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Abstract: A parallel fish school tracking based on multiple-feature fish detection has been proposed
in this paper to obtain accurate movement trajectories of a large number of zebrafish. Zebrafish are
widely adapted in many fields as an excellent model organism. Due to the non-rigid body, similar
appearance, rapid transition, and frequent occlusions, vision-based behavioral monitoring is still a
challenge. A multiple appearance feature based fish detection scheme was developed by examining
the fish head and center of the fish body based on shape index features. The proposed fish detection
has the advantage of locating individual fishes from occlusions and estimating their motion states,
which could ensure the stability of tracking multiple fishes. Moreover, a parallel tracking scheme was
developed based on the SORT framework by fusing multiple features of individual fish and motion
states. The proposed method was evaluated in seven video clips taken under different conditions.
These videos contained various scales of fishes, different arena sizes, different frame rates, and
various image resolutions. The maximal number of tracking targets reached 100 individuals. The
correct tracking ratio was 98.60% to 99.86%, and the correct identification ratio ranged from 97.73%
to 100%. The experimental results demonstrate that the proposed method is superior to advanced
deep learning-based methods. Nevertheless, this method has real-time tracking ability, which can
acquire online trajectory data without high-cost hardware configuration.

Keywords: zebrafish; SORT; Kalman filter; shape index; clustering

1. Introduction

Video-based animal collective behavior analysis, due to the high scientific values
and a wide range of potential applications, become a hot research topic thanks to recent
advances in the computer vision method. Zebrafish are widely adapted in many fields as
an excellent model organism, such as in biology, neurology, and ecology research [1–4].
It is essential to obtain the accurate trajectory and rapid identification of each individual
for quantitatively analyzing their collective behavior, thus, to discover new principles
underlying these behaviors.

However, there are still many challenges, comparing to the pedestrian tracking, the
most common application of multiple object tracking (MOT), such as the fish are indis-
tinguishable to the human eye because of similar appearance, the appearance and shape
may change tremendously while swimming, and the orientation free detection method is
required because the top view commonly observed in the application of zebrafish tracking.
To solve these difficulties, a series of computer vision tracking methods were developed.
These works commonly consist of individual detection and movement tracking.

In the detection stage, the previous methods generally fall into two categories: detect-
ing based on blob and detecting based on appearance feature. The blob-based detecting
methods extract moving regions as the candidates of targets by subtracting a background
model. Subsequently, the methods involve extracting targets according to the pre-defined
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geometry characteristic from the candidates. For example, some techniques use a specific
model of the animal body based on the head shape [5], the body geometry [6–8], or the
symmetry axis [9]. These methods may miss the target while an occlusion event occurred
and can only be applied for the targets geometrically compatible with the used model. The
other approaches that detect targets rely on the appearance feature of the target. Comparing
to the common MOT algorithms that focus on extracting highly valuable features and
filtering out high response features in recent years [10], tracking zebrafish, all the targets
with similar appearance, it is more important to achieve high accuracy detection during
occlusion. Therefore, Qian et al. and Wang et al. proposed a novel fish head detection
method based on scale-space Determinant of Hessian (DoH) [11,12], and Barreiros et al.
proposed a detector based on a convolutional network to delimit the region of the fish
heads to optimize individual fish detection [13]. In addition, Kaarthick et al. proposed a
detector based on Histogram of Oriented Gradients (HOG) to detect the high-speed moving
basketball players [14]. Since the deformation and illumination are still challenging for the
method based on appearance features, Yue et al. proposed a tracking algorithm based on
Resnet features and cascaded correlation filters to improve precision and accuracy [15]. In
the above methods, tracking targets were represented as a single point or a blob that may
miss the target during occlusion, thus increasing difficulty in the tracking stage.

In the second stage, tracking, the existing methods can be divided into two cate-
gories: tracking based on data association and tracking based on identification. The data
association-based methods assign the detected target in the current frame to the corre-
sponding tracker by minimizing the assignment cost to get the global optimized result.
According to the information obtained in the detection stage, such as position, direction,
and blob size, a cost function can be constructed; then, the association task becomes a
global optimization problem [6,11,16,17]. The second category of tracking method is trying
to correctly identify targets then perform the tracking of targets based on the identification.
For example, Rodriguez et al. proposed identifying targets based on an intensity histogram
and Hu moments [18]. In addition, convolutional neural network-based methods are
proposed to identify targets with similar appearance [5,19–21]. However, these methods
require high-resolution images, which are computationally intensive and may require
access to future frame images; thus, they cannot be applied in real-time applications.

In addition, the occlusion among biological individuals is the greatest challenge of
vision-based behavioral monitoring system. To address the problems caused by occlusion
in the tracking stage, the strategy of most existing methods is assigning a detected target to
a tracker stringently with the cost of generating more trajectory fragments, then performing
a post process to link these trajectory fragments [19–21]. For offline applications, this
strategy can improve the performance of the tracking system; however, it is not applicable
in real-time monitoring. In addition, the false positive in the detection stage can be filtered
out with some constraints or be ignored in the tracking stage. However, the false negative
caused by occlusion in the detection stage is difficult to compensate and may decrease
tracking accuracy.

To overcome the limitations of previous works, a parallel tracking scheme is proposed
to enhance the tracking performance by reliable fish detection and individual tracking with
multiple appearance features. The main contributions of this work are as follows:

1. A multiple feature detection method is developed to extract the fish head and center
of the fish body. The proposed fish detector was robust in detecting and locating
individual fishes from occlusions. The motion state and bending degree of the fish
body could be obtained in the detection process.

2. The proposed parallel tracking scheme could estimate individual positions by ex-
amining the fish head and center of the fish body simultaneously. If the detector
failed to locate the fish head or the fish body, the proposed tracker could follow the
fish movement according to the other features. This was effective to improve the
robustness of tracking, especially during occlusions.
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3. Real-time tracking performance was achieved in the experiments. Since the proposed
method required less computational cost, the maximal tracking efficiency reached
67.39 FPS.

2. Proposed Method

The proposed tracking scheme consists of two stages: individual fish detection and
data association. The overall flowchart of the proposed tracking scheme is described in
Figure 1. In the detection stage, fish images in the video frame are extracted by subtracting
the background model. Subsequently, structural features of the fish image are extracted
by shape index, which is derived from the eigenvalues of the Hessian matrix [22]. Taking
these features into consideration, a multiple feature-based fish detection is developed to
detect concave features, fish heads, and ridge feature on the fish body. The motion state
of each individual is determined according to the ridge feature on the fish body. In the
data association stage, a parallel tracking procedure is developed that tracks the fish head
movement and fish body movement simultaneously according to the detected fish head,
ridge position, and motion state information. The tracking process is implemented based
on the framework of SORT [23] and optimized for multiple fish tracking tasks. The details
of each step in the proposed tracking scheme are described in the following sections.
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Figure 1. Flow chart of the proposed tracking scheme.

2.1. Fish Image Segmentation

It is possible to segment moving regions from the background by subtracting a static
background image because the laboratory environment is relatively stable, and the moving
targets stay only for a short time in an area. As shown in Figure 2, firstly, the background
image can be obtained using the time domain-based median filtering method [24] on the
first n frames. Then, the moving regions can be segmented by setting a threshold for
the differential image of the input image and the background image. In addition, a size
constraint is utilized to remove most of the false positives. The detected moving region
(blob) is written as Pi

t = {(x, y), w, h, P}, where t and i denote the frame index and blob
index, (x, y) denotes the coordinate of the left top corner of the moving region bounding
box, w and h denote the width and height of the bounding box, respectively, and P is a set
of pixels of a moving region.
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Figure 2. Fish segmentation process, (a) original image, (b) background image, (c) differential image, (d) blob detection and
bounding boxes.

2.2. Structural Feature Analysis by Shape Index

The previous step obtains the image patches of moving region that may include
multiple individuals during occlusion events. To detect each individual and estimate the
motion state, the shape index algorithm [22] was employed to extract the local structural
information of fish appearance. Considering the gray image as a 3D plane with intensities
representing heights and using a Gaussian kernel with different standard deviation, the
structural details in different scales can be represented by a single-valued measure of local
curvature, which is derived from the eigenvalues of the Hessian matrix. The Hessian
matrix is defined as:

H(x, y) =
[

Lxx Lxy
Lxy Lyy

]
(1)

where Lxx, Lyy, and Lxy are the convolution results of the Gaussian second-order derivatives
at point (x, y). The eigenvalues of the Hessian matrix can be expressed as: K1 =

Lxx+Lyy+
√
(Lxx−Lyy)

2
+4Lxy2

2

K2 =
Lxx+Lyy−

√
(Lxx−Lyy)

2
+4Lxy2

2

. (2)
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Finally, the shape index is defined as Equation (3) [22]:

s(x, y) =
2
π

arctan
K2 + K1

K2 − K1
(K1 ≥ K2) (3)

where the shape index value s(x, y) at point (x, y) is mapped on the segment [−1, 1]. The
shape index is characterized into 9 categories according to the geometry appearance [22].
The names and value ranges of each category are given in Figure 3. For example, when
s(x, y) valued in [−1,−7/8), the pixels show a spherical cup shape in the shape index
image, and the shape index image is colored according to the shape index category of
each pixel.
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According to the shape index, all the points in the blobs are classified into 9 categories.
Examples of shape index processing with different Gaussian kernels are illustrated in
Figure 3.

Different structural features can be extracted by using different scales of σ values. For
example, the ridge of the fish body could be obtained when σ = 4, where the pixels of the
center part of fish are brighter than the surrounding pixels. If σ = 8 is given, the fish head
area presents a concave region that contains smaller values than the neighboring pixels.

2.3. Multiple Feature Extraction

After extracting the shape index in different scale spaces, the local structural informa-
tion can be represented as a single value at each pixel. In the case of tracking zebrafish, the
cup and ridge feature are used to detect target individuals, redundantly, and the motion
state of fish is represented as a single value according to the curvature of the ridge line on
the fish body.

Firstly, as shown in Figure 4b, a bounding box of the concave area is used to represent
the head region of the fish, and the false positives are filtered out with a size threshold.
The bounding box is denoted as B = [(x0, y0), (x1, y1)], where (x0, y0) and (x1, y1), are the
coordinates of the left top corner and right bottom corner of the bounding box, respectively.
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Secondly, as shown in Figure 4c, the ridge feature is represented by a bunch of straight
lines, which are detected by the Hough Transform. Each one of the lines can be represented
as (ρ, θ), where ρ is the perpendicular distance from the origin to the line, and θ is the angle
formed by this perpendicular line and the horizontal axis measured counterclockwise.
Then, since there may be more than one individual in a detected blob during the occlusion
event, all the lines are grouped into clusters according to (ρ, θ) using the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm [25], which views
clusters as areas of high density separated by areas of low density. The clustering result is
shown in Figure 4d; the straight line indicates the average line of the lines in a same cluster.
The coordinate of the circle center represents the position of the fish body, which is the
intersection point of the lines within the same cluster.
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After extracting and analyzing the local structural feature, numerically, for the detected
features, we define the detection of fish head hi

t and fish body bi
t as follows:

hi
t = B (4)

bi
t = R, ω (5)

where t and i are the frame index and blob index, respectively; B is the bounding box
representing the fish head; R is the coordinate of the intersection of ridge lines representing
the fish body position; ω is the angle between the ridge line with a maximum angle and
minimum angle and represents the motion state. The smaller the ω is, the steadier the
motion is; on the contrary, the bigger the ω is, the more unstable the motion is.

2.4. Parallel Tracking Using Multiple Features

Since the occlusion event occurs frequently and randomly when a fish swims, the
incomplete appearance of a fish can result in a missed detection or false positives, which
decrease tracking accuracy and stability. Multiple features of a fish, i.e., fish head, ridge
point on body, and motion state, are obtained in the previous steps. In this work, a parallel
tracking scheme is developed by combining the multiple fish appearance features and
motion features. The parallel tracking is implemented by tracking the fish head and fish
body simultaneously. The head tracker and body tracker run parallelly to record the
individual trajectories. In this work, the fish head is considered as the primary feature
of the fish, and the tracker follows the fish head in preference to the fish body. Since
the fish head presents a rigid shape without scale and shape variations, the structure of
the fish head tracker is illustrated in Figure 5. The tracking algorithm is inspired by the
SORT framework and optimized for a multiple animal tracking task. The basic idea of
the proposed tracking scheme is assigning detected targets to existing trackers according
to the assignment cost matrix; each tracker’s bounding box geometry is estimated by
predicting its new location in the current frame via a Kalman filter framework [26]. At the
beginning of processing each frame, head trackers predict positions by Kalman filter and
bounding box size for each individual according to their motion state. Subsequently, the
intersection-over-union (IOU) between the detected heads and predicted bounding box
of each individual is calculated [23] and a cost matrix of IOU is constructed as shown in
Equation (6).

C =

 c11 · · · c1m
...

. . .
...

cn1 · · · cnm

 (6)

where cnm denotes the IOU distance between the detected target m and predicted bounding
box of tracker n in the current frame. n and m are the number of trackers in the previous
frame and the number of detected targets in current frame, respectively. The Hungar-
ian algorithm is employed to solve the optimal assignment problem [27]. The objective
function is:

δ = min
A

∑ ∑ cnm ∗ Anm (7)

subject to:

∑
n

Anm = 1 and ∑
m

Anm = 1 (8)
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By the optimal assignment, each detected head should be assigned with an ID, and
each tracker should be associated to a detected head. However, unassigned heads and
unassociated trackers may occur when false positives and misdetection happened in the
detection process. The proposed tracking scheme should further deal with these failures. A
temporary tracking procedure is employed to examine the unassigned detections (Figure 5).
The temporary trackers predict positions and assigns IDs to the detections in the same
manner as head trackers. If a detection still could not be assigned with an ID, a new
temporary tracker will be initiated from this detected head. If a temporary tracker could
not be associated to any detections for a time period longer than the max age, it should be
removed as a noise. If a temporary tracker succeeds in associating to detections more than
the minimal hits, it should be considered as a head tracker. This head tracker should be
linked to a lost ID when there are one or more IDs lost in the tracking procedure.

For the unassociated head trackers, the body tracking procedure will be employed
to find the target individuals. When the head tracker loses tracking targets more than the
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max age, the tracker should be terminated and removed. The body tracking procedure is
described in Figure 6. It has the same prediction and association process on body rectangles,
which are obtained in the detection results. The head tracker and body tracker record the
head position and center point of the fish body concurrently. Once the head tracker fails
to locate the fish head, the body tracker could provide the center point of the fish body to
estimate the fish head positions and update the head trackers.
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2.5. Evaluation Metrics

In this work, individual fish detection and tracking performance of multiple fishes are
evaluated separately. Detecting individual fishes is the basic requirement for implementing
multiple individual tracking. Individual detection accuracy determines the tracking perfor-
mance. For example, detecting occluded fishes could efficiently improve the tracking ability
of a group of fish. The precision-recall analysis, which has been widely adopted to the
evaluation of object recognition and detection algorithms, is applied to assess individual
detection accuracy by the proposed method. The calculation of precision and recall is given
in Equations (9) and (10).

Precision =
true positive

true positive + f alse positive
(9)

Recall =
true positive

true positive + f alse negative
(10)
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where true positive is the total number of correctly detected targets in all frames. False
positive is the total number of incorrectly detected targets. Usually, false positives are from
the mirrored image on the acrylic tank wall or occlusion. False negative is the total number
of missed targets. Therefore, occlusion probability was used to measure the probability
that one individual is occluded in a frame image; the calculation is given in Equation (11):

Occlusion rate =
number o f occlusions

number o f individuals ∗ number o f f rames
. (11)

In addition, to qualify the performance of the proposed detection method during an
occlusion event, the occlusion detection ratio was utilized. The calculation of occlusion
detection is given in Equation (12):

Detection rate f rom occlusions =
correct number o f occlusion detection

number o f occlusions
. (12)

The tracking performance of the proposed method is evaluated similarly to the evalu-
ation of detection performance. The correct tracking ratio (CTR) and correct identification
ratio (CIR) were used. The CTR as shown in Equation (13) describes the percentage of
frames correctly tracked for each fish. The CIR as shown in Equation (14) describes the
percentage of correct identification of all fish after an occlusion event. Occlusion is one of
the greatest concerns in multiple objects tracking, which is the significant disturbance in
decreasing the tracking accuracy. The CIR represents the stability of the tracking scheme
against occlusions, and the high CIR value indicates that the tracking scheme is robust to
occlusion. In addition, the total computational time and the frequency of ID switch after
occlusion were measured.

CTR =
∑ (number o f correct f rames o f a single target)

number o f individuals ∗ number o f f rames
(13)

CIR =
Times That ALll Fish Get Correct Identity A f ter occlusion

number o f occlusions
(14)

3. Experiments and Results
3.1. Experimental Conditions

Fish observation tests were conducted in our customized behavioral observation
facility to collect video data of zebra fish. The fish observation facility was designed to
observe the two-dimensional movement of fish as illustrated in Figure 7. A high-resolution
digital camera was placed over the observation arena and the height of camera was adjusted
to cover the entire area of the arena. The digital camera was produced by Hikvision (MV-
CA050-20UM) and the image resolution was 2592 × 2048 pixels. The observation arena
was made by a square acrylic tank of size 20 cm × 20 cm. A white LED panel provided
backlighting illumination from the bottom of the acrylic tank to remove the reflection
from water surface. Adult zebra fishes were chosen in the tests. The zebra fishes were
approximate 3–4 cm long and water depth was set to 10cm.In the experiment, video clips
of 5 zebra fish were recorded and two of them were chosen as the test data (D1 and D2 in
Table 1). These video data could be downloaded in the Supplementary Materials.

The proposed tracking scheme was implemented by Python and image processing
libraries such as OpenCV and Skimage. All the tests were conducted on a personal
computer configured with an AMD CPU 3800X@3.9 GHz, 16G RAM under Ubuntu 20.04.
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Table 1. Description of experimental datasets.

Dataset Total Length
(Frame)

Frame Rate per
Second (FPS)

Image Resolution
(Pixel)

Number of
Fish

Individual
Size (Pixel)

Frequency of
Occlusions

D1 240 60 2592 × 2048 5 6500–9800 95
D2 300 60 2592 × 2048 5 7000–9800 279
D3 300 100 2040 × 2048 10 4000–6000 198
D4 200 100 2040 × 2080 20 2700–6400 546
D5 500 32 1920 × 1080 8 320–480 198
D6 500 32 3712 × 3712 10 450–700 277
D7 200 32 3584 × 3500 100 240–560 220

3.2. Experimental Data

In this work, seven video clips from different sources were collected to evaluate
the reliability and robustness of the proposed tracking scheme. Details of these video
clips are presented in Table 1. D1 and D2 were taken with our observation facility as
described in Section 3.1. D3 and D4 were the experimental video in [6], while D5–D7 were
chosen from [20]. In the datasets, the frame rate was from 32 to 100 fps, the number of
target individuals was from 5 to 100, and individual size ranged from 240 to 9800 pixels.
In addition, the number of occlusion events was examined to investigate the influence
of occlusion on tracking performance. Every occlusion event of fishes was counted in
all the frames in each test data. Occlusion frequency is one of the major concerns in
tracking a group of fishes. Occlusion frequency is mainly determined by fish density in
the observation arena and movement patterns. For example, a small number of fish live
in a relatively large tank that shows a low probability of occlusion. On the other side,
if the fishes are showing some special behavioral pattern, such as chasing and biting, it
may increase the occlusion frequency [28]. In our datasets, the most occlusions occurred
in D4, since it had 20 medium-sized individuals in a relatively small observation arena.
Although 100 individuals observed in D7, the individual fish was rather small, the occlusion
frequency was not the most.. Moreover, the fishes in D7 presented group behavior that all
fishes were swimming along the same direction in a certain speed.
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3.3. Evaluation of Individual Detection

The accurate detection of fish is a key step for tracking individual movement. The
accuracy of the proposed multiple-feature fish detection was evaluated by precision–recall
analysis (Table 1). Precision of individual detection was in the range of 98.62–100.00% and
recall value was 99.57–99.99%. The average precision of all datasets was 99.7%, indicating
that a small proportion of false positives were incorrectly identified as fishes. Meanwhile,
the average recall was 99.81%, which means that only 0.19% of the individuals were
missed. One of the advantages of the proposed fish detection method was the ability to
identify individuals from occlusions. Therefore, the accuracy of detecting individuals from
occlusions was evaluated. The detection rates from occlusions were between 93.42% and
99.28%. It is notable that the average detection rate of occluded individuals was 97.5%,
which proves that the proposed fish detection method is reliable when occlusion occurs.
On the other side, Table 2 shows that the precision value was decreased with an increasing
occlusion rate because false positives were produced when occlusions occurred; the tracker
needs to be able to filter the false positive detections.

Table 2. Performance analysis of the proposed fish detection method.

Dataset Precision (%) Recall (%) Occlusion
Rates (%)

Detection Rate from
Occlusions (%)

Computational
Time per Frame (ms)

Frame Rate of
Detection (FPS)

D1 100.00 99.75 7.92 97.89 58.83 17.00
D2 98.62 99.87 18.60 99.28 67.43 14.83
D3 99.80 99.57 6.60 93.43 65.87 15.18
D4 99.78 99.78 13.65 98.35 170.80 5.85
D5 99.73 99.85 4.95 96.97 12.68 78.86
D6 99.98 99.86 5.54 97.47 24.38 41.02
D7 99.99 99.99 1.10 99.09 173.45 5.77

Average 99.70 99.81 8.34 97.50 58.83 25.50

Moreover, the computational costs were assessed by examining the time consumption
of the fish tracking scheme (Tables 2 and 3). The computational costs of individual detection
are presented in Table 2. The computational time of every frame was measured in each
of the videos, which varied from 24.83 to 173.45 ms per frame. Accordingly, the frame
rates of individual detection were obtained as 5.77–41.02 frames per second (FPS). The
average frame rate in the whole dataset was 25.50 FPS. The detection time was dependent
on the number of individuals, frequency of occlusions, and individual size. Dataset D7
consumed the longest computational time (173.45 ms) since 100 individuals needed to be
detected. D4 cost a similar time (170.80 ms) to detect only 20 individuals because the most
occlusions appeared and the fish size was approximately 10 time larger than that of D7.
The processing of D5 was the fastest (12.68 ms) and reached to 78.86 FPS because of the
small fish size and a smaller number of individuals.

Table 3. Tracking performance analysis of the proposed tracking scheme.

Dataset CTR (%) CIR (%) IDS Occlusion
Rates (%)

Data Association
Time per Frame (ms)

Overall Tracking
Time per Frame (ms)

Frame Rate of
Tracking (FPS)

D1 99.42 100.00 0 7.92 0.75 59.58 16.58
D2 99.33 100.00 0 18.60 0.67 68.10 14.54
D3 99.17 100.00 0 6.60 1.27 67.14 14.62
D4 98.60 100.00 0 13.65 2.25 173.05 5.70
D5 99.33 99.49 1 4.95 1.08 13.76 67.39
D6 99.06 98.92 3 5.54 1.28 25.66 37.12
D7 99.86 97.73 5 1.10 10.65 184.10 5.13

Average 99.25 99.45 / 8.34 2.56 84.48 23.01
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In addition, the recall ratio that plays a more important role in the application of group
animal tracking can limit the overall performance of the tracking system. Normally, the
recall ratio will decrease when occlusion probability increases, especially for the methods
that highly rely on appearance features. Therefore, it is necessary to increase the detection
accuracy during an occlusion event.

3.4. Performance of the Proposed Tracking Scheme

Tracking performance of the proposed scheme was further evaluated by analyzing
CTR, CIR, and ID switch (IDS) of the tracking results. As presented in Table 3, the CTRs in
each of the test videos exceeded 99.06%, and the average value of CTR was 99.25%. CTR
represents the overall tracking accuracy, while CIR investigates the tracking stability against
occlusions. The CIR value ranged from 97.73 to 100.0%, and the average CIR was 99.45%.
The proposed tracking scheme showed outstanding tracking accuracy when occlusion
occurred. The movement trajectories were all correctly assigned to every individual in
D1–D4. Especially, D4 presented the highest frequency of occlusions. Moreover, ID switch
was also effectively eliminated, since most ID switch were caused by occlusions. In D5–D7,
ID switch appeared when CIR decreased. The experimental results showed that CIR had
less impact on CTR, particularly in D1–D4 where CIR was 100.0%. CTR measures the
proportion of individuals with a correctly assigned ID. The error of CTR was from the
incorrect assignments generated by detection failure. As discussed in Table 2, misdetection
was evaluated by recall values. In addition, the severely occluded fishes were also counted
as incorrect assignments when calculating the CTR. Since only incomplete appearance
information could be observed from the severely occluded fishes, they were not considered
as the detection targets. Therefore, CTR was slightly lower than the recall values of
detection despite CIR reaching 100.00%. It explains that CTR decreased when the occlusion
rate increased (Table 3). The processing speed of the proposed tracking scheme was further
analyzed in Table 3. The running time of data association, which assigns an ID to each
individual, was measured. The data association time varied from 0.75 to 10.65 ms, and
the results showed that the association time was determined by the number of tracking
targets. The overall time consumption of the tracking process included the detection time
and data association time. The overall tracking costed 13.76 to 184.10 ms per frame among
all the datasets. The fastest processing was 67.39 FPS observed on D5, and the most time
consumption was 5.13 FPS on D7, since the tracking targets reached 100 individuals, which
required a longer time for individual detection and ID assignment.

To prove the advanced ability of the proposed fish tracking scheme, a comparison
test was carried out with a state-of-the-art fish tracking method, IDTracker.ai [20]. All the
datasets from three different sources were chosen in the comparison tests. The tracking
accuracy of the proposed tracking scheme and IDTracker.ai are presented in Table 4. The
best tracking accuracy was marked in bold font. In D1 and D2, our method showed 2.15%
and 1.77% higher values in averaged CTR and CIR than IDTracker.ai, respectively. In D3
and D4, the proposed method presented much higher CTR (99.17% and 98.60% for D3
and D4) values compared with IDTracker.ai (93.37% and 88.63%). Since the texture feature
was not clearly captured in D3 and D4, the tracking accuracy was significantly decreased
in IDTracker.ai. In D5 and D6, both methods showed CTR > 99.0%, while the proposed
method was 0.52% lower than IDTracker.ai on averaged CTR. Comparing with IDTracker.ai,
the proposed method presented 0.51% lower CIR in D5 and 0.36% higher CIR in D6. The
result of D7, the proposed method, and IDTrakcer.ai presented similar performance. The
proposed method was 0.91% higher than IDTracker.ai in CTR and 0.36% higher in CIR.
On the overall tracking performance, the proposed method outperformed IDTracker.ai
in both of CTR and CIR. The average CTR and CIR of the proposed method were 99.25%
and 99.45%, which showed 2.74% and 0.86% higher values than that of IDTracker.ai. It
is worth noting that the proposed method could produce a robust tracking performance
on compressed videos or low-quality videos. In the tests, compressed videos could not
reduce the tracking accuracy of the proposed method. However, IDTracker.ai requires
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uncompressed video (raw RGBA format) to maintain the tracking accuracy. The tracking by
IDTracker.ai might fail in compressed video, especially when dealing with 100 individuals
in D7.

Table 4. Comparison results with IDTracker.ai (The best results are presented in bold font).

Datasets
CTR (%) CIR (%)

Proposed IDTracker.ai Proposed IDTracker.ai

D1 99.42 96.92 100.00 97.89
D2 99.33 97.53 100.00 98.57
D3 99.17 93.37 100.00 98.99
D4 98.60 88.63 100.00 99.27
D5 99.33 99.68 99.49 100.00
D6 99.06 99.74 98.92 98.56
D7 99.86 99.69 97.73 96.82

Average 99.25 96.51 99.45 98.59

4. Discussion

The randomness and frequent occlusion is still challenging in multiple animal tracking
application. The identification of individual fishes is important and effective to improve
the performance of tracing multiple individuals. Previous works reported that loose
tracking targets could increase the probability of ID switch, and a trajectory re-linking
process is necessary to match the trajectories before and after occlusions. In some cases,
the trajectory re-link could not accurately match the tracklets and switch the trajectories.
In this work, detecting occluded individuals is proposed to improve the tracking stability
against occlusions. Detection based on fish head and body could ensure the robustness
of detection. The detection and tracking can work properly even if a part of the fish is
unseen. Outstanding detection accuracy is achieved in that the average precision was
99.70%. Only 0.30% false positives were incorrectly identified. These false positives could
be eliminated in the tracking procedure, since usually, false positives could not last for a
long time. The tracking procedure examines each tracker and removes the trackers that
cannot continuously be associated to any detections.

The parallel tracking is another contribution of this work that improved the robustness
of tracking multiple fishes with similar appearance. Multiple feature fish trackers, i.e.,
head tracker and body tracker, work independently to follow the fish movement. The
head tracker is considered as the primary tracker, and the body tracker is the secondary
tracker. The body tracking procedure can provide additional association information
when the primary tracker fails to locate the tracking targets—for example, when the fish
head is severely occluded during an occlusion event. In addition to the head-tracking
procedure, a temporary tracking procedure is employed for the unassigned detections. The
temporary tracking procedure focuses on cautiously initializing a new tracker and ensuring
the reliability against the influence of a false positive. The temporary tracking procedure
guarantees that the detected targets are matched with more reliable trackers, preferentially.

The advantages of our method are that it is accurate, fast, and computational inexpen-
sive. The proposed tracking scheme outperformed the state-of-the-art tracking method,
IDTracker.ai., which is an offline tracking scheme. Offline techniques usually achieve a
significantly higher accuracy than online methods because future frames of the video
clip were involved in the tracking algorithm. Many offline methods require long time
for analyzing video. For example, IDTracker.ai took hours for analyzing the datasets in
Table 4. The proposed tracking scheme is an online tracking method and could be applied
to real-time behavioral tracking. Although future frames are not available for the online
tracking scheme, the proposed tracking scheme presented impressive tracking accuracy
due to the advantages of detecting occluded fish and the parallel tracking scheme.

In the experiments, we found that fish can change their body shape in turning behavior.
The fish body could bend at a large angle and return to the straight shape in a very short



Sensors 2021, 21, 3476 15 of 16

time. The sudden change of fish shape might cause blurring images and brought difficulties
to the trackers. Therefore, a short exposure time, e.g., 2 ms, is recommended to ensure the
image clarity. Moreover, Kalman filter may fail to predict the motion state of a fish in rapid
transition. This issue was solved by using a bounding box with variable size estimated
according to the motion state. The experimental results showed that the tracking accuracy
could be decreased with low frame rates. It should be noticed that when the frame rate is
over 60 FPS, the CIR ratio reaches up to 100%. A high frame rate indicates high sampling
frequency; therefore, fish movements turn to linear and Kalman filter can predict the
individual movement more accurately. Consequently, a higher IOU between predictions
and observations could be obtained, which can promote the accuracy of assigning IDs
to each target. When the frame rate is low, the association procedure may result in more
tracklets and a higher possibility of incorrect identification.

In future work, the proposed method should be applied to real-time monitoring and
evaluate the tracking performance for long-term monitoring. Optimization of the proposed
tracking scheme should be conducted to further reduce the computational time, for exam-
ple, by introducing parallel computing in the calculation or developing GPU-based version.

5. Conclusions

This paper proposes a computational effective and accurate scheme to track a group
of zebrafish. A novel multiple appearance feature detection method that requires no
information of the shape of the animal has been proposed to increase the detection accuracy
when an occlusion event occurs, and a single valued motion state is proposed to reduce the
tracking error caused by prediction failure of Kalman filter. Moreover, the SORT algorithm
has been modified to meet the requirements of zebrafish tracking. The improved tracking
method consists of two parallel tracking loops: one for the first feature tracking and the
other for the second feature. In the detection stage, two independent features are utilized:
one represents the fish head region and the other represents the fish body. Based upon the
features of the fish body and head, the intensity of motion of the fish has been approximated
as a single-valued motion state. According to the motion state, the size of the detected
bounding box is also adjusted. By the proposed scheme, the probability of misdetections
has been reduced a lot for the occlusion cases, which increases the tracking accuracy. When
the motion of the fish is rapid, the possibility of Kalman prediction failure is increased. To
overcome this problem, the size of the bounding box is increased. The experiments have
been performed using seven datasets of three sources with different fish sizes, different
collective sizes, up to 100, and different frame rate/resolutions. The superior performance
of up to 99.45% of CIR and 99.25% of CTR on average have been achieved by the proposed
scheme. The results demonstrate that the proposed tracking system is robust and accurate.
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