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A B S T R A C T   

Agricultural irrigation and resettlement have significant impacts on carbon storage in arid inland 
river basins. With the background of “Comprehensive development measures for agricultural 
irrigation and resettlement in Shule River Basin (SRB)", this paper uses land use data to estimate 
regional carbon storage through InVEST model and revises the result by using net ecosystem 
productivity (NEP). The influence of land use change on carbon storage and the driving factors of 
carbon storage spatial differentiation were analyzed by using the optimal parameters 
geographical detector (OPGD). It can be inferred from the results that: (1) During 2000–2020, the 
increase of cropland and grassland area is the main type of land use change in the central oasis 
area of Yumen City and Guazhou County. Cumulative carbon storage increased by 1.75 × 107 t. 
(2) NEP in the central oasis area of Yumen City and Guazhou County showed a fluctuating up-
ward trend, and it generally behaves as a carbon sink. The average annual NEP was 1.78 × 105 t, 
and the carbon sink increased by 0.95 × 105 t. (3) The main factors responsible for driving are 
vegetation, elevation, potential evapotranspiration, and precipitation. The explanatory power of 
each factor in carbon storage spatial differentiation was enhanced by the interaction between 
natural and anthropogenic factors. The interaction between vegetation and the human factor is 
more significant than that of the human single factor. (4) Agricultural irrigation and resettlement 
measures did not cause a decline in ecosystem carbon storage in Yumen City and Guazhou County 
in the central part of SRB. Conversely, the region’s ecosystems have seen an increase in carbon 
storage as a result of the increase in cropland. (5) The introduction of the NEP modification 
method and the OPGD model improves the accuracy of carbon storage estimation and obtains 
better driving results in spatial differentiation. The study idea provides a new perspective for the 
estimation of carbon storage as a whole, and provides a reference basis for the formulation of 
ecological protection policies.   

1. Introduction 

Human development is facing a hotspot issue called global climate change that is being increasingly noticed by all sectors of society 
[1–3]. The global climate problem has become a common responsibility of all mankind because climate warming is a threat. In the past 
six meetings of the IPCC, it has become apparent that human activities are significantly contributing to and impacting climate change. 
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The world must reach zero greenhouse gas emissions by halfway through the 21st century to prevent major harm from extreme climate 
change [4]. Changes in ecosystem structure and function will be caused by land use change, which will impact carbon emission and 
carbon sink processes [5]. Carbon storage is the amount of carbon retained in ecosystems. It includes four basic carbon pools [6]: 
Above ground biological carbon (carbon in all living plant material above the soil), underground biological carbon (carbon in the 
living root system of plants), soil carbon (organic carbon distributed in organic and mineral soils), dead organic carbon (carbon in 
litter, and carbon in dead trees standing upside down or standing). However, land use change has a significant impact on carbon 
storage [7,8]. Carbon sinks are processes or mechanisms by which vegetation uses photosynthesis to absorb atmospheric carbon di-
oxide and fix it in the vegetation and soil, thereby reducing the concentration of greenhouse gases in the atmosphere. The capacity of 
ecosystems to sequester carbon is reflected in carbon sinks, which is an important indicator [9,10]. First, arid inland river basins are 
often important areas for carbon cycling, and the study of their carbon storage can help us to better understand and quantify carbon 
cycling processes [11]. Second, the study of carbon storage in arid inland river basins, which are often characterized by water scarcity 
and land degradation, can help us to better assess and predict ecosystem health in these areas [12]. The global carbon balance and 
climate change can be affected by changes in carbon storage in arid inland river basins, which are often sensitive to increased drought 
and global warming [13]. Northwest China is a difficult area for the carbon cycle (The carbon cycle is the process by which carbon is 
exchanged in the biosphere, lithosphere, hydrosphere, and atmosphere. It encompasses a series of key processes and events that enable 
the continuation of life on Earth.) research due to its high aridity, low species richness, and fragile ecological environment. Assessing 
the impact of ecosystem carbon storage on spatial differentiation will help protect ecosystems in inland river basins in arid zones [14]. 

The field sampling method is currently the primary method for estimating ecosystem carbon storage [15], the ecosystem carbon 
flux (Carbon dioxide transfer from one carbon pool to another per unit area per unit time in the carbon cycle.) monitoring method [16], 
and the model estimation method [17]. The field sampling method is based on manual sampling and estimates regional ecosystem 
carbon storage by actual sampling samples. This method is relatively simple in technology, but it has a large workload and a long data 
sampling period, so it is not suitable for use in regions with significant land use changes [18]. The ecosystem carbon flux monitoring 
method uses modern measurement technology to estimate regional carbon storage, which has high accuracy but has high instrument 
requirements and high cost. Compared with the previous two methods, the model estimation method can estimate regional ecosystem 
carbon storage more quickly and clearly show the space and time arrangement and change traits of Carbon storage at various regional 
levels [19]. In the model estimation methods, many studies combined with the GLO-PEM model [20,21], CASA model [22,23], and 
Bookkeeping model [24], to determine how much carbon is stored in the area. The InVEST model is a popular choice for carbon cycle 
studies, because it is easy to calculate and has low data requirements. Numerous researchers have studied the spatial and temporal 
distribution characteristics of regional carbon storage using this model from various perspectives over the last few years. From the 
perspective of urbanization, Hwang et al. [25] evaluated how carbon storage is affected by the establishment of environmental 
protected areas in the context of megacity expansion. Their findings indicate that the establishment of environmentally protected areas 
in megacities leads to an increase in regional carbon sinks. The model was used by Lyu et al. [26] to examine and predict the guides of 
urbanization on carbon storage in Shizuishan City, an arid region in Northwest China. Compact urban growth patterns and envi-
ronmental protection will reduce the negative impact of urbanization on carbon storage, as has been discovered. From the point of 
view of ecological preservation, Wu et al. [27] researched the main factors that contribute to forest carbon storage in areas covered by 
forest protection programs and estimated it in 17 administrative regions of China. In terms of research scale, the influences of land use 
type conversion and management of vegetation to soil carbon storage were examined by Lai et al. [28]. Their research revealed that 
carbon storage was significantly impacted by land use management. The PLUS and InVEST models were employed by Zhang et al. [29] 
to analyze carbon storage in ecosystems in Jiangsu Province, China. Different scenarios were used to predict the connection between 
carbon storage and land use change. Their findings indicated that areas with rapid economic and urbanization development experi-
enced greater carbon storage losses. The Shiyang River Basin (SRB)’s carbon sinks and carbon sources (Carbon sources refer to pro-
cesses, activities or mechanisms in the carbon pool that release carbon to the atmosphere, such as deforestation, coal combustion for 
electricity generation, and other processes.) transitions were analyzed by Zhou et al. [11] through spatial and temporal dynamics. 
Their findings suggest that oasis-desert transition zones are highly vulnerable to carbon storage loss. The InVEST model is commonly 
used in studies to estimate carbon storage, but the InVEST model’s lack of temporal resolution is a problem, and the dynamic changes 
in carbon storage were not significant. Correcting carbon storage, which is estimated by the InVEST model was not considered by most 
scholars because it simplifies the cycle, so by considering the carbon sink during vegetation growth, the accuracy of carbon storage 
estimation can be improved. 

The ecological zoning of SRB is typical for “alpine-oasis-desert”. This characteristic has a significant impact on how humans use and 
exploit natural resources. The central oasis areas of Yumen City and Guazhou County, even though the land use type of SRB is mostly 
undeveloped, possess strong ecological resilience and potential for development. Agriculture irrigation and resettlement measures 
have been implemented since 1996, and the land uses and carbon storage have undergone significant changes in the oasis area in the 
central part of SRB. The carbon storage was calculated and revised using MODIS NPP data and the soil heterotrophic respiration (Rh) 
model simultaneously. Finally, the OPGD is used to find how natural and anthropogenic factors are affecting carbon storage. The 
primary research goals of this paper are (1) to explore the spatio-temporal distribution characteristics of carbon storage alterations due 
to irrigated agriculture and resettlement measures in Yumen City and Guazhou County in the middle SRB, (2) to explore the main 
impacts of agricultural irrigation and resettlement measures on the project area, and (3) to explore the drivers of spatial differentiation 
of carbon storage in Yumen City and Guazhou County. 
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2. Study area 

SRB is one of the three inland river basins in the Hexi region of China and at the westernmost point of China’s Hexi Corridor. In 
terms of administrative divisions, the Shule River flows through Tianjun County of Qinghai Province, Subei County, Yumen City, 
Guazhou County, and Dunhuang City of Gansu Province, and finally enters Ruoqiang County of Xinjiang Uygur Autonomous Region, 
with a total drainage area of 1.03 × 105 km2. The basin is 830–5738 m above sea level, and the overall terrain is high from north to 
south and relatively gentle in the middle. The basin is a continental arid desert climate, rich in light and heat resources, long frost-free 
period, less precipitation, evaporation, annual average precipitation between 46 and 64 mm, annual evaporation of 2894–3043 mm, 
annual average temperature of 6.7–8.9 ◦C. The basin is dominated by low vegetation coverage, and the spatial distribution difference is 
large, mainly concentrated in Yumen City and Guazhou County Hexi corridor oasis agroecological area. This oasis agro-ecological area 
is the main irrigated agricultural area of SRB with a concentration of migrant population. Therefore, in the following sections, we focus 
on the carbon storage in this area (Fig. 1). 

3. Data and methods 

3.1. Data 

The land use data used in this paper are derived from the 1990–2020 China Land Cover Annual Dataset (CLUD), with a spatial 
resolution of 30 × 30 m. The data are used to analyze the land use in China [30]. In this paper, the land use data of SRB from 2000 to 
2020 are obtained by cropping, and the land use types include cropland, forest, grassland, water area, unused land, and construction 
land. The NPP (Net Primary Production) data were derived from MOD17A3HGF NPP data published by LP DACC with a spatial 
resolution of 500 m. The NPP data were used as a basis for the development of the NPP data. The meteorological data were obtained 
from the National Earth System Science Data Center (http://www.geodata.cn) with a spatial resolution of 1 km, and were cropped and 
projected to obtain the annual mean temperature, annual precipitation, and annual potential evapotranspiration for SRB for the years 
2000–2020. The digital elevation model (DEM) was obtained from the United States Geological Survey (https://lta.cr.usgs.gov/ 
HYDRO1K) with a spatial resolution of 90 m. The slope as well as the direction of SRB was obtained using the Slope and Slope Di-
rection tool in ArcGIS 10.8. Population density data were obtained from WorldPop (http://www.worldpop.org.uk), which mainly 
utilizes Landsat remote sensing imagery to identify residential areas, and then uses census and other data to generate regional pop-
ulation raster data using Random Forest Estimation with a spatial resolution of 1 km. The GDP spatial distribution data were obtained 
from the Resource and Environmental Sciences and Data Center (https://www.resdc.cn/Default.aspx) with a spatial resolution of 1 
km. The NDVI data were obtained from the MOD13A3 dataset (https://search.earthdata.nasa.gov/search), which is a month-by-month 
NDVI data, and the maximum synthesis method was used to obtain year-by-year NDVI data from 2000 to 2020 with a spatial resolution 
of 1 km. SRB boundary data were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn). The adminis-
trative division data were obtained from the National Geomatics Center of China (http://www.ngcc.cn). 

Projection and resampling of all spatial data, the new projection system being the Albers projection, and the resolution is 1 km. This 
step can reduce regional distortion and maintain data consistency. 

After reviewing the relevant literature, the carbon density (Carbon storage per unit area) data was corrected [6,31,32]. SRB’s 

Fig. 1. SRB and the projection area.  
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climate conditions were utilized to obtain the final carbon density values for every land use type [33,34]. 
The demographic statistics for Yumen City and Guazhou County are from the China County Statistical Yearbook. The project’s basic 

data were obtained from relevant government websites information and study reports on SRB agricultural irrigation and resettlement 
practices (http://xbkfs.ndrc.gov.cn/ldzc, http://www.gsdrc.gov.cn). 

Table 1 displays the primary data sources. 

3.2. Methods 

The modified carbon storage in the oases of central SRB has been estimated using a framework presented in this study (Fig. 2). The 
framework consists of two main parts: estimation and modification of carbon storage in the Yumen City and Guazhou County agri-
cultural irrigation and migration area in the central part of the SRB, and the analysis of its drivers using the OPGD. 

3.2.1. Carbon storage estimation and carbon density coefficient correction 
The carbon storage in SRB was calculated by using the InVEST model in this paper. This model has four basic carbon pools. As 

follows is the calculation formula [6]: 

Ctotal =Cabove + Cbelow + Csoil + Cdead (1)  

where Ctotal is the total carbon storage. Cabove is the amount of carbon stored above the ground. Cbelow is the amount of carbon stored 
under the ground. Csoil is soil carbon storage. Cdead is dead organic carbon storage. 

This study’s carbon density data is based on research findings related to the country and climate zone with SRB. Adjusting carbon 
density values is necessary due to variations in soil properties and land use. Average annual precipitation influences soil and biomass 
carbon density through a formula described by Alam et al. [35]. Mean annual temperature and biomass carbon density were correlated 
using equations improved by Giardina et al. [33] and Chen et al. [34]. As follows is the calculation formula [33,34]: 

CSP = 3.398 × P + 3996.1 (2)  

CBP = 6.7981e0.00541p (3)  

CBT = 28 × T + 398 (4)  

where CSP is soil carbon density, CBP and CBT are biomass carbon densities, P is average annual precipitation and T is average annual 
temperature. Substituting precipitation and temperature for SRB and the whole country into the above equation (2000–2020, average 
annual temperature of the whole country and SRB is 9.58 ◦C and 8.8 ◦C, respectively, and annual precipitation of the whole country 
and SRB is 673.9 mm and 63 mm), carbon density in SRB is corrected by the ratio of the two. As follows is the calculation formula [33, 
34]: 

KBP =
C′

BP

C″
BP

(5)  

KBT =
C′

BT

C″
BT

(6)  

KB =KBP × KBT =
C′

BP

C″
BP

×
C′

BT

C″
BT

(7)  

Table 1 
Data description.  

Data Resolution Sources 

Land use data 30 m The Earth System Science Data [30] (https://zenodo.org/) 
Meteorological data 1000 m The National Earth System Science Data Center (http://www.geodata.cn) 
Population density data 1000 m The WorldPop (http://www.worldpop.org.uk/) 
DEM 90 m The United States Geological Survey (https://lta.cr.usgs.gov/HYDRO1K/) 
NDVI 1000 m MOD13A3 (https://search.earthdata.nasa.gov/search/) 
NPP 500 m MOD17A3HGF (https://lpdaac.usgs.gov/dataset_discovery) 
GDP 1000 m The Resource and Environmental Sciences and Data Center (https://www.resdc.cn) 
Boundary – The National Tibetan Plateau Data Center (https://data.tpdc.ac.cn) 
Administrative divisions – The National Geomatics Center of China (http://www.ngcc.cn/) 
Carbon density – From related literature [6,31,32] 
Demographic data – The China Statistical Database (https://www.shujuku.org/) 
Project basic data – National Development and Reform Commission 

Gansu Development and Reform Commission  
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KS =
C′

SP

C″
SP

(8)  

where KBP and KBT are the correction coefficients of precipitation factor and temperature factor of biomass carbon density. C′ and C″ are 
carbon density data for SRB and the country. KB and KS are the correction coefficients of biomass carbon density and soil carbon 
density. From calculation formula (2) to (8), it follows that the value of KBP is 0.037, KBT is 0.967, KB is 0.036 and KS is 0.669. Building 
on existing references [31,32,36], the corrected carbon density data of SRB is obtained by multiplying the carbon density correction 
coefficient with the national carbon density value (Table 2). 

Fig. 2. Research framework.  

Table 2 
Carbon density in the area of study.  

Landuse type Cabove/(t⋅hm− 2) Cbelow/(t⋅hm− 2) Csoil/(t⋅hm− 2) Cdead/(t⋅hm− 2) 

Cropland 0.21 2.91 72.62 13 
Forest 1.53 4.17 158.7 13 
Grassland 1.27 3.11 66.92 2 
Water area 0.60 0 0 0 
Construction land 0.50 0 0 0 
Unused land 0.33 0 14.47 0  
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3.2.2. Net ecosystem productivity estimation model 
The strength of carbon sources and sinks is often measured by NEP [37]. The NEP can be got by subtracting soil heterotrophic 

respiration (Rh) from NPP without taking into account other natural conditions. As follows is the calculation formula [37]: 

NEP=NPP－Rh (9) 

Soil heterotrophic respiration is greatly influenced by both temperature and precipitation. Pan et al. [38] used temperature, 
precipitation, and soil heterotrophic respiration models to calculate carbon sinks in arid regions. The study area’s location in the 
semi-arid zone resulted in its model being used for estimation. As follows is the calculation formula [38]: 

Rh = 0.22×
[(

e0.0912T)+ ln(0.3145P+ 1)
]
× 30 × 46.5% (10)  

where T is average annual temperature and P is average annual precipitation. 

3.2.3. Trend analysis 
In this paper, a single linear regression analysis method [39] was used to perform linear regression on pixel-by-pixel carbon storage 

and NEP respectively. Next, we analyzed the trend of its carbon storage and NEP. As follows is the calculation formula [39]: 

Slope=
n ×

∑n

i=1
(i × Ci) −

∑n

i=1
i
∑n

i=1
Ci

n ×
∑n

i=1
i2 −

(
∑n

i=1
i
)2 (11)  

where slope indicates the slope of the trend line, n is the length of the time series, i is the chronological order, Ci is the value of carbon 
storage in the year i, NEP, and modified carbon storage pixel. 

3.2.4. The OPGD model 
The detection of spatial divergence and the identification of its drivers can be achieved through the use of geodetector, a statistical 

method [40]. However, traditional geodetector is highly subjective. Discrete continuous variables yield similar spatial distributions 
between the two variables when the independent variable has a significant impact on the dependent variable. The optimal size of 
spatially stratified heterogeneity will be affected due to this. Geographic features and spatial variables can be used by the OPGD to 
extract more information during the parameter optimization modeling process. It is versatile enough to be applied to many types of 

Fig. 3. Land use types in Yumen City and Guazhou County. 
Note: i includes Xihu Township and Guazhou Township; area ii includes Lianghu Township; area iii includes Liuhe Township, Huangzhawan 
Township, Shimousihoro Township, and Hedong Township; and area iv includes Liuhu Township, Xiaojinwan Township, Chijin Township, and 
Qingquan Township. 

X. Zhu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e25305

7

spatial data for global and regional spatial analysis [41]. The OPGD is used to examine how spatial differentiation affects carbon 
storage in SRB. We apply several classification methods in R. And the classification level is 3–9. For spatial discretization, the com-
bination of parameters with the highest q value is selected. The extent of interaction and whether there is an interaction between two 
factors can be determined by calculating the one-factor q value and the two-factor interaction q value. As follows is the calculation 
formula [40]: 

SSW =
∑L

h=1
Nhσ2

h (12)  

SST =Nσ2 (13)  

q= 1－SSW
SST

(14)  

where the factor’s explanatory power is expressed through q, which ranges from 0 to 1, and the higher the number, the stronger its 
power. The explanatory variable is stratified in h. The variance of layer h and whole region Y values is represented by σh

2 and σ2. SSW 
and SST can be employed to represent the total variance of the entire region and the sum of intra-layer variance. 

4. Results 

4.1. Agricultural irrigated land and immigration status 

Agriculture irrigation and resettlement measures have been implemented since 1996. The operating period of the immigration 
measures is 10 years, and the later period is the stable period of agricultural irrigation and the implementation effect of immigration. 
The central oasis area around Yumen City and Guazhou County had the highest growth in agricultural irrigated farmland area between 
2000 and 2010 (Fig. 3), while the area of grassland around Yumen City also increased correspondingly. From 2010 to 2020, scattered 
parts of grassland in Yumen City and Guazhou County were converted into agricultural irrigated land. The distribution of grassland 
around Yumen City remained unchanged, and most of the other areas were unused. The areas in the red boxes are areas of high 
variability in land-use types. 

In Yumen City and Guazhou County, between 2000 and 2010, the shift in land use type was dominated by the change of unused 
land to grassland (Fig. 4a), the change area was 9.00 × 104 hm2 (Table 3). The area that was converted from unused land to cropland 
was 1.34 × 104 hm2, and the area that was converted from grassland to cropland was 2.36 × 104 hm2. However, the change area from 
cropland to grassland was 0.74 × 104 hm2 (Table 3). From 2010 to 2020, the amount of unused land transfer declined, while the 
amount of grassland transfer increased significantly (Fig. 4b). Among them, the change area of unused land to cropland was 0.60 × 104 

hm2, the change area of grassland to cropland was 2.63 × 104 hm2, the change area of grassland to unused land reached 3.47 × 104 

Fig. 4. Amount of land use change in Yumen City and Guazhou County. 
Note: (a) denotes land use type changes in Yumen City and Guazhou County from 2000 to 2010; (b) denotes land use type changes in Yumen City 
and Guazhou County from 2010 to 2020. 
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hm2, and the change area of unused land to grassland was 3.27 × 104 hm2 (Table 4). Among them, the net increase of cropland was 
about 5.41 × 104 hm2, and the net increase of grassland was about 4.12 × 104 hm2. 

The population of the central oasis area in Yumen City and Guazhou County has shown obvious fluctuation characteristics since the 
implementation of the immigration policy (Fig. 5). Between 2000 and 2010, there was a fluctuating upward trend for the population, 
followed by a downward trend in 2010. In 2012, the population peaked at about 3.14 × 105, a net increase of about 3.30 × 104 

compared to 2000. The agricultural population showed a rapidly rising trend from 2000 to 2012, reaching a peak of about 2.19 × 105 

in 2012, and maintaining a relatively stable level from 2012 to 2020. Compared with 2000, the net increase of agricultural population 
was about 9.80 × 104. 

4.2. Temporal and spatial changes of carbon storage in Yumen City and Guazhou County 

The calculations from the carbon storage module of the InVEST model were imported into Origin software to visualize the results 
(Fig. 6). The central oasis region is where high carbon storage areas are concentrated. Carbon storage in the central oasis areas of 
Yumen City and Guazhou County follows a pattern of change that involves first increasing and then stabilizing. The regional storage of 
carbon underwent a significant growth trend from 2000 to 2010. After 2008, the trend of increase slowed down, reaching its highest 
value in 2013, approximately 1.631 × 108 t, and then maintaining a relatively stable level. The average annual carbon storage in 20a is 
about 1.552 × 108 t. 

The western townships of Lianghu, Xihu Township, and Guazhou County hold the majority of the high carbon storage areas in 
terms of spatial concentration. (Fig. 7i–7ii); a high-value carbon storage area in the middle, with Huangzhawan Township, Liuhe 
Township, and Hedong Township as the main areas (Fig. 7iii); carbon storage in the east is highly valued, with Liuhu Township and 
Xiaojinwan Township being the primary areas (Fig. 7iv). The remaining areas with high carbon storage show a decentralized spatial 
pattern. In most areas, cropland and grassland have high carbon storage. The land that was not used had a less effective carbon storage 
capacity and was mostly distributed on the northern and southern sides of the central oasis area. From 2000 to 2010, carbon storage 
increased mainly in the western region dominated by Guazhou Township, and in the central region dominated by Huangzhawan 
Township. From 2010 to 2020, carbon storage increased mainly in the eastern region of Liuhu Township and Xiaojinwan Township 
(Fig. 7iv). 

4.3. Temporal and spatial changes of NEP in Yumen City and Guazhou County 

The NEP values were calculated by formula (9) to (10). Then the spatial statistics were carried out in ArcGIS, and finally, the spatial 
statistics results were imported into Origin software to visualize the results (Fig. 8). During 2000–2020, the trend of change showed an 
upward trend in the total amount of NEP in the study area. The mean NEP in 20a is about 1.78 × 105 t. The maximum amount of NEP in 
2019 was 2.24 × 105 t. The minimum value was 1.29 × 105 t in 2001. Although the total amount of NEP shows an overall increasing 
trend, the change is not stable enough, and the annual fluctuation is large. The total amount of NEP decreased in 2020, reaching 1.87 ×
105 t. 

Table 3 
Yumen City and Guazhou County land use change situation from 2000 to 2010 (hm2).   

2010 Total  

Cropland Forest Grassland Water area Construction land Unused land  

Cropland 79351.6 – 7435.7 177.4 16.5 213.5 87194.7  
Forest 7.0 78.9 2.8 – – 1.6 90.3  
Grassland 23615.3 3.8 206734.0 231.9 64.6 11265.9 241915.5 

2000 Water area 97.7 – 187.9 1859.3 1.3 199.0 2345.2  
Construction land 1.4 – 2.7 2.0 112.6 0.2 118.9  
Unused land 13453.2 2.4 90031.3 689.5 41.7 2164230.0 2268448.1  
Total 116526.2 90.1 304394.4 2960.1 236.7 2175910.2 2600112.7  

Table 4 
Yumen City and Guazhou County land use change situation from 2010 to 2020 (hm2).   

2020 Total  

Cropland Forest Grassland Water area Construction land Unused land  

Cropland 108954.0 – 7152.9 61.5 18.2 331.2 116517.8  
Forest – 80.1 1.7 – – 3.5 85.3  
Grassland 26316.3 6.5 243076.0 180.9 29.4 34783.7 304392.9 

2010 Water area 32.1 – 148.0 2676.4 1.4 102.5 2960.4  
Construction land 2.3 – 5.6 4.3 221.7 2.9 236.8  
Unused land 6026.3 1.5 32773.1 334.7 25.2 2136750.0 2175910.8  
Total 141330.9 88.1 283157.3 3257.9 295.9 2171973.8 2600103.9 

Note: “-” indicates that parts of the land use type with insignificant changes in area are not counted. 
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In terms of space, the total amount of NEP in Yumen City and Guazhou County presents a spatial distribution characteristic that the 
central oasis region is high and the north and south are low (Fig. 9), and Hedong Township are the main areas with high carbon sink 
value (Fig. 8iii), and Chijin Township and Xiaojinwan Township (Fig. 9iv). The internal changes of NEP in Yumen City and Guazhou 
County are showing an upward trend in terms of spatial trends. Among them, the changes in the central oasis region were significant 
(Fig. 9ii–9iii), while the changes in the southern oasis region were not significant, and the partially dispersed carbon sink region 
disappeared. 

4.4. Temporal and spatial changes of carbon storage after modification in Yumen City and Guazhou County 

The modified carbon storage values were spatially counted using ArcGIS, and then the spatial statistics were imported into Origin 
software to visualize the results (Fig. 10). Based on the annual NEP amount in the study area, the calculation result of the InVEST model 
was revised. Because the total amount of NEP is smaller than that of carbon storage, the change trend and numerical representation of 
the result after carbon storage revision have a general change trend compared with that before revision. The modified carbon storage 
has a different spatial and temporal distribution. The modified carbon storage in the central oasis region of Yumen City and Guazhou 
County still showed a change characteristic of “first increasing and then stable", which showed an increasing trend in general. The 
trend of carbon storage increased significantly from 2000 to 2010, and reached the highest value in 2013, about 1.625 × 108 t. After 
2008, the increase trend slowed down. 

In terms of space, the regions that have a high carbon storage value after modification are concentrated in Guazhou County, 
Lianghu Township, Liuhe Township, Xiaojinwan Township, and Chijin Township, showing a spatial pattern of regional aggregation 
and scattered distribution on the whole (Fig. 11). Regarding the trend of spatial variation, carbon storage has mainly increased after 
modification. The modified high carbon storage areas are concentrated in the central and eastern parts (Fig. 11). In 2010 and 2020, the 

Fig. 5. Population and agricultural population of Yumen City and Guazhou County. Note: The population represented by the red dashed line is the 
total population of the study area; agricultural population represented by the yellow line is the number of people engaged in agricultural activities in 
the study area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. The variation of carbon storage in Yumen City and Guazhou County.  
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Fig. 7. Spatial distribution of carbon storage in Yumen City and Guazhou County. Note: Area i includes Xihu Township and Guazhou County 
Township; area ii includes Lianghu Township; area iii includes Liuhe Township, Huangzhawan Township, Shimousihoro Township, and Hedong 
Township; and area iv includes Liuhu Township, Xiaojinwan Township, Chijin Township, and Qingquan Township. 
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carbon storage of Huangzhawang Township, Xiaoxihao Township, and Chijin Township showed an obvious high-value area 
(Fig. 11iii–11iv). An increase in cropland area in the central oasis of Yumen City has resulted in an increase in carbon storage. High 
carbon storage is also present in Jinwan Township located in the east of the oasis (Fig. 11iv). 

4.5. Drivers of spatial differentiation of carbon storage 

4.5.1. Determination of optimal parameters of driving factors 
In this paper, nine influence factors including elevation (X1), slope (X2), aspect (X3), temperature (X4), vegetation (X5), population 

(X6), GDP (X7), potential evapotranspiration (X8) and precipitation (X9). The optimal parameter results show that different dis-
cretization methods and the choice of different intervals will make the q values of drivers different. Specifically, elevation (X1) has a 
maximum q value at an equal interval classification of 7 (Fig. 12a); slope (X2) has a maximum q value at a standard deviation clas-
sification of 9 (Fig. 12b); aspect (X3) has a maximum q value at a standard deviation classification of 9 (Fig. 12c); temperature (X4) has 
a maximum q value at a natural breaks classification of 9 (Fig. 12d); vegetation (X5) has a maximum q value at a standard deviation 
classification of 9 (Fig. 12e); population (X6) has a maximum q value at a natural breaks classification of 8 (Fig. 12f); GDP (X7) has a 
maximum q value at a quantile classification of 6 (Fig. 12g); potential evapotranspiration (X8) has a maximum q value at an equal 
interval classification of 7 (Fig. 12h); and precipitation (X9) has a maximum q value at an equal interval classification of 9 (Fig. 12i). 
From the above optimal discretization results, the discretization of the driving factors in this study is mainly based on equal interval, 
standard deviation, and natural breaks. Moreover, the main classification interval is 9. 

4.5.2. Factor detection and interactive detection 
The q value is obtained from formula (12) to (14). The single-factor detection results (Table 5) reveal that each factor has a 

prominent impact on spatial distribution characteristics of carbon storage in the study area. Vegetation is the most significant factor in 
explaining the spatial differentiation in carbon storage among natural factors. Elevation, potential evapotranspiration, and precipi-
tation have a slightly weaker ability to explain spatial differentiation in carbon storage. The natural factor with the weakest 
explanatory power for spatial differentiation is aspect. GDP is the most significant contributor to the spatial differentiation among the 
anthropogenic factors, while Population is the least significant. 

The interaction test revealed that the interaction between the two factors was greater than the effect of the single factor (Fig. 13). 
Double-factor enhancement and nonlinear enhancement were the main characteristics of the interactions among the factors. Nonlinear 
enhancement is observed when X1, X2, X3, X4, and X6 interact with X3, X4, X6, X7, X8, and X9. This suggests that the influence of 
factors on the spatial distribution of carbon storage can be greatly enhanced by specific combinations. The main interaction between 
vegetation and other factors involved double-factor enhancement, which had an effect on carbon storage spatial differentiation that 
exceeded 69 %. According to the results, the main factor that influences the spatial distribution characteristics of carbon storage in 
Yumen City and Guazhou County is the interaction between vegetation and other factors. From the perspective of time change, the 
interaction between population, GDP and vegetation has significantly increased from 2000 to 2020, and the interaction between other 
natural factors and vegetation has also greatly increased (Fig. 13a–c). Each factor’s explanatory power for the spatial differentiation of 
carbon storage is enhanced by the interaction between natural and anthropogenic factors. 

Fig. 8. The variation of total NEP in Yumen City and Guazhou County.  
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5. Discussion 

5.1. Reliability of the NEP modified carbon reserves 

The InVEST model is not without its limitations in studying carbon storage changes in long-term ecosystems. The model relies on 
land use type changes to get changes in carbon storage. Secondly, this model ignores the carbon sink in the vegetation growth process, 
which leads to a certain deviation between the actual carbon storage and the estimated carbon storage. Using NEP to modify the 
InVEST model estimates can improve the accuracy of carbon storage estimates to some extent. Based on this, NEP was used to quantify 
the carbon sink during vegetation growth to correct the carbon storage in the central oasis area in Yumen City and Guazhou County. 
Ren et al. [32] obtained carbon density for Gansu Province only by correcting the national carbon density data. The impact of land use 
change on carbon storage was assessed by them. By correcting carbon storage using NEP, this paper offers a new approach to improve 
carbon storage estimation accuracy. This paper extends the temporal resolution of the study area simultaneously. The spatial and 
temporal changes in regional carbon storage become more clearly characterized due to the improved temporal resolution. 

5.2. The main impacts of agricultural irrigation and resettlement measures on the project area 

The carbon cycle in terrestrial vegetation can be analyzed qualitatively and quantitatively using NEP, making it an important index 
to characterize regional carbon sources and sinks. 2000–2020, the total amount of NEP in Yumen City and Guazhou County showed an 
upward trend on the whole, and the carbon sink capacity was significantly changed. This is similar to the results of Li et al. [42] who 
argue that the increase in precipitation delays the Gross Primary Productivity (GPP) peak, which makes semi-arid grassland ecosystems 
behave as carbon sinks in the carbon cycle. NEP’s trend will be directly influenced by changes in soil heterotrophic respiration (Rh) and 
NPP. The response of Rh and NPP to temperature and precipitation was examined by Naidu et al. [43]. According to their findings, 
precipitation is the primary factor influencing the change in soil heterotrophic respiration when the climate is warming. Since the 
implementation of agricultural irrigation and resettlement measures in SRB, the cultivated land area and grassland cover area in 
Yumen and Guazhou Oasis have increased significantly, which makes the regional ecosystem NPP show a significant increasing trend. 
Although precipitation and temperature increased, the amplitude of soil heterotrophic respiration did not change much during this 
period, indicating an overall increasing trend in regional NEP. The spatio-temporal evolution and drivers of carbon storage in the 
Yangtze River Delta (YRD) were analyzed by Gao et al. [44]. The YRD has seen a significant loss of carbon storage due to population 
growth and urbanization, according to their findings. 

Different from the above studies, the focus of this study is on the changes in carbon storage in the oasis region of the Middle SRB 
over time, considering agricultural irrigation and resettlement measures. The central oasis region of SRB experienced a significant 
increase in carbon storage due to the increase in cropland and grassland area from 2000 to 2020, as shown by the results. Since the 
implementation of the agriculture irrigation and resettlement measures in 1996, the population of Yumen City and Guazhou County at 
the end of the year showed a trend of fluctuation and decline after reaching a peak in 2012, but the agricultural population showed an 

Fig. 9. Spatial distribution of total NEP in Yumen City and Guazhou County. 
Note: Area i includes Xihu Township and Guazhou County Township; area ii includes Lianghu Township; area iii includes Liuhe Township, 
Huangzhawan Township, Shimousihoro Township, and Hedong Township; and area iv includes Liuhu Township, Xiaojinwan Township, Chijin 
Township, and Qingquan Township. The blank areas are due to the fact that some of the areas in the MOD17A3HGF raw data have a value of 
No data. 

Fig. 10. The variation of modified carbon storage in Yumen City and Guazhou County.  
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upward trend, with a net increase of about 98,000. The migrating population is predominantly agricultural, and the region’s carbon 
storage has increased because of the expansion of cropland and grassland areas. Following the implementation of measures like 
returning pastures to grasslands, the Government has adopted projects to improve irrigation area support facilities and conserve water. 
The ecological environment has been improved by these projects. Nie et al.’s findings are similar to this. The impact of land use change 
on carbon storage under different scenarios was assessed by Nie et al. [14] by combining the CLUMondo and InVEST models. They 
discovered that under the natural growth scenario, carbon storage in urban development zones would decrease, while that in agri-
cultural production areas and key ecological functional areas would increase. 

From the ecological point of view, the migration and agricultural irrigation measures not only did not reduce the regional carbon 
storage but increased it to a certain extent. The promotion of regional economic development from a social and economic perspective is 
greatly influenced by migration and irrigated agriculture measures. Population migration increased the agricultural population in 
Yumen City and Guazhou County. Agricultural irrigation projects greatly increased the cultivated land area, and agricultural crop 
yields increased to varying degrees (Fig. 14). Among them, grain output and oil-crop output showed an upward trend, but the fluc-
tuation range was large. Cotton production is at a relatively stable level. Although meat production is low, it is on the increase trend in 
general, from 0.74 × 104 t in 2000 to 1.78 × 104 t in 2020. The area used to grow feed crops has significantly increased due to the 
increase in cropland. In the primary sector, the industrial model is gradually changing from traditional agriculture to a combination of 
agriculture and livestock husbandry. The growth value of the primary industry increased from 4.15 × 104 million yuan in 2000 to 3.79 
× 105 million yuan in 2020 (Fig. 14). The agricultural population’s growth has been a significant factor in the development of the 
primary industry in the study area. Moreover, the per capita disposable income of the rural population in Yumen City and Guazhou 
County increased significantly in 2020, from 0.66 × 104 yuan in 2000 to 3.93 × 104 yuan in 2020. Rural residents have seen a sig-
nificant increase in their standard of living and quality of life, which is reflected in their per capita disposable income. Therefore, 
resettlement and agricultural irrigation measures not only increased the carbon storage in Yumen City and Guazhou County, but also 
played a big role in promoting the advancement of its primary industry and improving the living conditions of rural residents. 

5.3. Spatial drivers 

Yumen City and Guazhou County’s oasis area in the central area have been detected by single-factor detection, which shows that 
vegetation, potential evapotranspiration, and precipitation are the main driving factors. Unexpectedly, this paper finds that the single- 
factor detection results of GDP and population are relatively small, which is different from the results of Li et al. [45] and Xiang et al. 
[46]. Because the population in the study area is concentrated in the population gathering area such as the county seat and the land 
type of this part of the region is mainly construction land, and the rest of the agricultural population is scattered in various regions by 
township. Population dispersion and sparseness are the main characteristics of population distribution in northwest China. Thus, in 
agricultural irrigation, fewer people are needed to manage a large portion of the cultivated area. Because Worldpop is the source of 
population density data used in this paper [47]. The data set was produced taking into account the number of administrative unit 
population and night light intensity, and the night light intensity of Yumen City and Guazhou County is very low, so the population 
density of this area appears low on the grid. The low explanatory power of population density for the spatial differentiation of carbon 
storage in single-factor detection results could be due to these factors. Under certain combination conditions, the spatial distribution of 
carbon storage can be greatly enhanced by the influence of both anthropogenic and natural factors, as revealed by the results of 
interaction detection. This indicates that the central oasis area of Yumen City and Guazhou County has spatial distinctions in carbon 
storage as the result of the joint action of natural and socio-economic factors. Although the single-factor explanatory power of human 
factors is weak, it has high explanatory power in the interaction, indicating that agricultural irrigation and resettlement projects 
greatly increase carbon storage in the central oasis region. 

5.4. Limitation and prospect 

This paper is set in the context of SRB’s agricultural irrigation and migration measures. The results of the InVEST model are 
corrected by using NEP. The accuracy of carbon storage estimation is improved to some extent. In addition, OPGD was used to 
discretely optimize the continuous variable factors and to more objectively analyze the impact of each driver on the spatial differ-
entiation of carbon storage. Nevertheless, there are some uncertainties in this paper. First, the InVEST model fails to account for the 
many factors that influence the carbon cycle, such as photosynthesis rates and soil microbial activity. Secondly, the potential impact of 
water resource factors on carbon storage in oasis regions is not considered in this paper, because the distribution of water resources will 
cause changes in vegetation, which will indirectly cause changes in carbon storage, and such changes are difficult to measure. Finally, 
the exploration of factors that affect carbon storage will be affected by the distribution of population density, because compared with 
the population concentration area in the southeast of China, the population distribution in the semi-arid area is scattered and the 
migration rate is high. Therefore, higher spatial and temporal resolution population density data will be utilized in future studies, and 
the effects of the introduction of water resources on vegetation growth and distribution will be considered, which will better improve 

Fig. 11. Spatial distribution of modified carbon storage in Yumen City and Guazhou County. 
Note: Area i includes Xihu Township and Guazhou County Township; area ii includes Lianghu Township; area iii includes Liuhe Township, 
Huangzhawan Township, Shimousihoro Township, and Hedong Township; and area iv includes Liuhu Township, Xiaojinwan Township, Chijin 
Township, and Qingquan Township. 
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the accuracy of carbon storage estimation. 
Overall, the use of the NEP modification method can improve the accuracy of carbon storage estimation in the study area. 

Meanwhile, the introduction of the OPGD model to determine the optimal parameters of driving factors has better analytical results 
compared to the traditional GD model. Moreover, in terms of spatial and temporal distribution, the carbon storage in the study area 

Fig. 12. Continuous factor optimal discretization. 
Note: Quantile, standard deviation (sd), natural breaks (natural), equal interval (equal), and geometrical interval (geometric) are five spatial data 
classification methods in ArcGIS. The OPGD model optimally discretizes the driving factors in the study, and (a)–(i) are the discretization results for 
different driving factors, with the value of the horizontal axis is the number of discretization intervals and the value of the vertical axis is the q value. 

Table 5 
q value of driving factors for spatial differentiation of carbon storage in Yumen City and Guazhou County.   

Natural factor Anthropogenic factor 

Elevation 
(X1) 

Slope 
(X2) 

Aspect 
(X3) 

Temperature 
(X4) 

Vegetation 
(X5) 

PE (X8) Precipitation 
(X9) 

Population 
(X6) 

GDP (X7) 

2000 0.413 0.283 0.05 0.291 0.753 0.432 0.354 0.039 0.154 
2010 0.371 0.246 0.03 0.296 0.689 0.395 0.407 0.042 0.075 
2020 0.367 0.253 0.04 0.284 0.823 0.381 0.349 0.055 0.204  

Fig. 13. Interaction detection results of driving factors for spatial differentiation of carbon storage in Yumen City and Guazhou County. 
Note: (a) is the result of driver factors interaction detection in 2000, (b) is the result of driver factors interaction detection in 2010, and (c) is the 
result of driver factors interaction detection in 2020. In the figure, the color changes from blue to red, indicating that the q value is from low to high. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 14. Agricultural, livestock production, and per capita disposable income of rural residents in Yumen City and Guazhou County. 
Note: Agricultural, livestock production, and per capita disposable income of rural residents in Yumen City and Guazhou County are from the China 
County Statistical Yearbook. 

X. Zhu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e25305

18

showed an elevated trend in the context of agricultural irrigation and migration measures. This is contrary to the conclusion in most 
current studies that human activities have led to a decline in ecosystem carbon storage, which provides a new perspective for similar 
studies. Finally, research on carbon storage in arid inland river basins will be an important part of overall ecological conservation and 
will help to provide a reference for the formulation of ecological conservation policies in arid areas. In future studies, exploring the 
coordinated relationship between human social development and ecological preservation and finding a balance between them will be 
an issue worth pondering. 

6. Conclusion 

Taking into account the agriculture irrigation and resettlement measures, the central oasis area around Yumen City and Guazhou 
County is the focus of this paper. The InVEST model was used to estimate regional carbon storage using land use data, and the results 
were adjusted by using NEP. Finally, the OPGD was utilized to evaluate the factors that contribute to the spatial heterogeneity in 
carbon storage in the central oasis areas of Yumen City and Guazhou County. Here are the main findings.  

(1) 2000–2020, the net growth of cropland area and grassland area in Yumen City and Guazhou County is about 5.41 × 104 hm2 and 
4.12 × 104 hm2. The net increase in population was approximately 9.80 × 104 people. Carbon storage increased from 1.421 ×
108 t in 2000 to 1.596 × 108 t in 2020. Cumulative carbon storage increased by 1.75 × 107 t. The central and eastern regions are 
the main locations for high carbon storage, while some areas in the north and south are low carbon storage areas.  

(2) 2000–2020, the NEP trend in the study area’s central oasis area fluctuated upwards. Average annual NEP was 1.78 × 105 t, and 
the cumulative increase of carbon sink was 0.95 × 105 t. Significant differences exist in the spatial distribution of NEP, with 
higher levels in the east and lower levels in the west and south.  

(3) The OPGD indicates that there are significant variations in the effects of various drivers on the spatial differentiation of carbon 
storage. Vegetation, elevation, potential evapotranspiration, and precipitation are the main driving factors. The explanatory 
power of spatial differentiation of carbon storage is enhanced when natural and anthropogenic factors interact. In particular, 
the interaction between vegetation and anthropogenic factors is greater than the role of anthropogenic single factors.  

(4) Agricultural irrigation and resettlement measures did not cause a decline in ecosystem carbon storage in Yumen City and 
Guazhou County in the central part of SRB. Conversely, the increase in cropland has led to an increase in carbon storage in the 
ecosystems of the region. The standard of living of agricultural settlers has improved to some extent.  

(5) NEP modification method can improve the accuracy of carbon storage estimation. The introduction of the OPGD model to 
determine the optimal parameters of driving factors has better analytical results compared to the traditional GD model. This 
study provides a new perspective for carbon storage estimation as a whole, and provides a reference basis for the formulation of 
ecological protection policies. 
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