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The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has
enhanced the interest in studying them as theranostic agents over recent years. As IONPs
begin to be used for different biomedical applications, it is important to know how they affect
the immune system and its different cell types, especially their interaction with the
macrophages that are involved in their clearance. How immune cells respond to therapeutic
interventions can condition the systemic and local tissue response, and hence, the final
therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the
immune response, especially in cancer immunotherapy. The biological effects of IONPs may
be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species
(ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are
driven by the nanoparticle coating, for example, throughcellmembrane receptor engagement.
Indeed, exploiting these properties of IONPs could lead to the development of innovative
therapies. In this review, after a presentation of the elements that make up the tumor
immunological microenvironment, we will review and discuss what is currently known about
the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage
polarization and reprogramming. Consequently, we will discuss the implications of these
findings in the context of plausible therapeutic scenarios for cancer immunotherapy.

Keywords: iron oxide nanoparticles, nanoparticle–macrophage interaction, macrophage polarization, tumor
associated macrophages, therapeutic applications
INTRODUCTION

The highly innovative field of nanotheranostics has been expanding now for more than two decades,
with easy-to-scale nanomaterials emerging as potential candidates to treat a variety of pathologies,
such as cancer (1–4), autoimmune diseases (5, 6) or neurodegenerative disorders (7, 8). The
therapeutic interest in nanomaterials, and particularly in nanoparticles, is in part kindled by the
chemical and physical versatility of these materials. Nanoparticles can be functionalized with
targeting moieties (9) or drugs (10), and their surface can be built for specific biomolecule release
using molecular domains responsive to stimuli like pH (11, 12) or reactive oxygen species (ROS (13,
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14). In addition, they also possess physical properties associated
with their core that can be exploited, such as magnetism (15) and
plasmon coupling (16).

Iron oxide nanoparticles (IONPs) are of particular therapeutic
interest due to their magnetic properties and their flexibility for
surface functionalization. IONPs have been used as contrast agents
and as heat-inducers through the application of an external
magnetic field (17, 18). Their versatility in terms of surface
functionalization means they can target diverse molecules and
they can be used to ensure the correct localized delivery of
different cargos, such as drugs, RNAs, cytokines or antibodies
(15). Importantly, IONPs also exhibit intrinsic biological activity
in cellular systems, including the immune system, which can be
exploited to broaden their therapeutic potential. This review
will first outline the main characteristics of the tumor
microenvironment (TME), emphasizing the influence of tumor-
associated macrophages (TAMs), and subsequently, we will address
the impact that IONPs have on macrophage reprogramming and
the implications of this for cancer immunotherapy.
Frontiers in Immunology | www.frontiersin.org 2
IMMUNOLOGICAL TUMOR
MICROENVIRONMENT

Cancer is a complex and heterogeneous disease that involves the
dysregulation of various cell processes, such as metabolism (19),
proliferation (20), intracellular pH dynamics (21), redox
signaling (22), and migration/invasion (23, 24). The
complexity of this disease is also reflected by the different
ecosystems that constitute a permissive TME (25, 26). A close
inspection of the TME reveals a network of cellular and non-
cellular components that provide the signals that control tumor
cell survival, proliferation, angiogenesis, immune evasion and
metastasis. We can divide the TME landscape into three
ecosystems: 1) the cellular compartment; 2) the soluble factors;
and 3) the extracellular matrix (ECM: Figure 1 and Table 1). The
tumor niche is a very dynamic 3D structure in which stromal
cells play a crucial role in regulating different stages of tumor
development and in which there is also an intricate interplay
among these cells. The TME cell ecosystem also includes a
FIGURE 1 | Overview of the tumor microenvironment (TME). Three ecosystems contribute to the TME: firstly, the cellular ecosystem that is composed of immune
cells (lymphoid and myeloid), fibroblasts, mesenchymal stem cells (MSCs), pericytes, endothelial cells, and tumor cells. Secondly, the cell-to-cell membrane
interactions and soluble secreted factors that participate in the intricate interplay among these cells, e.g., cytokines, chemokines, growth factors, hormones,
proteolytic enzymes, and metabolites. Thirdly, the extracellular matrix (ECM) bed on which the cellular ecosystem resides, also providing biological signals to the
tumor and stromal cells through ECM-derived peptides and the structural domains of its proteins. The interplay of these signaling networks and ecosystems
promotes tumor cell proliferation, survival, epithelial-to-mesenchymal transition, drug resistance and loco-regional modulation, such that the TME is conducive to
tumor cell invasion and metastatic spreading, angiogenesis and immune cell evasion.
June 2021 | Volume 12 | Article 693709
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plethora of non-immune stromal cell types, such as cancer-
associated fibroblasts (CAFs (54), mesenchymal stem cells
(MSCs), pericytes, adipocytes, endothelial and vascular cells.
Notably, these cells exhibit a high degree of plasticity and they
may originate through trans-differentiation. For instance, breast
cancer CAFs may stem from resident fibroblasts, from breast
epithelial cells via the epithelial-to-mesenchymal transition (EMT)
or from pericytes in the perivascular niche (55, 56). CAFs may also
be derived from bone marrow-derived mesenchymal stem cells
(BM-MSCs), as PDGFR-a−, CD45−, CD34− BM-MSCs are
recruited into primary breast tumors to differentiate into a-
SMA+, PDGFR-a−, CD45−, CD34− CAFs (57). This fact
highlights the complex transcriptional reprogramming that
many stromal cells go through, suggesting that the cellular
ecosystem in the TME is in constant transcriptional flux (58,
59). Indeed, this dynamic transcriptional program is likely to
constantly redefine the immunological landscape of the TME.

The TME is also comprised of tumor-infiltrating immune cells,
both innate immune cells (monocytes, macrophages, and NK cells)
and adaptive immune cells (T and B cells), that define the tumor
immune microenvironment (TIME). Dynamic communication
takes place within this ecosystem that are mediated by cell-to-cell
contacts and cell-derived soluble factors. The intermediates derived
from stromal and tumor cells, such as cytokines, chemokines, and
ROS, promote immune evasion by inducing CD8+ T cell anergy/
exhaustion, T regulatory (Tregs) cells, suppressor dendritic cells
(DCs), andM2macrophage differentiation (60). As a result, tumors
escape immune surveillance and they adopt ametastatic phenotype
through modulation of the EMT, enhanced angiogenesis and
ECM degradation.

The non-cellular TME network is comprised of ECM
components [e.g., collagens (61), fibronectin (62), elastin (63),
and laminin (64)], and soluble cellular derivatives [e.g., cytokines,
chemokines (65), hormones (66), metabolites (67, 68) and growth
factors (69)]. This non-cellular network is responsible for cell-to-
cell crosstalk, ultimately shaping the pro-malignant environment.

However, the immunological landscape within the TME has
emerged as a crucial variable for cancer progression and treatment,
and understanding the TIME has become a critical step in designing
Frontiers in Immunology | www.frontiersin.org 3
efficient immunotherapies for cancer. Indeed, the TIME defines the
prognosis of cancer patients (70, 71) and their therapeutic response
to immunotherapies like checkpoint inhibitors (72, 73), T-cell
transfer (74), or therapeutic vaccines (75). Driven by tumor cell
plasticity, the TIME is a dynamic system where diverse innate and
adaptive immune cells co-exist, continually changing over time in
response to the reprogramming of tumor cell transcription
(Figure 2). To better comprehend the TIME’s influence on
cancer prognosis, the TIME can be divided into the T cell-
inflammatory microenvironment and non-T cell-inflammatory
microenvironment. The first of these is characterized by the
infiltration of T cell subsets and macrophages, whereas the second
is mainly composed of TAMs. Of all immune cells, TAMs play a
pivotal role in defining the tumor immunological landscape and
thus, they have been the target of various therapeutic approaches.

Immunosuppressive Tumor-Associated
Macrophages
TAMs are tumor-enriched immunosuppressor cells that exert a
pivotal influence on tumor progression and metastasis. Since their
first description 30 years ago (76), TAMs have been characterized
as potent pro-tumorigenic agents that act primarily by modulating
the natural (and induced) anti-tumor response, ECM remodeling,
and inducing angiogenesis, not only leading to tumor cell survival
and proliferation but also, to their dissemination (Figure 3). It is
currently accepted that the TAM phenotype resembles the
alternatively activated macrophage M2 phenotype (Arginase 1+,
CD163+, CD206+, CD209+, FIZZ1+, and Ym1/2+), which can be
subdivided into four subtypes: M2a, M2b, M2c, and M2d (77).
These subtypes are generated by the stimuli triggeringmacrophage
differentiation and some specific phenotypic markers (Table 2).
However, it is generally accepted that TAMs retain a high degree
of plasticity, permitting several different subtypes to co-exist
simultaneously and their trans-differentiation into each different
subtype depending on the TME signals available.

In general, blood monocytes infiltrate the TME, and along with
the tumor-residentmacrophages, they represent a source of TAMs.
In this context, tumor cells shape the macrophage ’s
immunosuppressive phenotype by secreting anti-inflammatory
TABLE 1 | Examples of TME ecosystems and their implications in the progression of three significant cancers: breast, lung and colorectal.

Tumor Component Implications

Breast tumors Cancer-associated fibroblasts
(CAFs)

Tumor invasion through stromatogenesis (27)
Tumor EMT through TGF-b1 (28, 29)
Self-renewal of breast cancer stem cells (30)
Tumor progression through growth factors, e.g., SDF-1 (31), FGF-b (32)
Tumor progression through cytokines and chemokines, e.g., CXCL14 (33), CXCL16 (34), IL-4 & IL-6 (35), IL-
33 (36)

Breast tumors Mesenchymal stem cells (MSCs) Immunosuppression through the CCL5/PD-L1 axis (37)
Enhanced tumor progression through CCL5 and IL-6 (38)

Lung tumors CAFs Chemoresistance through upregulation of TNFSF4 (39) and/or ANXA3 (40)
Immunosuppression by modulating TIM (41)
Enhanced growth and invasion through VCAM-1 secretion (42) and induction of PD-L1 (43)

Colorectal cancers CAFs Enhanced metastasis through HGF (44)
Chemoresistance through exosomal lncRNA H19 (45)
Enhanced tumor cell migration/invasion through Wnt2 (46), IL-33 (47), CLEC3B (48) and/or SNAIL-1 (49)

Colorectal cancers Pericytes Enhanced tumor cell invasion through the TGF-b1/IGFBP-3 axis (50)
Colorectal cancers MSCs Enhanced tumor progression through IL-8 (51), TGF-b1/CXCR4 (52), CCL5/b-catetin/Slug (53)
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interleukins and other metabolites. The TAMs then inhibit tumor-
infiltrating T cells directly through receptor-ligand cognates [e.g.,
PD-1:PD-L1 (84)] or by releasing anti-inflammatory cytokines (IL-
10, TGF-b1, and IL-6). Concomitantly, the TAMs can produce
different proteolytic enzymes such as metalloproteinases (MMPs),
cathepsins, and disintegrin and metalloproteinase-like proteases
(ADAMs), thereby producing a profound ECM remodeling.
Consequently, the ECM becomes conducive to invasion, and it
facilitates tumor cell dissemination into the surrounding tissue and
peripheral circulation. TAMs can further enhance tumor
invasiveness by inducing angiogenesis, mediated by various
cytokines and growth factors like VEGF-A (85) and IL-8 (86).
Since TAMs are involved in tumor progression, the induction of a
specific phenotype that switches these cells towards a pro-
immunogenic profile has been proposed as an attractive
therapeutic tool to enhance local anti-tumor immune responses.

The modulation of TAM activity is a plausible and promising
therapeutic approach to combat tumors when combined with
cancer immunotherapies. Indeed, multiple drugs that modulate
the pro-tumor activity of TAMs have been tested, including
bisphosphonates (87) and zoledronic acid (88) in particular, or
chemotherapeutic drugs like docetaxel and cyclophosphamide (89).
While zoledronic acid can revert the M2 TAM phenotype in breast
tumors into an M1-like phenotype or induce TAM apoptosis, the
chemotherapeutic drugs can promote an M1-phenotype that
Frontiers in Immunology | www.frontiersin.org 4
secretes pro-inflammatory cytokines like IL-12, thus driving an
anti-tumor effect. In this context, nanoparticles thatmodulateTAM
activity, particularly IONPs, provide new and innovative tools to
prolong anti-tumor responses in situ.
INTRINSIC MODULATION
OF THE TIME BY IRON OXIDE
NANOPARTICLES (IONPS)

IONPs have been studied extensively as an effective magnetic
nanocarrier for various cargos, such as drugs (15), cytokines (90,
91), siRNAs (92), and adjuvants (93). There are several motives
for the increasing interest in IONPs as nanocarriers. First, the
IONP core responds to an external electromagnetic field that
permits their use in applications like magnetic targeting,
magnetic resonance imaging (MRI) or the induction of local
hyperthermia. Second, mammalian cells have efficient iron
metabolism that can prevent the cells from suffering iron-
related toxicity. Third, the IONP surface provides a chemical
interface that can be easily modified with a number of polymers
and moieties, which when combined with the high surface-to-
volume ratio, facilitate the delivery of wide range of cargoes.

However, IONPs also produce interesting intrinsic biological
effects that provide added therapeutic benefits to IONP-based
FIGURE 2 | The tumor immune microenvironment (TIME). Several immune cells are found in the TIME, exhibiting either an immunostimulatory (CTLs, cytotoxic T
cells, helper T cells, memory T cells, gd T cells, NK T cells, plasma B cells, memory B cells, NK cells and M1-like TAMs) or immunosuppressive phenotype (Tregs
cells, regulatory B cells, M-MDSCs, monocytic monocyte-derived suppressor cells, PMN-MDSCs, polymorphonuclear monocyte-derived suppressor cells and M2-
like TAMs). The final immunological response in the TME will depend on the balance between these immunomodulatory populations.
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nanomedicines. We demonstrated that polyethyleneimine (PEI)-
coated IONPs can inhibit the migration and invasion of tumor
cells (94), and impair angiogenesis (95). More importantly, the
intrinsic biological effects of IONPs arise from their surface
coating and the surrounding protein corona, as well as the free
Frontiers in Immunology | www.frontiersin.org 5
intracellular iron derived from IONP degradation. While IONP
surface microdomains are primarily involved in the
nanoparticle’s interaction with cell membrane receptors,
soluble factors, and intracellular components, the released
intracellular iron actively changes the intracellular redox status
FIGURE 3 | The role of tumor-associated macrophages (TAMs) in shaping the tumor microenvironment (TME). (A) TAMs secrete a plethora of enzymes that
degrade ECM components, such as metalloproteinases (MMPs), cathepsins, disintegrin and metalloproteinase (ADAM)-family proteases, and tissue inhibitors of
metalloproteinases (TIMPs). As a result, the ECM becomes destructured and conducive to tumor cell invasion. TAMs also secrete cytokines that support tumor cell
proliferation, e.g., TGF-b1, IL-10, IL-6, IL-1b, and EGF. (B) TAMs secrete various pro-angiogenic factors that induce vessel formation, e.g., VEGF-A, bFGF, IL-6, and
TNFa. Together with ECM degradation, tumor angiogenesis permits the systemic dissemination of tumor cells. (C) TAMs adopt an immunosuppressive phenotype
by secreting many anti-inflammatory cytokines/chemokines, e.g., IL-10, TGF-b1, CCL17, CCL18, and CCL22, inhibiting cytotoxic T cells (CTLs) and attracting or
differentiating T cells into regulatory T cells. TAMs can also exhaust CTLs by direct engagement of anti-inflammatory cognates receptors like PD1-PD-L1.
TABLE 2 | | M2 macrophage subtypes and their involvement in tumor development.

M2 Subtype Stimuli Phenotype Functions

M2a IL-4/IL13 IL-10, TGF-b1, IL-1R agonist To promote a Th2 response and tumor cell invasiveness (78, 79)
M2b IL-1b, immune complexes and LPS IL-1, IL-6, IL-10, TNFa Pro-Th2 activity, tumor progression and immunotherapy resistance (80)
M2c IL-10, TGF-b1, glucocorticoids IL-10, TGF-b1 ECM remodeling and to promote tumor migration/invasion (81, 82)
M2d IL-6, adenosine IL-10, IL-12, TNFa, TGF-b1 Tumor progression and invasion (83)
June 2021 | Volume 12 | Article 693709

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mulens-Arias et al. Nanoparticle-Mediated Macrophage Reprogramming
through the Fenton reaction (96), modulating several iron-
regulated genes. Since macrophages contribute to the TIME,
their interaction with IONPs can define the theranostic outcome
and provide an invaluable tool to reprogram the phenotype of
TAMs. The most recent findings on how IONPs affect
macrophage activation are summarized in Table 3.

To understand how IONPs affect macrophage polarization,
we have to consider the internalization process as at least three
different steps, during which IONPs can engage with different
signaling cascades: 1) IONP interaction with the cell membrane;
2) endocytosis and endolysosomal trafficking; and 3) IONP
degradation. In each step the IONPs are exposed to diverse
biological milieu and ultimately, this determines the indirect or
direct engagement that drives macrophage transcriptional
reprogramming and shifts in phenotype. This effect on
transcriptional reprogramming of macrophages has been
assessed by several groups whereby key transcription factors
such as STAT family (107) and c-Fos/c-Jun complex (107) are
upregulated upon IONP treatment. Noteworthy, IONPs appear
to induce a variety of transcription factors related to MAPK
pathways and the innate response, including the TLR-AP-1
signaling pathway (108). This complex reprogramming was
revealed by Liu Y et al., who observed that the DMSA-coated
IONPs engaged the activation of the signaling pathways
mentioned above (107). Therefore, the IONPs can trigger a
multifactorial transcription reprogramming of macrophages
where several signaling pathways are involved.

It is important to note that among the transcriptional
reprogramming that IONPs can induce in macrophages, some are
related to cell death processes such as apoptosis, ferroptosis, and
autophagy. The balance between all signaling pathways activated by a
particular IONPs will determine themacrophage fate. In this review,
we focus on the transcriptional reprogramming of macrophage
response in terms of the immune response and suggest other
comprehensive and recent studies on the toxicity of IONPs that
can be more thorough in this sense (109, 110).

The coating of IONPs influences their interaction with
cell membrane-associated proteins like receptors, thereby
triggering signaling cascades that can activate macrophages. As
such, IONPs with a positively charged coating consistently
polarize macrophages towards a M1-like phenotype. Indeed,
when macrophages are treated with PEI-coated IONPs, a
straightforward program of M1 activation occurs, enhancing
co-stimulatory receptors like CD40, CD80, and CD86, along
with the secretion of the pro-inflammatory cytokine, IL-12 (101).
When analyzing the transcriptional reprogramming induced by
PEI-coated IONPs, several pro-inflammatory genes were seen to
be upregulated (i.e., Il1b, Tnfa, Ccl2 and Il6). However, the most
exciting finding was the involvement of the toll-like receptor 4
(TLR-4) in PEI-coated IONP-induced macrophage activation
(101). The PEI polymer appears to engage TLR-4 activation,
stimulating the mitogen-activating protein kinase (MAPK). Two
commercially available IONPs (carboxydextran-coated Resovist
and carboxylmethyl-dextran coated feraheme) have also been
demonstrated to induce macrophage activation through TLR-4
engagement, indicating that different IONP coatings can activate
Frontiers in Immunology | www.frontiersin.org 6
macrophages in this way, although activation by these IONPs
induces autophagy (102). Other effects of IONPs were at least
partly associated with different TLRs, including the cell
membrane TLR2, TLR4, and TLR6, and the intracellular TLR8.
Indeed, IONP size influences TLR activation as a relatively small
IONP (10 nm) can enhance TLR2, TLR6, TLR4, and TLR8-
induced cytokine secretion in peripheral blood, whereas a larger
IONP (30 nm) only affects TLR2 and TLR6-dependent cytokine
secretion (108). Although a direct interaction between the IONPs
and the cell surface TLRs has yet to be demonstrated, the
dependence of cytokine enhancement on the formation of a
complex between TLR4/MD2 and the CD14 co-receptor suggests
that a physical interaction between the TLR4 complex and
IONPs could be responsible for the increase in TLR4 activity.
However, elsewhere IONPs were shown to interfere with TLR4
agonist activation, suggesting that this mechanism could depend
on the type of IONP (111).

In addition, it has been shown that IONPs with opposite
surface charges promote similar macrophage repolarization.
Two opposite charged IONPs induced an M1-like phenotype in
RAW 264.7 macrophages, although negatively charged IONPs
appeared to be more potent in promoting this effect (98) and
neutral IONPs have a negligible impact. The crucial role that such
M1-differentiated macrophages can play within the TIMEwas also
addressed and there was significant tumor growth retardation
when IONP+ or IONP- treated macrophages were co-inoculated
with HT1080 human fibrosarcoma cells, reflecting the anti-tumor
effect of these repolarized M1-like macrophages (98).

IONPmorphology also plays a critical role in determining the
degree of macrophage activation. Using IONPs with four distinct
morphologies (octopod, plate, cube, and spherical), yet with a
comparable aspect ratios and surface charge, the IONPs with an
octopod or plate morphology were seen to significantly activate
the inflammasome, as measured by IL-1b secretion (112). More
importantly, this dependence on morphology appeared to be
related to the nanoparticle’s capacity to induce ROS production.
IONP size also affected the extent of inflammasome activation in
macrophages, with spherical IONPs of ~30 nm inducing
significantly more IL-1b release than larger spherical IONPs of
~80 and 120 nm (113). ROS production appears to be a common
molecular mechanism for the effect of IONPs on macrophage
activation, although this result also seems to depend on lysosomal
destabilizationandmayreflect another commonphenomenon.The
involvement of ROS in IONP-induced macrophage activation is
related to the central role these metabolites play inmacrophage cell
biology as short-lived second messengers. ROS mediate the
oxidation of thiol groups in several proteins, altering their
structure and hence, their function. The MAPK pathway is ROS-
sensitive and it regulates several biological processes like cell
proliferation, apoptosis, and the innate immune response. In this
regard, ROS have been implicated in the induction and
maintenance of an M1-like status of macrophages through the
activation of NFkB and p38 MAPK signaling. In the former
situation, ROS trigger the phosphorylation of the NFkB inhibitor,
IkB, thereby activating NFkB (114). In the latter, ROS induce the
phosphorylation of the apoptosis signaling-regulating kinase 1
June 2021 | Volume 12 | Article 693709

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 3 | | Example of the effects of iron oxide nanoparticles on macrophage polarization.

del Mechanisms Effects exerted

ROS production ↑TNFa, iNOS, IL-1b
↓Arg1, IL-10, TGF-b1
↑CD86+ (M1) TAMs in vivo

ROS production ↑TNFa, iNOS
↓IL-10, VEGF
↓Tumor growth

T tumor cells Tumor cell apoptosis ↑Pro-M1 genes (TNFA, INOS,
CD86, ARG1)
↓Pro-M2 genes (IL10, CD206)
↓Tumor growth and lung/liver
metastases-in vivo
↑M1 macrophage polarization in
vivo

Vacuolization, lysosomal damage ↑Pro-M1 genes (TNFA, CD86,
NFKB)
↓Pro-M2 genes (CD206)

l macrophages, THP1 cells TLR4 activation, ROS production ↑IL-12, IL-10, CD80, CD86, CD40,
I-A/I-E
↑MAPK activation

s (BMDMs) TLR4 activation ↑Pro-inflammatory factors
↑Autophagy

ROS production ↑IL-10
arrow-derived macrophages (BMDMs) ↑MAPK activation

↑Cell invasion
↓Cell migration

A-differentiated THP1
Induce a shift towards a M1
phenotype
↑CD86, TNF-a, Ferritin, Cathepsin L

Inhibition of TLR4 signaling ↓IL-6, TNFa, iNOS
Iron uptake & Fenton reactions ↓Phagocytic rate

↓LPS-dependent response
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PLGA@Fe3O4 & CD206-Ab-PLGA@Fe3O4 (97) In vitro: IL-4-stimulated RAW 264.7 cells
In vivo: tumor model 4T1

Negative charged SPION In vitro: RAW 264.7 cells
Neutral charged SPION (PEG-coated) In vivo: tumor model HT1080
Positive charged SPION (98)

Ferumoxytol (Feraheme™) (99) In vitro: Co-culture RAW 264.7/MMTV-PyM

In vivo: tumor model MMTV-PyMT
In vivo metastasis: tumor model KP1

4-nm amphiphilic (PMA)@Fe3O4 (100) In vitro: RAW 264.7 cells
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In vivo: liver
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(ASK1) and the downstream activation of the p38 MAPK (115).
However, ROS can either activate or inhibit NFkB in a context-
dependent manner, highlighting the need to characterize the effect
of IONP-triggered ROS production on NFkB activation in a cell-
type and context-dependent manner (116). In addition to MAPK,
the phosphoinositide-3 kinase (PI3K) is also regulated by ROS,
sensitizing macrophages to hormone, cytokine, and growth factor
signaling (117).

IONP phagocytosis can lead to autophagy, as is the case for the
two FDA-approved IONPs, resovist and ferumoxytol that induce the
appearance of an early autophagic vacuole and eventually, IONPs-
containing double-membrane autophagic vacuoles, small internal
vesicles, and cellular and membrane debris (102). These events were
accompaniedby the accumulationof LC3puncta andoverexpression
of the p62/SQSTM1-positive sequestosome (118–120). In
accordance with the involvement of TLRs in this effect, the TLR4-
p38-Nrf2 pathway appears to mediate IONP-induced autophagy as
opposed to the classic autophagymachinery dependent onATG5/12.
Indeed, pre-treatment with the TLR4 signaling inhibitor, CLI-095,
prevented IONP-loaded macrophages from inducing the
aforementioned structural changes (102).

Importantly, each macrophage phenotype expresses different
factors involved in iron metabolism, reflected in their distinct
iron sensitivity (121). For instance, M2-polarized THP1
macrophages internalize significantly more IONPs than M1-
polarized and M0 macrophages, leading to a higher T1 signal
in M2 macrophages and a higher T2* signal in M0 macrophages
(122). In turn, internalized IONPs could also exert effects on
polarization and iron metabolism. Indeed, our group
demonstrated that DMSA-, APS-, and aminodextran-coated
IONPs shifted iron metabolism towards an iron-sequestering
status in M2-like macrophages (103). In the light of the above, we
can propose a general overview of the events induced by IONPs
that precipitates macrophage activation (Figure 4).

IONPs have also been used to track microglia and assayed as a
potential nanocarrier in brain tumors. Microglia are highly
phagocytic cells found entirely in the central nervous system
(CNS) where they protect the nervous tissue from debris and
damaged CNS structures and from viruses, microorganisms, and
tumors (123–126). Therefore, like macrophages, microglia can
phagocytose IONPs and react to them. In this sense, Wu HY et
al. found that the carboxydextran-coated IONP (Resovist™)
counteract the LPS-induced microglia activation by directly
decrease IL-1b secretion (127), suggesting IONPs can protect
CNS from an exacerbated inflammation. However, other reports
pinpoint the involvement of IONPs in recruiting and activating
microglia in CNS structures such as the olfactory bulb,
hippocampus, and striatum. Indeed, Wang Y et al. found that
Fe2O3 IONPs administered intranasally promote the recruitmentof
microglia into the above CNS structures and induced microglia
activation and proliferation, with ROS and nitric oxide (NO)
production, as a possible defense mechanism against foreign
particulates (128). Thus, IONPs appear to change CNS
immunological microenvironment toward an inflammatory or
anti-inflammatory phenotype, highlighting the need to
comprehend these effects in the context of brain tumors.
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NANOPARTICLE-ENABLED
MODULATION OF TIME
We have discussed the activation of macrophages by IONPs and
the molecular mechanisms mediating these effects. Considering
the intrinsic biological activity of IONPs on macrophages, their
application in therapeutic and prophylactic vaccination schemes
has emerged as an attractive therapeutic approach to treat
cancer. This approach relies on the possibility of combining
the carrier capacity of IONPs with their by-stander activation of
macrophages within the TIME. A general overview of IONP-
based vaccine designs highlights the use of IONPs as an antigen
carrier (primarily associated with the tumor cells)with the
possible addition of adjuvant and/or a targeting moiety.

The use of IONPs as an antigen carrier in a vaccination
schedule takes advantage of the intrinsic capacity of the IONPs to
drive macrophages or DCs towards a pro-inflammatory
phenotype. Consequently, antigen internalization, intracellular
processing, and restricted major histocompatibility complex
(MHC) presentation to T cells within an inflammatory
microenvironment will elicit a robust immune response against
the antigen-expressing tumor cells. A simple vaccine formulation
has been tested by loading ovalbumin (OVA) onto IONPs,
demonstrating that this formulation could activate bone
marrow-derived dendritic cells (BMDCs) and RAW 264.7
macrophages. However, the most exciting finding was that
prophylactic or therapeutic injection of three doses of this
preparation delayed OVA-expressing B16 tumor cell growth.

Interestingly, OVA-coated IONPs effectively prevented lung
metastasis from OVA-expressing cells (129). Likewise, the sole
conjugation of OVA alone with IONPs was sufficient to elicit
potent DC and macrophage activation, and to reduce the OVA-
expressing CT26 tumor burden in vivo (130). This anti-tumor
effect appeared to be mediated by the induction of pro-
inflammatory cytokines like IL-6, TNF-a, and IFN-g.

Other studies have addressed the potential of the IONPs as
carriers of tumor-associated antigens in vaccine designs. For
example, the administration of self-assembled MUC1 lipo(glycol)
peptide-coated IONPs elicited a strong antibody response,
prompting an antibody profile able to recognize the MUC1-
expressing tumor cell line, MCF7 (131). In this scenario, the anti-
tumor effect seems more likely to be related to the enhanced
activation of plasma B cells due to the high number of lipo
(glycol)peptide copies presented on the IONP surface. However,
we cannot rule out a direct effect on macrophages or DCs.

It is desirable that macrophage-based anti-tumor therapy
induces naive macrophages to adopt a M1 phenotype and that
it switches the resident M2 program into a M1 phenotype,
ensuring a pro-inflammatory and anti-tumor TIME. It was
seen that hyaluronic acid-modified IONPs or bare IONPs
trigger the production of ROS and pro-inflammatory cytokines
(132). Consequently, IONP-treated macrophages exerted an
anti-tumor effect on the murine 4T1 breast-tumor cell line in a
cell contact-independent manner, inducing active caspase 3 and
inhibiting cell proliferation. Notably, hyaluronic acid-modified
June 2021 | Volume 12 | Article 693709
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IONPs induced M1 macrophages resistant to M2-inducing factors
and M2-to-M1 macrophage reversion (132). IONP intracellular
degradation also increases the labile iron pool, providing another
element that can modulate the TIME. It was shown that red blood
cells (RBCs) were responsible for the presence of iron-loaded
macrophages nesting in the invasive margins of non-small lung
cell tumors, whichwere in turn correlatedwith a smaller tumor size
(133). Indeed, hemolytic RBCs triggered TAM polarization toward
a M1-like phenotype, as evident by the expression of M1 marker
transcripts (Il6, Nos2, and Tnfa) and their increased anti-tumor
activity (133). More importantly, IONPs injected intravenously in
Lewis lung carcinoma (LLC)-bearing mice accumulated within F4/
80 macrophages and reduced tumor growth, indicating that these
IONPs have a similar effect reverting M2 macrophages to a M1
phenotype (133).

Advantages have also been reported when a combination of
antigen-coated IONPs and adjuvant-coated IONPs is used
therapeutically. While IONPs were initially used as antigen carriers,
adjuvant and nanoparticle association enhanced the adjuvant effect
on the respective signaling pathway. Indeed, co-delivery of polyIC-
Frontiers in Immunology | www.frontiersin.org 9
R837@mPEG-PL-OA-IONPs (as TLR3-7 agonists) and OVA@
mPEG-PL-OA-IONPs (as antigen) delayed tumor growth in
OVA-expressing B16-bearing animals and led to tumor-free
survival in some individuals, probably through an enhanced
agonist effect on TLR signaling. The increase in the ferroptosis
process induced by IONP-derived iron further promoted an
antitumoral TME, indicating that the IONPs provide not only
transport but also an intrinsic potential to change the TME toward
an anti-tumor phenotype (134).Table 4 summarizes themost recent
approaches using IONPs in anti-tumor vaccination regimens.
CONCLUSIONS

IONPshavebeen studied intensively in recentdecades to exploit their
magnetic and surface chemical features. However, only recently has
attention been drawn to their intrinsic immunomodulatory
properties, especially their effects on macrophages. These effects are
particularly important in the context of cancer immunotherapy as
IONPs canprovide an efficient vehicle for antigendelivery and elicit a
FIGURE 4 | Overview of the effects of IONPs on macrophage polarization. The IONPs can interact with cell surface receptors such as TLRs (1), leading to activation
of the MAPK signaling pathway. Once internalized by macrophages, the IONPs are enclosed within endolysosomes where they are biodegraded. Consequently,
atomic iron is released into the cytoplasm, where it engages the Fenton reaction and produces ROS (2). As a result, transcriptional reprogramming is triggered, such
as that involving NF-kB (e.g., cytokines, chemokines) and NRF2 target genes (e.g., iron metabolism). NRF2, nuclear factor (erythroid-derived 2)-like 2; PIR, Pirin;
FPN1, ferroportin-1; FTH1, ferritin heavy chain; FTL, ferritin light chain; MAPK, mitogen-activated protein kinases; MAF, musculoaponeurotic fibrosarcoma.
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potent immune response, reprogramming TAMs toward an
immunogenic phenotype. Two main molecular mechanisms can
explain the intrinsic immunomodulatory effect of IONPs: 1) the
production of ROS and consequently, the modulation of redox-
sensitive signaling pathways; and 2) the direct engagement and
activation of immune response-related receptors, such as TLRs,
inducing transcriptional reprogramming in macrophages. The use
of IONPs can provide a reliable platform to reprogram the typical
M2-TAM phenotype toward a pro-immunogenic phenotype,
synergizing with currently used immunotherapies like checkpoint
inhibitors to mount a potent anti-tumor immune response both
locally and systemically.
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