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Abstract

Motivation: Do machine learning methods improve standard deconvolution techniques for gene expression data?
This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of
approaches developed by 294 competitors from 20 countries. The competition’s objective was to address a decon-
volution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of sepa-
rating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the
outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples.
Results: We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accur-
acy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the
best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in
the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking
their deconvolution methods and a resource useful for multiple applications.

Availability and implementation: The data is freely available at clue.io/data (section Contests) and the software is on

GitHub at https://github.com/cmap/gene_deconvolution_challenge

Contact: ablasco@fas.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A recurring problem in biomedical research is how to isolate distinct
populations (cell types, tissues and genes) from composite measures
obtained by a single analyte or sensor. This deconvolution problem
often stems from the prohibitive cost of profiling each population
separately (Cleary et al., 2017; Subramanian et al., 2017) and has
important implications for the analysis of transcriptional data in
mixed samples (Newman et al., 2015; Shen-Orr et al., 2010; Zaitsev
et al., 2019; Zhong and Liu, 2011), single-cell data (Deng et al.,
2019), the study of cell dynamics (Lu et al., 2003) and imaging data
(Preibisch et al., 2014).

In the context of gene expression analysis, available deconvolu-
tion algorithms offer several advantages but have limitations as well
(Shen-Orr et al., 20105 Shen-Orr and Gaujoux, 2013). Advanced
machine learning techniques can help overcome some of the

©The Author(s) 2021. Published by Oxford University Press.

shortcomings. However, these approaches can be hard to bench-
mark because of the scarcity of ground truth data (methods are often
trained and have their results validated on synthetic data) and diffi-
culties in achieving proper model selection and parameter optimiza-
tion that often require substantial expertise, which may not be
available in every lab.

Motivated by examples of successful challenges for the develop-
ment of machine learning solutions (Blasco et al., 2019; Good and
Su, 2013; Lakhani et al., 2013), we report the results of an open
competition, called the D-Peak Challenge, that we designed to ad-
dress a gene-expression deconvolution problem for the NIH Library
of Integrated Network-based Cellular Signatures (LINCS), also
known as the Connectivity Map (CMap).

CMap is a catalog of over a million human gene-expression pro-
files (Subramanian et al., 2017) generated using a bead-based assay
called L1000. This assay focuses on a reduced transcriptome
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consisting of approximately 1000 human genes, called landmarks.
One critical issue is that the assay screening capacity is limited to a
maximum of 500 available bead colors per screen, which is less than
the desired 1000 landmarks. To address this problem, the CMap
team has developed a procedure that couples each unique bead color
with two genes and then relies on a deconvolution algorithm, called
d-peak, to separate the expression of the 1000 landmark genes from
the 500 bead measurements.

Figure 1a provides a schematic representation of the deconvolu-
tion procedure. All the landmark genes are grouped into pairs of
two. Each pair is tagged with a unique bead color in separate
batches and mixed in a 2:1 proportion before use. Luminex scanners
examine the mixture and return two values from each bead: the
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color, identifying the pair and the signal intensity, reflecting the
combined mRNA expression of the two genes per bead. This step
yields an intensity distribution of the beads that generally consists of
two peaks (see Fig. 1a), a larger one that designates the gene expres-
sion in high proportion and a smaller one representing the other
gene. At this point, a k-means clustering algorithm partitions the dis-
tribution into k clusters by minimizing the within-cluster sum of
squares. It then associates the largest (smallest) cluster to the gene
with a higher (lower) bead proportion, assigning the cluster’s me-
dian value to the corresponding gene.

Young et al. (2016) points out some of the limitations of the cur-
rent k-means algorithm. Prominently, when scanners detect outliers
with very low intensity, the algorithm can form artificial clusters
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Fig. 1. (a) Schematic of the deconvolution procedure, (b) overview of the data generated for the contest grouped into three pairs with six plates each: two perturbation types
(compounds and shRNA) times three detection plates (two for UNI and 1 for DUO), and (c) illustration of the scoring methods for the evaluation of submissions
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Table 1. Overview of outcomes for the top nine competitors

Rank Method Language Spearman AUC extreme Recovered gene MSE  Mean inter-replicate  Time per
correlation (%) modulations (%) knockdowns (%) correlation (%) plate (s)

1 Random forest regressor ~ Java 66.5 91.5 77.2 1 45.2 14.5

2 Gaussian mixture model  C++ 65.4 91.4 75.7 1.1 43.1 4

3 Modified k-means C++ 64.6 91.2 77.8 2.2 41.9 10.5

4 ConvNet Python/C++ 64.8 91 76.6 2.4 41.8 25

5 Gaussian mixture model  Python/C++ 64.6 90.9 75.7 1.3 41.9 36

6 Modified k-means Python/C++ 64.3 90.2 70.8 1.1 40.6 11.5

7 Boosted tree regressor Python 64.5 91.1 77.2 1.7 41.9 50.5

8 Modified k-means Python 65.1 90 69 1.2 43.7 35.5

9 Other Java 63.9 89.9 75.1 1.5 39.6 4.5

BM k-means Matlab 63.2 89.2 73.9 3 38.9 247

Note: All the values are based on the holdout dataset; see the main text for the meaning. The maximum and minimum values in each column are in bold.

that may harm downstream analysis. This technical problem has
attracted considerable attention and several solutions have been pro-
posed: Young ef al. (2016) proposes a Gaussian model-based clus-
tering approach; Li et al. (2017) combines a Gaussian mixture
model with an outlier detection method; and Qiu ez al. (2020) sug-
gests a Bayesian-based procedure. However, there remain significant
opportunities for further innovation.

This study adds to existing work by providing a novel dataset
(available online on CMap’s portal at clue.io/data) that can be used
as ground truth for training/evaluating new deconvolution techni-
ques. It also reports the best machine learning methods devised by
the competitors who have won the D-peak challenge (source codes
available on GitHub at github.com/cmap/gene\ deconvolution\_-
challenge). These methods outperformed the L1000 benchmark in
pre-specified metrics of accuracy and computational speed that were
computed using examples unseen by the competitors.

2 Materials and methods

Figure 1b shows a schematic representation of the data generated
for the challenge. The data consists of eighteen 384-well plates, each
containing sets of compound and short hairpin RNA (shRNA) treat-
ments for a total of 122 different perturbations (see Supplementary
Material for a complete list) and with multiple replicates (4 and 10
for the shRNA and compound treatments, respectively). Multiple
cell lines and perturbations were used to avoid any potential over-
fitting. The compound and shRNA plates were arbitrarily grouped
into pairs, and to avoid any potential information leakage each pair
was profiled in a different cell line. The resulting lysates were ampli-
fied by Ligation Mediated Amplification (Subramanian et al., 2017).

The ground truth data was generated by splitting the product of
amplification in two types of detection modes. The standard dual
procedure (DUO), using two genes per bead color, and a more ac-
curate procedure (UNI), using one gene per bead color. This yielded
three pairs of data of six plates each (2 perturbation types x 3 detec-
tion plates: 2 for UNI and 1 for DUO) generated under comparable
circumstances (Fig. 1b).

These data pairs were split into training, testing and hold out.
The training data was available for all the contestants to develop
and validate their solutions offline. The testing data was used for
submission evaluation during the contest and to populate a live lead-
erboard. The holdout data was used for final evaluation and it was
unseen to competitors to guard against over-fitting. Prizes were
awarded based on performance on the holdout dataset.

Figure 1c shows a schematic representation of the scoring func-
tion that was used to evaluate submissions on their accuracy and
computational speed (see Supplementary Material for the details).

Accuracy was assessed using two different metrics. One was the
average gene-wise Spearman’s rank correlation between the decon-
voluted expression values and the ground truth. The other was the
Area Under the receiver operating characteristic Curve (AUC) in the

prediction of extremely modulated genes (genes notably up- or
down-regulated by perturbation in the UNI data).

Speed was assessed by executing each submission on comparable
multi-core machines, thus allowing competitors to employ multi-
threading techniques, and the corresponding score was the average
runtime in units of the benchmark runtime.

The challenge was hosted on Topcoder (Wipro, India), a popular
crowdsourcing platform, and lasted for 21 days. A prize purse of
$23 000 in cash was offered to competitors as an incentive to be div-
ided among the top 9 submissions.

3 Results

The contest attracted 294 participants who made 820 submissions
using a variety of different methods. Table 1 shows the classes of
algorithms and performance for the top nine solutions, as ranked in
the final leaderboard.

3.1 Top four algorithms
We begin the analysis of the results with a description of the algo-
rithms used by the top four solutions.

The winning entry (submitted by a competitor from the United
States with a degree in Physics from the University of Kansas) uses a
random forest algorithm that combines predictions from ten differ-
ent trees trained on sixty features derived from the data. These fea-
tures consist of a combination of low-peak and high-peak estimates
for each gene pair and aggregate measures to capture any systematic
bias at the perturbation, analyte and plate level.

The second-placed entry (submitted by a competitor from
Poland with a Master in Computer Science from the Lodz University
of Technology) uses the Expectation-Maximization algorithm to fit
the data to a mixture of two log-normal models for each gene pair
where, instead of assuming a priori probability (the 2:1 ratio) of as-
signment to clusters, the algorithm tries to learn the actual ratio
from the data by fitting a plate-wide distribution of cluster sizes.

The third-placed entry (submitted by a competitor from India
with a Bachelor in Computer Science) modifies the standard k-
means algorithm with a random initialization procedure that avoids
local minima and is more robust to extreme outliers.

The fourth-placed entry (submitted by a competitor from
Ukraine with a Bachelor in Computer Science from the Cherkasy
National University) uses a Convolutional Neural Network (CNN).
This algorithm first filters and transforms the data into a 32-bin
histogram for each pair of genes. It uses the U-net architecture
(Ronneberger et al., 2015) to provide an adequate representation of
the data. It then assigns each of the bins to one of the two genes for
each pair and predicts the median value. This final step uses two
subnetworks with the same architecture. The model is trained using
a mean squared error (MSE) loss function.
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Fig. 2. % mean difference (and 95% CI) in deconvolution accuracy between the benchmark (BM) and the competitors. Deconvolution accuracy is the gene-wise Spearman cor-
relation between the ground truth and the deconvolution data (from the hold-out set). Most competitors achieved improvements over the benchmark for genes in low bead
proportion (a, c) but performed about the same for genes in high bead proportion (b, d). The same pattern apply to shRNA (c, d) and compound samples as well (a, b)

3.2 Deconvolution accuracy (Spearman correlation)

To assess improvements over the benchmark, we computed the de-
convolution accuracy for each solution from the hold out set.
Deconvolution accuracy was defined as the gene-wise Spearman
rank correlation between the deconvolution data (obtained by
applying each solution to the data generated using two genes per
bead color) and the ground truth (generated using one gene per bead
color).

All competitors showed significant improvement over the bench-
mark, with most competitors achieving a mean difference of about
three percentage points (Table 1).

We expected performance to vary between genes in high and low
bead proportion, given the differential number of beads for each
gene. After disaggregation, we found that most improvements were
limited to the subset of genes in low bead proportion, with nearly all
competitors achieving gains in deconvolution accuracy ranging be-
tween four and six percentage points (Fig. 2a and c). For genes in
high bead proportion, by contrast, only the winner was able to
achieve a significant boost ranging between one and four percentage
points (Fig. 2b and d). This pattern looked the same for both com-
pound and shRNA samples (Fig. 2).

To evaluate the extent to which the winning algorithm outper-
formed the others, we ranked the top-nine algorithms by the mean

correlation metric for each gene (1 =highest, 9=1owest). We then
computed the percentage of genes for which a given algorithm was
ranked first. The winner entry was ranked first for 30% of the
genes, followed at some distance by the second-placed gaussian-mix-
ture method (20%), and by the CNN method (13%). Thus, the top
two submissions combined outperformed the rest for about half of
the genes. Even so, all but a few algorithms were the best performers
for at least 5% of the genes, suggesting some complementarity be-
tween these algorithms.

3.3 Detection of extreme modulation of gene

expression

To assess improvements in detecting differential expression, we first
examined the MSE between the differential values after deconvolu-
tion and the ground truth. Most competitors outperformed the
benchmark on this metric (Table 1), with the top two solutions
achieving a MSE of 1.0, representing a 70% reduction relative to
the benchmark’s. However, this metric reflects average prediction
errors that may not necessarily yield a higher detection accuracy of
extreme modulation of gene expression (genes notably up or down
regulated).



Improving deconvolution methods

2893

(a) diff. in detection accuracy of
extreme modulation at different cutoffs
3
= |DE|>1
. — |DE[>2
= —
o 0“‘*0 |DE|>3
S - <]
= Qe 857 \
= o
< o
S 8 e N
£ g
£
=l
o
ol
<
=
(=
<

leaderboard rank

(b) diff. in precision and recall of
gene knockdowns
1-9 = |leaderboard rank
-+ H
S :
= 3
° .7
S - : “
5 ° ;%
° g 9
O ererererse e
= 0 benchmark
E H
- 8 i '
= :
3 P 6
S :
8 H
T 1 T T T T
-0.001 0.001 0.003

diff. in precision

Fig. 3. (a) Difference in detection accuracy between the benchmark (BM) and the competitors. Detection accuracy is the AUC for the extreme modulation of genes in the
ground-truth data and the corresponding predicted differential expressions obtained by deconvolution. Extreme modulations come from the differential expression of the UNI
method at three different cutoffs (cutoff = 1, 2, 3). (b) difference in precision and recall of the targeted KD genes (shRNA samples) for the benchmark and the competitors

A more direct measure of detection accuracy was the AUC for
the expected extreme modulation of genes in the ground truth and
the corresponding predicted differential expressions obtained by de-
convolution. The expected extreme modulations were defined as
genes with an absolute differential expression generated in UNI (one
gene per bead color) greater than a given cutoff.

Nearly all competitors achieved significant improvements in this
metric (Fig. 3a), with minor differences across different cutoffs (cut-
off = 1, 2, 3). The largest gain was achieved by the winner with an
AUC of nearly 3 percentage points greater than the benchmark.

To illustrate the potential relevance of these improvements for
downstream analysis, we computed the number of positives and true
positives for the winning solution and the benchmark with a cutoff
of two (see Supplementary Material for a descriptive table). The
winner detected about 8000 less extreme modulations than the
benchmark (63 828 and 72 161, respectively), thus being more con-
servative. However, after restricting the comparison to extreme
modulations detected by UNI as well, the winning solution detects
about 1891 more extreme modulations than the benchmark (37 002
and 35 111, respectively), representing a sensible increase in true
positives.

We complemented the above analysis by using targeted gene
knockdown (KD) experiments as the ground truth for a subset of
data (Fig. 3b). These are experiments in which a landmark gene was
targeted by an shRNA, and hence we expect to observe a significant
decrease in expression for the targeted gene. We assessed the KD de-
tection accuracy of each solution by computing the corresponding
percentage of successful KD genes identified or recalled by the algo-
rithm (defining a successful KD as one gene in which the DE value
and the corresponding gene-wise rank in the experiment are less
than a given threshold, —2 and 10 respectively). We computed the
percentage recall for the UNI data as well, which yielded an estimate
of the maximum achievable recall of 0.80. Relative to this level,
nearly all algorithms achieved a good recall and precision, with val-
ues that were higher than the benchmark solution for all but two
methods (Fig. 3b).

3.4 Reproducibility of gene expression changes

To assess the reproducibility of the results, we leveraged the several
replicates per perturbation that are included in our dataset. Each
shRNA and compound treatment has 4 and 10 replicates
respectively.

To assess the inter-replicate variability of the results, we first
computed the Median Absolute Deviation (MAD) of the differential
expression for each gene across replicates. We then took the 75h
percentile for each of the 122 perturbations in our data. This yields
122 MAD observations per solution. We finally estimated the differ-
ence with the benchmark using a linear regression with fixed effects
for the perturbation to control for differences in the level of reprodu-
cibility of each treatment (that were observed in the data).

The top three solutions achieved significant reductions in vari-
ability compared to the benchmark (Fig. 4a and b), with the winner
achieving a significant reduction between two and eight percentage
points on the differential expression scale.

To better understand the magnitude of these effects, we com-
puted the pairwise inter-replicate Spearman correlation coefficient
across all the differential expression signatures, a common measure
of the reproducibility of L1000 signatures. We then took the 75h
percentile of the replicate correlation coefficients for each perturb-
ation for a total of 122 correlation coefficients per method.

The winner shows a significant improvement over the bench-
mark in both samples (Fig. 4c and d), with an estimated gain in in-
ter-replicate correlation that goes between 4 and 6 percentage
points. This evidence suggests that the competitors’ solutions may
help reduce the number of replicates that analysts may want to per-
form for a desired level of reproducibility.

3.5 Computational speed

The speed improvements over the benchmark were substantial
(Table 1). While dpeak took about 4-5 min per plate, the fastest al-
gorithm took as little as 4s per plate (more than a 60x speedup
compared to the benchmark) and the slowest was well below 1 min.
These speed improvements are not directly attributable to the use of
multiple cores, since both the benchmark and contestant algorithms
leverage multi-core techniques. We observed no particular trade-off
between speed and accuracy.

3.6 Ensembles of solutions

Lastly, we assessed the performance of ensembles combining the
predictions of different computational methods by taking the me-
dian value across all 10 predictions (including the benchmark). By
focusing on the subset of the data with shRNA experiments (ignor-
ing the data with compound experiments), the performance in both
Spearman correlation and the AUC metrics of the ensemble tended
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Fig. 4. (a, b) % mean difference (and 95% CI) in gene-wise MAD between the benchmark (BM) and the competitors. The gene-wise MAD was computed across the 10 and 4
replicate differential expression values from the compound and shRNA samples, respectively. Differences were estimated using linear regression with fixed effects for each per-
turbation. (c, d) % mean difference (and 95% CI) in inter-replicate correlation between the benchmark and the competitors. The inter-replicate correlation is the 75th percent-
ile pairwise Spearman Correlation Coefficient of the 10 and 4 replicate differential-expression signatures from the compound and shRNA samples, respectively. Differences

were estimated using linear regression with fixed effects for each perturbation

to increase with the number of models involved (Fig. 5). However,
the maximum performance in both metrics tended to plateau (or
even decrease) after combining the results of three or more models.
This result suggested limited gains from having ensembles, although
it may be worth exploring more sophisticated aggregation
approaches.

4 Discussion

Given the growing use of CMap for applied research, significant
improvements in the methods used to analyze the L1000 data may
have a remarkable impact on researchers in the field. Here, we have
focused on one critical step in the pipeline that transforms raw data
into data ready for analysis. That is the deconvolution of the expres-
sion of gene pairs measured by a single analyte. The key challenge
was to isolate distinct genes from composite measurements trying to
avoid artificial clusters generated by the assay, which is a recurrent
problem in the analysis of gene expression.

Previous research has shown some limitations of the current de-
fault algorithm and has advanced possible solutions (Li et al., 2017;

Qiu et al., 2020; Young et al., 2016). Existing solutions are exten-
sions of classical model-based clustering used extensively to analyze
genetic data (see Young et al., 2016) but do not include more recent
machine learning methods, such as random forest clustering or neur-
al networks.

We have shown how using a crowdsourcing competition leads to
develop new algorithms for the deconvolution of L1000 data. We
have assessed how these solutions performed using a novel dataset
of transcriptional profiles for over 120 shRNA and compound
experiments with several replicates for a total of 2200 gene expres-
sion of genes measured independently (UNI) and in tandem (DUO).
This dataset constitutes now a public resource to all the researchers
in this area interested in testing their deconvolution approaches.

Competitors’ solutions compared favorably against the current
d-peak solution. The best method was a random forest, a collection
of decision tree regressors, with feature engineering to capture pos-
sible systematic bias at the perturbation, analyte and plate level.
This method achieved (i) the highest correlation between the
ground-truth and the corresponding deconvolution data, (ii) the
lowest inter-replicate variation of differential expression values and
(iii) compared to the benchmark, was able to detect more than a
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Fig. 5. (a) Performance in deconvolution accuracy (Spearman) and (b) detection accuracy (AUC) of an ensemble based on the median prediction of all possible combinations of
a given size of the top nine algorithms plus the benchmark. The median performance of the ensemble tends to increase with its size. However, the maximum performance in

both metrics tends to plateau (or even decrease) after the ensemble reaches a size equal to three

thousand additional extreme modulation of genes while reducing
the false positives at the same time. We have further shown that
most of the gains were for genes in low bead proportion versus genes
in high bead proportion, where the algorithm was good at mitigat-
ing the discrepancy in variability between the genes measured with
different bead numbers.

We have also shown that the random-forest approach achieves
these gains with only ten trees on sixty features. Therefore the algo-
rithm is also relatively fast and easy to implement. By comparison,
the fastest one used a more traditional Gaussian mixture model
(with plate-level adjustments) but was less accurate.

While our analysis provides evidence of the tremendous po-
tential of using random forests for deconvolution of gene expres-
sion data, it remains unclear to what extent the performance
boost will apply more generally to other analyses of genetic data.
Yet, another caveat to the generalizability of our results lies in
the method for selecting the winners. By applying all entries to
the hold-out dataset and reporting the results of the best-perform-
ing ones, we may have over-estimated the accuracy of the win-
ning methods. However, we have shown improvements consistent
in various metrics and across several approaches. This consistency
leads us to believe that researchers will value the competitors’
solutions and use them as a practical resource to improve the
quality of the analysis of L1000 data.
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