responses to
biological studies. We have shown how SHOCSY can improve
the model classification ability for NMR spectra, while
tolerating high variation of responses or idiosyncratic behavior
in up to 50% of the data set. Unlike currently used methods,
SHOCSY iteratively “learns” the metabolic features best
representing the biological classes in the data set and identifies
irrelevant samples lacking these features. This enhances the
robustness of the biomarker selection process. Moreover,
SHOCSY has wide applicability and is not limited to analysis of
NMR spectroscopic data.
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