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Abstract: The functionalization of smart polymers is opening a new perspective in catalysis, drug
carriers and biosensors, due to the fact that they can modulate the response regarding conventional
devices. This smart response could be affected by the presence of organometallic complexes in
terms of interactions which could affect the physical chemical properties. In this sense, the ther-
moresponsive behavior of copolymers based on N-isopropylacrylamide (NIPAM) could be affected
due to the presence of hydrophobic groups and concentration effect. In this work, the functional-
ization of a copolymer based on NIPAM and dopamine methacrylamide with different amounts of
bis(cyclopentadienyl)titanium (IV) dichloride was carried out. The resulting materials were charac-
terized, showing a clear idea about the mechanism of functionalization through FTIR spectroscopy.
The thermoresponsive behavior was also studied for various polymeric solutions in water by UV–
vis spectroscopy and calorimetry. The hydrophobic interactions promoted by the organometallic
complex could affect the transition associated with the lower critical solution temperature (LCST),
specifically, the segments composed by pure NIPAM. That fact would explain the reduction of the
width of the LCST-transition, contrary to what could be expected. In addition, the hydrophobicity
was tested by the contact angle and also DNA interactions.

Keywords: thermoresponsive polymers; hydrophobic transitions; lower critical solution temperature;
functionalized materials; contact angle

1. Introduction

The new strategies for sustainable progress developed by some governments are affect-
ing industry, which needs to look for alternatives to traditional methods of production and
also for new eco-friendly materials. Those changes must maintain companies’ profitability
and provide other benefits such as improving the efficiency of industrial processes.

The generation of smart materials is a valuable way to respond to a part of industrial
demand as they can improve the efficiency of some processes, reduce the consumption of
energy, and are biodegradable in some cases where biodegradable monomers are involved
as well [1–15]. Many efforts focus on the preparation and characterization of these materials,
but the composites and functionalized polymers are growing as those can provide specific
and modulated properties. In this sense, the preparation of smart polymeric matrices

Polymers 2021, 13, 3921. https://doi.org/10.3390/polym13223921 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-6799-2038
https://orcid.org/0000-0001-9636-6231
https://orcid.org/0000-0001-8014-2452
https://orcid.org/0000-0003-4993-0498
https://orcid.org/0000-0002-5849-1485
https://orcid.org/0000-0001-5707-0198
https://doi.org/10.3390/polym13223921
https://doi.org/10.3390/polym13223921
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13223921
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13223921?type=check_update&version=2


Polymers 2021, 13, 3921 2 of 17

with inorganic compounds can provide additional functions to the pure polymers used in
many applications [16–18]. Nevertheless, the problems associated with the lability of the
metal–carbon bonds partially stopped this progress, but new regulation and advances in
macromolecular chemistry have renewed interest in these structures [19,20].

There are some recent advances reported where smart polymers are involved in the
preparation of hybrid materials for heterogeneous catalysis, which offer some advantages in
terms of easy separations and recyclability [21–23]. However, applications can be extended
to other fields as biomedical applications [8,24–28] or nanotechnology [29].

The final properties of the new materials will depend on the molecular details associ-
ated with the polymer and the organometallic complex, but also the relation between both
will play an important role [30]. For example, a sufficiently high content of an organometal-
lic complex could affect the physicochemical properties of the polymers. On the other
hand, the functionalization of the smart polymers with organometallic complexes can be
limited by different reasons like the numerous steps involved in the procedures, hazardous
solvents, or the limitations for incorporating high amounts of an organometallic complex
into the polymeric matrices, among other factors.

The use of comonomers into the polymeric chains, as catechol groups, can provide
other functionalities or reversibility. Recently, our research group proposed the novel and
facile functionalization of the –OH groups of poly(N-isopropylacrylamide-co-dopamine
methacrylamide), where we observed some particularities associated with the presence
of the organometallic complexes [31]. Those copolymers were functionalized with an
organotin (IV) compound and bis(cyclopentadienyl)titanium (IV) dichloride showing the
hydrophobic interactions promoted by the organometallic complexes over the surrounding
polymeric chains. Nevertheless, these preliminary works presented and analyzed func-
tionalized materials with a minimum amount of metallodrugs as we wanted to preserve
the original structure of the materials and also keep the thermoresponsive nature of the
polymers [8,31]. In this sense, there are many questions that need to be addressed about
the presence of organometallic complexes in smart polymeric chains, such as: How could
affect the presence of the organometallic complex to the lower critical solution temperature
(LCST) transition? What kind of interactions can be produced between polymeric chains
and their hydrophobic units composed by the comonomer and organometallic complexes?
Could the concentration of functionalized polymers in water change the LCST behavior
due to the presence of surrounding polymeric chains?

This work tries to take a step towards answering these by working with different
amounts of organometallic complexes over the same smart polymer, analyzing the changes
promoted into the matrix and the thermoresponsive behavior of the corresponding poly-
meric solutions prepared with different concentrations in water. For that purpose, a copoly-
mer based on N-isopropylacrylamide and dopamine methacrylamide was prepared and
divided into different fractions. Each fraction of the copolymer was functionalized with a
specific amount of bis(cyclopentadienyl)titanium (IV) dichloride, obtaining a wide range
of different samples with different amounts of the organometallic complex. A complete
characterization of the molecular features was carried out through proton nuclear mag-
netic resonance, Fourier-transform infrared spectroscopy, X-ray fluorescence, and X-ray
diffraction. The thermoresponsive behavior was studied by differential scanning calorime-
try and ultraviolet–visible (UV–vis) spectroscopy for both polymeric aqueous solutions
(1 and 4 wt.%). The hydrophobicity was analyzed by the contact angle, and also, the DNA
interactions were tested for the new materials.

2. Materials and Methods
2.1. Materials

N-isopropylacrylamide (NIPAM) (98%, Biosynth Carbosynth, Compton, UK) was pu-
rified by recrystallization using toluene (99%, Alfa Aesar, Haverhill, MA, USA) and hexane
(96%, Scharlau, Sentmenat, Spain). Tetrahydrofuran (99.8%, Scharlau, Barcelona, Spain)
and N,N-dimethylformamide (DMF) (99.8%, Alfa Aesar, Kandel, Germany) were dried be-
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fore use. The azobisisobutyronitrile (AIBN) (98%, Sigma Aldrich, Saint-Quentin-Fallavier,
France) was recrystallized from methanol (99.99%, Quimipur, Campo Real, Spain).

The preparation of the dopamine methacrylamide (DMA) involved the use of sodium
borate (98%, Panreac, Barcelona, Spain), sodium bicarbonate (99%, Fluka, Hamburg, Ger-
many), methacrylate anhydride (94%, Sigma Aldrich, Hamburg, Germany),
3,4-dihydroxyphenethylamine hydrochloride (98.5%, Fluka, Germany), sodium hydrox-
ide (97%, Sigma Aldrich, Hamburg, Germany), ethyl acetate (99.91%, Quimipur, Campo
Real, Spain), hydrochloric acid (37%, Sigma Aldrich, Hamburg, Germany), water (Quality
Level: 200, Sigma Aldrich, Buchs, Switzerland) and magnesium sulfate (97%, Panreac,
Europe Union).

The resulting polymer was precipitated in diethyl ether (99.7%, Quimipur, Campo
Real, Spain). The functionalization was carried out using triethylamine (NEt3) (99%,
Sigma Aldrich, Overijse, Belgium), and bis(cyclopentadienyl)titanium (IV) dichloride (also
called titanocene dichloride, Cp2TiCl2) (97%, Sigma Aldrich, Moscow, Russia). The DNA
interactions were performed with Buffer (Hyclone Products Cytiva, Amersham, UK) and
salmon DNA (≤5% protein, Sigma Aldrich, Tokyo, Japan).

2.2. Synthesis of Dopamine Methacrylamide

Dopamine methacrylamide (DMA) was prepared following the procedure previously
published in the literature [32]. Subsequently, the DMA was purified by precipitation
in hexane.

2.3. Preparation of Poly(N-Isopropylacrylamide-Co-Dopamine Methacrylamide) Copolymer

The copolymer based on N-isopropylacrylamide and dopamine methacrylamide was
synthesized using a Schlenk tube under a nitrogen atmosphere. For that purpose, the
N-isopropylacrylamide (0.0663 mol), dopamine methacrylamide (0.0046 mol), and AIBN
initiator (7 × 10−5 mol) were added inside the Schlenk tube. Then, 10 mL DMF was
injected in the tube, keeping the inert conditions. The Schlenk tube was located inside of a
thermostatic bath at 70 ◦C where the reaction took place for 48 h. After, the reaction was
stopped using nitrogen liquid, the copolymer was precipitated in diethyl ether.

The final polymer was washed and purified several times through precipitation, dried
under vacuum and, finally, it was stored at room temperature. The details about the
synthetic procedure and reaction schemes can be found in previous works reported by the
authors [31,33]. The yield of the reaction obtained was around 68%.

2.4. Functionalization Process with Bis(cyclopentadienyl)titanium (IV) Dichloride

The copolymer was divided into four parts which were functionalized with different
amounts of bis(cyclopentadienyl)titanium (IV) dichloride. For that purpose, each part of
the copolymer was independently dissolved in Schlenk tubes using DMF as the solvent
and under nitrogen atmosphere. A solution of triethylamine (0.0359 mol·L−1) was pre-
pared in advance, and specific amounts were introduced inside the Schlenk tubes where,
previously, polymeric solutions were prepared, as shown in Table 1. Then, an organometal-
lic complex solution (0.0161 mol·L−1) was injected in the previous tubes following the
amounts described in Table 1, for obtaining materials with different concentrations of
organometallic complex in a wide range of compositions. The reaction was carried out
at room temperature for 36 h, and subsequently, the polymer was precipitated in diethyl
ether, washed, and filtered under inert conditions. Finally, the samples were dried under
vacuum at room temperature.

From now on, the pristine copolymer is denoted as cDMA, adding f for functionalized
samples (cDMAf) which bis(cyclopentadienyl)titanium (IV) dichloride (Cp2TiCl2) content
varies and increases (indicated from 1 to 4) as collected in Table 1.
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Table 1. Functionalization conditions for copolymers functionalized with the organometallic complex
(cDMAf1-4).

Sample DMF [mL] NEt3 [mol] Cp2TiCl2/cDMA [mole Ratio]

cDMA 10 0 0

cDMAf1 10 2.03 × 10−6 2.43 × 10−4

cDMAf2 10 4.06 × 10−6 4.87 × 10−4

cDMAf3 10 2.03 × 10−5 2.43 × 10−3

cDMAf4 10 4.06 × 10−5 4.87 × 10−3

2.5. Preparation of Polymeric Solutions

The phase transition temperature associated with the LCST and the contact angle
was studied for the pure copolymer and functionalized materials. For that purpose,
two polymeric concentrations in water (1 and 4 wt.%) were prepared, depending on the
technique and its resolution and for checking the differences associated with the interactions
between polymeric chains in water. The solutions in water were kept in the refrigerator for
homogenization of the samples for 24 h before measurements.

All measurements were carried out at least in triplicate, which guarantees the consis-
tency of these results.

2.6. Gel Permeation Chromatography

Molecular weight distributions and polydispersity (Mw/Mn) were determined by
a Waters SEC system (Milford, MA, USA) equipped with a Waters 1515 Isocratic HPLC
Pump and a Waters 2414 refractive index detector, using DMF with LiBr 0.1 wt.% as the
mobile phase at a flow rate of 0.7 mL·min−1 and 70 ◦C using polystyrene standards for
the calibration.

2.7. X-ray Diffraction

The measurements were carried out in a Philips X’Pert diffractometer provided with a
PW3011/10 detector (Eindhoven, The Netherlands). The diffraction scans were collected
between 5 and 80◦ with a 2θ step of 0.05◦ and 2.5 s per step.

2.8. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra were recorded by a Perkin-Elmer Spectrum Two FTIR-Spectrometer
(Waltham, MA, USA) fitted with attenuated total reflectance (ATR). The samples were
placed in direct contact with the diamond crystal without additional preparation. Mea-
surements were collected from 4000 to 400 cm−1 at a resolution of 4 cm−1 with 32 scans
per spectrum.

2.9. Nuclear Magnetic Resonance (1H NMR) Spectroscopy
1H-NMR spectra were recorded in deuterated DMSO at 400 MHz on a Bruker Avance

III-HD 400 spectrometer (Billerica, MA, USA).

2.10. X-ray Fluorescence Spectrometry

The content of organometallics into polymeric chains was estimated by X-ray fluores-
cence spectrometer (Ametek Materials Analysis Division Spectro Xepos, Devon-Berwyn,
USA), to detect the Ti content of the samples.

2.11. Ultraviolet–Visible (UV-Vis) Spectroscopy

Cloud point measurements were carried out in a Cary 3 BIO-Varian UV–Visible
spectrophotometer (Palo Alto, CA, USA) equipped with a Peltier temperature control
device. The temperature was raised from 12 to 45 ◦C at a heating rate of 1 ◦C·min−1.
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The estimation of the cloud points and phase transition temperatures were carried out
as previously reported [34].

2.12. Differential Scanning Calorimetry

The polymeric solutions (around 15 mg) were placed in aluminum pans for studying
the phase transition temperature associated with LCST by differential scanning calorime-
ter (UC3M: Mettler Toledo DSC822e, L’Hospitalet de Llobregat, Spain) equipped with a
cooling system. All the tests were carried out between 0 and 45 ◦C, using a heating rate
of 5 ◦C·min−1. The calorimetric curves were normalized using another experiment for
pure water.

2.13. Contact Angle

Contact angles were measured using a Dataphysics Contact Angle System OCA
Camera: Teli CCD Camera for all the samples at different temperatures (below and above
LCST). Measurements were carried out in a range from 15 to 40 ◦C every 5 ◦C. Dry polymer
films were prepared by drop-casting, placing 80 µL of an aqueous solution (2 wt.%) on a
glass surface with a Teflon frame for keeping a fixed diameter of 1 cm.

Finally, 2 µL water droplets were dispensed onto the dried surface of the polymeric
film. The average contact angle value was obtained from at least three measurements for
each copolymer.

2.14. DNA Interactions

First, each functionalized copolymer (25 mg) was mixed with ethanol (25 mL) and
phosphate buffer solution (25 mL) and was stored in a refrigerator (4 ◦C). On the other
hand, several DNA solutions (0.02, 0.03, 0.04, 0.05, 0.06, and 0.08 mg/mL) were prepared.
Then, polymeric solutions (3 mL) were mixed with each DNA-solutions (3 mL), and shaken
at 35 ◦C (30 min) before measurements.

The analysis was carried out using an UV–vis spectrometer using a scanning wave-
length from 800 nm to 200 nm at 35 ◦C. The samples were compared with pure DNA the
absorbance of which is between 260 and 280 nm.

3. Results and Discussion

The molecular characterization was carried out for the pure copolymers and their
corresponding functionalized samples. It was expected from synthetic and preparation
routes to obtain different degrees of organometallic functionalization in a wide range of
compositions. Therefore, the pure copolymer structure could suffer molecular changes
as organometallic moieties are incorporated, varying the final spectrum of properties of
functionalized materials.

The average molecular weight (Mn) and polydispersity of the pure copolymer, ana-
lyzed by gel permeation chromatography, were 42,000 g·mol−1 and 2.9, respectively. The
relatively high polydispersity can be clearly explained by the free radical polymerization.
The use of RAFT agents or catalysts was avoided as those could negatively affect bio-
compatibility. Also, these could disrupt the effect of the content of the organometallic
complex over the molecular features and structure of the polymer, and consequently, on the
thermoresponsive behavior and hydrophobicity of the samples. The comonomer content
was estimated by 1H NMR following the procedure described in the literature, obtaining a
DMA content of 5.3 mol % [35].

On the other hand, the DMA content of polymeric chains was estimated by comparing
the protons of the benzene ring and the protons of the -CH- of the side chain of NIPAM
obtained 1H NMR, as reported previously [31,33].

The molecular features of the resulting modified copolymers with Cp2TiCl2, and pos-
sible changes on the structures, were analyzed by FTIR spectroscopy, a powerful technique
to elucidate interactions in organic-inorganic materials. FTIR spectra corresponding to
PNIPAM, pristine cDMA, and copolymers functionalized with organometallic complexes
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are shown in Figure 1A. Differences between materials must be exclusively associated with
the presence of organometallic complexes, as all the samples were prepared using the same
copolymer composition. Typical vibration bands attributed to NIPAM and DMA appear in
the spectra, at 3400–3300 cm−1 the O–H and N–H stretching, at 2970, 2930, and 2872 cm−1

the aliphatic C–H stretching, the strong bands (1640 and 1533 cm−1) corresponding to the
C=O stretching of the amide (amide I) and N–H bending mixed with C–N stretching (amide
II), at 1386 and 1366 cm−1 the typical doublet, corresponding to the deformation vibration
of the isopropyl group in NIPAM. Significant changes are observed between 1000 and
1300 cm−1, specifically associated with the vibration bands observed at 1065 and 1253 cm−1,
which are identified with ν(C–O) bonds related to catechol group. In this sense, the band
placed at 1253 cm−1 is related to C–OH bonds, which intensity probably changes due to the
functionalization of organometallic complexes through those -OH groups. Our previous
works suggested this route of functionalization [8,31], but this is the first proof that could
confirm that organometallic moieties are linked to the copolymer by the -OH groups.
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Figure 1. Microstructural features of the resulting materials characterized by Fourier transform infrared (FTIR) spectroscopy
(A) and X-ray powder diffraction (B).

The FTIR spectroscopy can provide an idea about the degree of functionalization,
which can be obtained through the band situated at 665 cm−1. That band is identified
with δ(=C–H) bonds and is associated with the aromatic rings of Cp2TiCl2. The change of
intensity could respond to the amount of organometallic complex incorporated into the
polymeric chains.

X-ray diffraction patterns show exclusively two broad peaks, which are associated
with the poly(N-isopropyl acrylamide) diffraction pattern (Figure 1B). [15,36,37] Differences
between pristine copolymer and functionalized samples were not detected, even for the
sample with the highest amount of Cp2TiCl2, suggesting that the organometallic complex
was homogeneously distributed into the polymeric chains and did not lead to phase
separation or crystallization; besides the concentration of organometallic complex does not
affect the shape of the diffractogram probably because amounts are not high enough or the
low resolution of the technique.

The functionalization of the resulting polymers was also analyzed by 1H NMR, as
Figure 2A displays. Significant changes cannot be detected in the NMR spectra as the
organometallic compound content is very low compared to the total content of DMA
inserted along the polymeric chains. Another important problem is related to the overlap-
ping between proton signals corresponding to Cp2TiCl2 and those of the pure copolymer,
as can be deduced from their respective spectra. Due to the interaction of DMA with
the organometallic compound, we would expect to observe specific changes in the peaks



Polymers 2021, 13, 3921 7 of 17

placed at 8.6 and 8.75 ppm, associated with the protons of -OH groups. [31] Nevertheless,
the low content of the organometallic complex with respect to the DMA units inserted
along the polymeric chains could explain, together with the overlapping with the main
chain peaks, the lack of changes in the spectra. The similarity between the different spectra
seems to indicate that structural changes are avoided.
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The functionalization of the samples was studied by UV–vis spectroscopy in aque-
ous solutions at ambient temperature as Figure 2B shows. The pure copolymer shows
exclusively the absorbance of the C=O bonds, which are part of the NIPAM and DMA
structure, but a second peak is identified for the functionalized samples. That second
absorbance peak could be associated with the cyclopentadienyl groups and Ti-O bonds [38].
Furthermore, the concentration of organometallic compounds along the polymeric chains
seems to play an important role, too, as the intensity of the peak increases as Cp2TiCl2 rises.

The elemental analysis was carried out by X-ray fluorescence for all the functionalized
materials (Table 2). The percentage of Ti increases as was expected during the experimen-
tal work, showing the successful incorporation of organometallic compounds along the
polymeric chains. Another important piece of information derived from elemental analysis
is the relationship between Ti and Cl, which shows a value higher than 1 for cDMAf3 and
cDMAf4. There are two possible routes for functionalization, i.e., this one may be carried
out by the reaction of a single or both chlorine ligands through both OH-groups attached
to the DMA (Scheme 1). The ratio between Ti and Cl seems to explain that a great part of
the organometallic moieties is attached by a single bond to the polymeric structure as they
seem to keep another chlorine (Scheme 1B). Nevertheless, these results are not conclusive,
and the error associated with the measurements should be considered because it could
play an important role.

Table 2. Percentage of Ti and Cl incorporated into the copolymers determined by X-ray fluores-
cence (wt.%).

Sample Cl [%] Error Ti [%] Error

cDMAf1 0.0029 0.00001 0.00049 0.00001

cDMAf2 0.0590 0.00010 0.02013 0.00017

cDMAf3 0.3543 0.00030 0.41120 0.00090

cDMAf4 0.5165 0.00040 0.67320 0.00120
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Scheme 1. Possible routes of functionalization between copolymer and organometallic complex through both OH groups
(A) or a single OH (B).

The thermoresponsive properties in aqueous solutions were studied for all the func-
tionalized samples and the pure copolymer by UV–vis spectroscopy. Figure 3 displays the
phase transitions associated with the LCST for polymeric solutions (4 wt.%), showing the
transitions pretty close to each other. Nevertheless, significant differences can be observed
from the shape of the curves. In general, a higher number of hydrophobic groups promotes
broader transitions [33]. The explanation related to these broad hydrophobic transitions
was reported before for similar samples, but the amount of comonomer was varied, keeping
the same amount of the organometallic complexes [31]. In that case, rheology showed that
the phase transition temperature associated with LCST comprises two partially overlapped
transitions. One of them is related to NIPAM sequences free of DMA placed at the highest
temperature, and another one is situated at a lower temperature associated with the seg-
ments of the chains with the presence of DMA. Higher content of DMA into the polymeric
chains will induce broader transitions as the lowest transition temperature associated with
segments with comonomer will be placed at a lower temperature, increasing its distance
with the phase transition temperature of pure NIPAM sequences.

This explanation cannot apply to the content of organometallic complexes for these
samples with the same composition of DMA as it can be observed the opposite effect, i.e.,
transitions are wider as the content of hydrophobic organometallic complexes rises. It
could be feasible to think about similar effects as both comonomer and organometallic
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complexes present a hydrophobic nature. Nevertheless, the situation is somewhat different
as expected and, consequently, some parameters such as polymer concentration in water,
interactions between surrounding chains, organometallic complex amount, and position of
the organometallic moieties into the polymeric chains could play an important role.
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Figure 3. Phase transition temperatures, analyzed by UV–vis spectroscopy for all polymeric solutions
(4 wt.%).

The polymer concentration in water could be high enough to allow interactions
between polymeric chains which could be restricted by repulsive forces between DMA
units and organometallic moieties. Nevertheless, a hydrophobic influence could be exerted
by the organometallic complex over sections of surrounding polymeric chains composed
by pure NIPAM. This influence could reduce the phase transition temperatures of LCST
associated with these pure NIPAM sequences. Scheme 2 shows a clear idea about the
differences between both effects. In the left part of the figure, the comonomer effect clearly
will reduce the low phase transition temperature associated with the NIPAM + DMA
sequences as comonomer content rises. The comonomer content will not affect the LCST of
the NIPAM sequences, as they could not reach the main backbone due to repulsive forces
between surrounding polymeric chains. This will lead to an increase in the width of the
transition as the lowest LCST (NIPAM + DMA sequences) is reduced and the distance with
the highest LCST (NIPAM sequences) increases.



Polymers 2021, 13, 3921 10 of 17Polymers 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Scheme 2. Effect of hydrophobic groups over surrounding polymeric chains in solution. 

ToffsetUV seems clearly affected in a higher proportion than TonsetDSC by the content of 
the organometallic complex due to ToffsetUV being closer to the cloud points. ToffsetDSC and 
TonsetDSC are defined proportionally at similar distances of the cloud points. 

A small protection of a small part of the hydrogen bonds derived from the repulsive 
forces exerted between the organometallic moieties and the DMA of surrounding 
polymeric chains could explain the increase of the TonsetUV and TonsetDSC, as  explained 
above. On the other hand, the hydrophobic interactions promoted by the organometallic 
compounds over the pure NIPAM-sequences of the polymeric chains could also explain 
the decrease of the ToffsetUV and ToffsetDSC. 

There are many factors involved in the LCST. More information could be obtained if 
the polymeric interactions between different chains were diminished, i.e., if the polymer 
concentration in water decreased. For that purpose, the concentration of the polymeric 
solutions was decreased to 1 wt.%. The idea was to observe if there were noticeable 
changes when the interactions between polymeric chains were reduced. Figure 5A shows 
the phase transitions of LCST for all the polymeric solutions (1 wt.%) whose shape is 
similar for all the samples. In this sense, hydrophobic transitions do not show differences 
probably because interactions between different polymeric chains are minimized. 

 

15 20 25 30 35 40

cDMAf4

cDMAf3

H
ea

t F
lo

w
 [%

]

Temperature [ºC]

cDMA

cDMAf2

4 wt.%A

Scheme 2. Effect of hydrophobic groups over surrounding polymeric chains in solution.

The situation is rather different when the content of the organometallic complex rises
to keep the same comonomer composition (right part of Scheme 2). The lowest LCST
(NIPAM + DMA sequences) would be affected by organometallic compounds due to the
repulsive forces between organometallic moieties and DMA units of surrounding polymeric
chains that could protect part of the hydrogen bonds, increasing the lowest LCST. Those
normally could be affected by the units of DMA of surrounding polymeric chains reducing
the LCST. The content of organometallic complexes is too low compared to the comonomer
content, but enough to partially reduce those interactions as organometallic compounds
are too far from the main backbone. On the other hand, these organometallic compounds
could probably affect pure NIPAM sequences of surrounding polymeric chains, decreasing
the highest LCST, consequently inducing shorter hydrophobic transitions.

The cloud points were estimated for all the curves, and those decrease as the content
of organometallic compounds rises, as expected. The hydrophobic groups could reduce
the LCST, but this assumption needs to be studied in depth as molecular features of the
polymeric chain in terms of composition, position, and distributions play an important role
in the LCST mechanism.

Similar experiments were carried out by differential scanning calorimetry using the
same polymer concentration in water but with higher heating rates because temperature
control in a calorimeter is possible up to significantly higher rates than in optical cuvettes.
These curves are displayed in Figure 4A, and it can be observed that the width of the
hydrophobic transitions decreased as the content of organometallic complexes rose. The
width of the transitions follows the trend observed by turbidimetry in Figure 3 but the
maximum of the transitions does not look like to follow a specific tendency with the
presence and the content of Cp2TiCl2. Turbidimetry showed that the cloud temperatures
decreased as the organometallic complexes increased, but in this case, that behavior is
not unambiguous. The differences between techniques could explain these changes, as
UV–vis spectroscopy shows the reduction of the transmittance as increasing the phase
separation structures, but calorimetry is very sensitive to the detection of the coil to globule
transitions [34,39]. Many factors could explain that a clear tendency of the maximum of
DSC is not exhibited, as end-group effect or the polymer–solvent interactions, which could
be affected by the presence of the organometallic compound [40–43]. The reproducibility
of the experiments confirms the results, and consequently, different phenomena should be
responsible for this kind of curve.
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Figure 4. Phase transition temperatures associated with lower critical solution temperature (LCST),
analyzed by calorimetry (A), and a comparison of calorimetric and UV results (B) for all polymeric
solutions (4 wt.%).

Figure 4B shows the LCST transitions analyzed from curves of UV–vis spectroscopy
and calorimetry. For that purpose, the onset and offset temperatures (Tonset and Toffset)
were defined where the transitions or LCST-ranges start and finish, respectively. Also,
cloud points were included, which were estimated at 50% of the UV–vis transition [33].
The transitions clearly diminish their width as the content of the organometallic complex
increases, i.e., onset and offset temperatures are closer to each other. Another important
fact can be deduced from the cloud temperatures, whose tendency is defined by the
content of the organometallic complex but clearly defined in the middle of the onset and
offset temperatures estimated from DSC. In general, the UV transitions are shorter than
those determined by calorimetry, as could be expected due to calorimetry being more
sensitive [34].

ToffsetUV seems clearly affected in a higher proportion than TonsetDSC by the content of
the organometallic complex due to ToffsetUV being closer to the cloud points. ToffsetDSC and
TonsetDSC are defined proportionally at similar distances of the cloud points.

A small protection of a small part of the hydrogen bonds derived from the repulsive
forces exerted between the organometallic moieties and the DMA of surrounding polymeric
chains could explain the increase of the TonsetUV and TonsetDSC, as explained above. On
the other hand, the hydrophobic interactions promoted by the organometallic compounds
over the pure NIPAM-sequences of the polymeric chains could also explain the decrease of
the ToffsetUV and ToffsetDSC.

There are many factors involved in the LCST. More information could be obtained if
the polymeric interactions between different chains were diminished, i.e., if the polymer
concentration in water decreased. For that purpose, the concentration of the polymeric
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solutions was decreased to 1 wt.%. The idea was to observe if there were noticeable changes
when the interactions between polymeric chains were reduced. Figure 5A shows the phase
transitions of LCST for all the polymeric solutions (1 wt.%) whose shape is similar for
all the samples. In this sense, hydrophobic transitions do not show differences probably
because interactions between different polymeric chains are minimized.
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Figure 5. Phase transition temperatures analyzed by UV–vis spectroscopy (A) and calorimetry (B) for
all polymeric solutions (1 wt.%).

Another important fact is associated with the trend drawn by the cloud points, which
increase as organometallic moieties rise. The reproducibility of the experiments repeated
three times only opens the possibility of stretching of the polymeric chain due to the hy-
drophobic forces of the organometallic complexes. However, for a mechanistic discussion,
a much wider range of samples would be necessary.

Calorimetry could be a good tool for getting more information about these transitions
as it is more sensitive than UV–vis spectroscopy. Figure 5B displays the calorimetric curves
measured using a polymeric concentration in water of 1 wt.%. The pure copolymer exhibits
a single transition which is subsequently divided into two parts as the content of the
organometallic complexes rises. Both transitions are clearly distinguished for cDMAf3 and
cDMAf4, showing that two phenomena are taking place. The effect could be associated with
a stretching of the polymeric chains due to the presence of the organometallic compounds
whose hydrophobic strength promoted by their length and volume over the main backbone
could isolate the different polymeric sequences. Thus, this arrangement of the polymeric
chains could induce a heterogeneous LCST-response regarding the pure copolymer where
there are some interactions between the same polymeric chains (Scheme 3).
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Scheme 3. Homogeneous and heterogeneous LCST-response as a consequence of the incorporation of an organometal-
lic compound.
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Transitions seem to be composed of the overlapping of two phenomena. The phe-
nomenon or transition placed at lower temperature seems to decrease as the organometallic
compound rises, while the highest one exhibits the opposite behavior, i.e., the peaks look
displaced to higher temperatures. The effect at a lower temperature is clearly observed for
the highest content of organometallic compound (cDMAf4), and could be related to the seg-
ments of the chains enriched in DMA and, consequently, in organometallic moieties. Then,
it could be justified that the presence of these hydrophobic groups could move the tran-
sition to lower temperatures depending on the content of organometallics. Nevertheless,
the second transition seems to follow the opposite trend, i.e., it increases as hydrophobic
groups rise, probably due to the stretching of the polymeric chain as interactions with
surrounding polymeric chains must be reduced.

Figure 6 shows experiments related to the wettability of the functionalized structures
and also for the pure copolymer measured at different temperatures below and above of
LCST. Specifically, the hydrophobicity on the surface was evaluated by the water contact
angle, where important differences can be observed. First of all, a clear trend is defined by
the content of the organometallic complex, which induces a higher hydrophobicity inducing
higher angles. Similar behavior was observed for other samples where hydrophilic or/and
hydrophobic groups were involved. For PNIPAM an increase in the hydrophobicity was
reported, while a copolymer with hydrophilic monomer decreases the contact angle [44].
On the other hand, PNIPAM-modified styrene-butadiene rubber was also studied in terms
of contact angle for different contents of NIPAM, where it was demonstrated how strongly
the hydrophilic behavior could be influenced below the LCST [45].
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Figure 6. Contact angle values for functionalized samples and pure copolymer measured at differ-
ent temperatures.

Specifically, cDMAf3 and cDMAf4 exhibit a clear jump around the LCST, which cannot
be clearly detected for the pure copolymer or sample with a low amount of organometallic
complex (cDMAf2). Nevertheless, these samples show a greater change between 15 ◦C
and 40 ◦C as can be deduced from cDMAf2 where the angle increases around 3◦ while it is
below 2◦ for cDMAf4. This fact could be associated with the presence of the organometallic
complex, which could reduce the impact of the hydrophobic contributions of DMA below
LCST as was observed for the hydrophobic transitions observed by calorimetry and UV–vis
spectroscopy. The results fit well with the literature as remarkable changes are exclusively
observed below LCST, while above the LCST, the angle remains constant [45].

The presence of the organometallic compound could play an important role along the
transition LCST showing a clear jump which could be associated with the coil to globule
transition where the organometallic moieties could be exposed outside of the globule due
to its hydrophobic nature inducing those high angles. Nevertheless, this is a hypothesis, as
the polymers are not dissolved in water.
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Figure 7 exhibits the absorbance of the suspensions composed of different concen-
trations of DNA and functionalized materials (cDMA and cDMAf4). For both samples,
the intensity of the peaks rises when DNA concentration increases. In addition, a hyp-
sochromic effect was observed between the different DNA concentrations for each sample,
as was reported previously [31].

Polymers 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

Both samples show the same trends, but it is important to indicate a change between 
the kind of peaks for the same DNA concentration but different samples. The peaks 
related to pure copolymer are slightly wider than for the functionalized sample cDMAf4, 
and consequently, this fact could be associated with the presence of the organometallic 
complex. Nevertheless, the experimental error could also be involved in these trends due 
to the low concentration of the organometallic complex. 

 
Figure 7. UV–vis spectra of DNA-interactions for cDMA (left) and cDMAf4 (right). 

4. Conclusions 
The functionalization of copolymers based on N-isopropylacrylamide and dopamine 

methacrylamide allows high amounts of organometallic moieties incorporated in the 
polymeric chains to be obtained in comparison with other complex methods reported in 
the literature. 

The functionalization of the polymers is carried out through the -OH groups, 
confirming the hypothesis reported in our previous publications about the 
functionalization routes. In this sense, the new copolymers allow getting information from 
FTIR spectroscopy which shows clear changes associated with ν(C–O) bonds in the band 
placed at 1253 cm−1. The incorporation of an organometallic complex can affect the LCST 
behavior, but the polymer concentration in water will define those changes as interactions 
with surrounding polymeric chains will be modified; if there are polymeric interactions 
between different chains, those will be influenced by the presence and content of an 
organometallic complex. Those could affect the polymeric chains composed of pure 
NIPAM reducing its phase transition temperature associated with the LCST for these 
polymeric sequences and, consequently, obtaining a shorter hydrophobic LCST-
transition. If the interactions between surrounding polymeric chains are minimized (low 
polymeric concentrations in water), the organometallic complex could reduce the 
interactions between parts of the same polymer chain. This fact could open a new 
perspective concerning controlling the LCST transition due to the presence and the 
content of organometallic complexes. 

Contact angle shows the effect of the incorporation of an organometallic complex into 
the polymeric chains due to its promotion of a higher hydrophobicity. In addition, these 
contributions seem to modulate the change of temperature below and above LCST. 

The DNA-interactions were tested for the resulting materials, showing that DNA can 
be affected probably due to electrostatic interactions. 

Author Contributions: Conceptualization, A.G.-P.; methodology, M.M.-Z.; formal analysis, A.G.-P. 
and I.Q.-G.; investigation, M.M.-Z. and A.G.-P.; data curation, I.Q.-G. and A.G.-P.; writing—original 
draft preparation, A.G.-P.; writing—review and editing, F.J.S., I.Q.-G. and S.H.; supervision, A.G.-

200 300 400 500 600 700 800
0

2

4

 0.02 mg/mL DNA
 0.04 mg/mL DNA
 0.05 mg/mL DNA
 0.06 mg/mL DNA
 0.08 mg/mL DNA

cDMA
Ab

so
rb

an
ce

Wavelength (nm)
200 300 400 500 600 700 800

0

2

4
cDMAf4

 0.02 mg/mL DNA
 0.04 mg/mL DNA
 0.05 mg/mL DNA
 0.06 mg/mL DNA
 0.08 mg/mL DNA

Ab
so

rb
an

ce

Wavelength (nm)

Figure 7. UV–vis spectra of DNA-interactions for cDMA (left) and cDMAf4 (right).

Both samples show the same trends, but it is important to indicate a change between
the kind of peaks for the same DNA concentration but different samples. The peaks related
to pure copolymer are slightly wider than for the functionalized sample cDMAf4, and
consequently, this fact could be associated with the presence of the organometallic complex.
Nevertheless, the experimental error could also be involved in these trends due to the low
concentration of the organometallic complex.

4. Conclusions

The functionalization of copolymers based on N-isopropylacrylamide and dopamine
methacrylamide allows high amounts of organometallic moieties incorporated in the
polymeric chains to be obtained in comparison with other complex methods reported in
the literature.

The functionalization of the polymers is carried out through the -OH groups, confirm-
ing the hypothesis reported in our previous publications about the functionalization routes.
In this sense, the new copolymers allow getting information from FTIR spectroscopy which
shows clear changes associated with ν(C–O) bonds in the band placed at 1253 cm−1. The
incorporation of an organometallic complex can affect the LCST behavior, but the polymer
concentration in water will define those changes as interactions with surrounding poly-
meric chains will be modified; if there are polymeric interactions between different chains,
those will be influenced by the presence and content of an organometallic complex. Those
could affect the polymeric chains composed of pure NIPAM reducing its phase transition
temperature associated with the LCST for these polymeric sequences and, consequently,
obtaining a shorter hydrophobic LCST-transition. If the interactions between surrounding
polymeric chains are minimized (low polymeric concentrations in water), the organometal-
lic complex could reduce the interactions between parts of the same polymer chain. This
fact could open a new perspective concerning controlling the LCST transition due to the
presence and the content of organometallic complexes.

Contact angle shows the effect of the incorporation of an organometallic complex into
the polymeric chains due to its promotion of a higher hydrophobicity. In addition, these
contributions seem to modulate the change of temperature below and above LCST.

The DNA-interactions were tested for the resulting materials, showing that DNA can
be affected probably due to electrostatic interactions.
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