
pharmaceutics

Article

Metal Organic Framework@Polysilsesequioxane
Core/Shell-Structured Nanoplatform for
Drug Delivery

Liangyu Lu 1, Mengyu Ma 1, Chengtao Gao 1,2, Hongwei Li 1, Long Li 1, Fuping Dong 1,* and
Yuzhu Xiong 1,*

1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China;
gs.lylu17@gzu.edu.cn (L.L.); mmymamengyu@163.com (M.M.); chengtaogao@163.com (C.G.);
lhwnoonoo123@163.com (H.L.); lilong@gzu.edu.cn (L.L.)

2 National Engineering Research Center for Compounding and Modification of Polymer Materials,
Guiyang 550025, China

* Correspondence: fpdong@gzu.edu.cn (F.D.); yzxiong@gzu.edu.cn (Y.X.); Tel.: +86-15519037121(F.D.);
+86-851-83627518 (Y.X.)

Received: 15 November 2019; Accepted: 16 January 2020; Published: 25 January 2020
����������
�������

Abstract: Modern pharmaceutics requires novel drug loading platforms with high drug loading
capacity, controlled release, high stability, and good biocompacity. Metal–organic frameworks
(MOFs) show promising applications in biomedicine owing to their extraordinarily high surface
area, tunable pore size, and adjustable internal surface properties. However, MOFs have low
stability due to weak coordinate bonding and limited biocompatibility, limiting their bioapplication.
In this study, we fabricated MOFs/polysilsesquioxane (PSQ) nanocomposites and utilized them
as drug carriers. Amine-functionalized MOF (UiO-66-NH2) nanoparticles were synthesized and
encapsulated with epoxy-functionalized polysilsesquioxane layer on the surface via a facile process.
MOFs possessed high surface area and regular micropores, and PSQs offered stability, inertness,
and functionality. The obtained UiO-66-NH2@EPSQ nanocomposites were utilized as carriers for
ibuprofen, a drug with carboxylic groups on the surface, and demonstrated high drug loading
capacity and well-controlled release property. The UiO-66-NH2@EPSQ nanocomposite exhibited low
cytotoxicity to HeLa cells within a wide concentration range of 10–100 µg/mL, as estimated by the
MTT method. The UiO-66-NH2@EPSQ drug release system could be a potential platform in the field
of controlled drug delivery.

Keywords: metal organic framework; organosilica; polysilsesquioxane; drug delivery; surface
functionalization

1. Introduction

Development of a novel pharmaceutical platform with unique biological properties has gained
tremendous academic interest in the field of nanobiomedicine [1,2]. Nanomaterials with a porous
structure are widely investigated in biomedicine due to their features, such as suitable architecture,
large surface area, and stability in biological fluids [3–9]. Among different types of porous materials,
silica, calcium carbonate, calcium phosphate, and metal–organic frameworks (MOFs) have received
significant attention in the last decade [10]. Although they are in the early stages of development [11,12],
MOFs, wherein metal ions or clusters link organic ligands into porous materials, have shown great
promise as a novel nanomedicine platform due to its large surface area, adjustable pore size, tunable
host–guest interaction, and versatile functionality [13,14]. Preliminary biomedical applications of
MOFs have focused on their use as delivery vehicles for molecular therapeutics and as viable contrast
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agents for optical imaging, multimodal imaging or X-ray computed tomography imaging [15,16].
In particular, MOFs are very promising nanoscale drug carriers due to their high molecule loading and
easy functionalization [17–22]. MOFs have been utilized to deliver drug molecules through attachment
of the prodrug onto the framework or direct use of the prodrug as a building block.

In pharmaceutical applications, enhancing the water stability, mechanical strength, and
biocompatibility of MOFs while maintaining their other advantages remains a big challenge [23–25].
To solve this problem, researchers have attempted to fabricate MOF nanocomposites with other
materials, such as polymers, silica, graphene, or carbon nanotubes, which have different properties, as
the reinforcement phase [26–38]. Silica is suitable for preparation of composite materials to improve
the performance of MOFs due to its high stability and structural adjustability [39–42]. Silica not only
provides structural support for MOFs, but also improves the stability of materials through hydrophobic
interaction or covalent bonding [43–45]. The modification of MOF surfaces with silica coatings
improves the stability of MOFs, fine tunes their properties, and imparts additional functionality [46].
For example, Lin et al. first stabilized nano-MOFs by encapsulating them within a silica shell; the
product offers several advantages, including biocompatibility, increased water dispersibility, and
easy functionalization with silyl-derived molecules [47]. In detail, this study first coated MOF
nanoparticles with PVP and treated them with tetraethylorthosilicate in basic ethanol to obtain
MOF@silica core/shell nanostructures for controlled release of drugs. Sadr et al. also fabricated
magnetic Fe3O4@silica@MIL-100(Fe) particles and modified the surface by grafting cyclodextrin for
controlled delivery of cephalexin, an antibiotic drug [42]. Further modifications should be conducted
to improve the stability, functionality, or biocompatibility of MOFs/SiO2 composites for drug delivery.

In this work, a facile process was reported by encapsulating MOF nanoparticles with an
organosilica layer. The product was directly utilized for drug delivery without further treatment.
Polysilsesquioxanes (PSQs), an organosilica with organic/inorganic hybrid structure, have attracted
much attention in the field of nanomedicine due to their high stability, biocompatibility, and easy
functionalization [40,48]. We first fabricated UiO-66-NH2 nanoparticles, an amine-functionalized
MOFs, from Zr ions and 2-aminoterephthalic acid ligand. We then coated epoxide-functionalized
organosilica on UiO-66-NH2 particles with sodium lignosulfonate as stabilizer and ammonia as catalyst
via a controlled sol–gel process in aqueous media (Scheme 1). PSQ layers, as a shell component,
offer advantages such as good porous structure, high chemical stability, and good biocompatibility.
UiO-66-NH2@EPSQ nanocomposites show high drug loading capacity and controlled release of
ibuprofen, an anti-inflammatory drug. The MTT assay indicated that drug-free UiO-66-NH2@EPSQ
nanocomposites demonstrated very low cytotoxicity. This study opens new opportunities to construct
a safe and efficient delivery system for a wide range of applications.
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2. Materials and Methods

2.1. Materials

2-Aminoterephthalic acid (98%) and polyvinylpyrrolidone (Mw avg. = 40,000) were purchased
from Energy Chemical. (Energy Chemical, Shanghai, China). ZrCl4 (98%), sodium lignosulfonate,
ammonia (AR, 25–28%), γ-(2,3-epoxypropoxy)propytrimethosysilane (97%), methanol (99.5%), ethanol
(AR), Sodium chloride (for cell culture, for insect cell culture, ≥99.5%), Sodium phosphate dibasic
dodecahydrate (GR, 99%), Potassium phosphate monobasic (for cell culture, for insect cell culture,
≥99%), Potassium chloride (for cell culture, ≥99.5%) and ibuprofen (GC, ≥98%) were supplied by
Aladdin Reagents Co., Ltd. (Aladdin Reagents Co., Ltd., Shanghai, China). Acetic acid (AR, ≥99.5%)
was purchased from Sinopharm Chemical Reagent Co., Ltd. (Sinopharm Chemical Reagent Co., Ltd,
Shanghai, China). Fetal bovine serum was supplied by Bovogen Biological. (Bovogen Biologicals, C0230,
Brazil). Dulbecco’s Modified Eagle’s Medium (DMEM) and trypsin-EDTA solution (0.25%, phenol red)
were purchased from Invitrogen Gibco. (Invitrogen Gibco, Carlsbad, CA, US). Penicillin–streptomycin
liquid (100×) and trypsin-EDTA were supplied by Beijing Solarbio Technology Co., Ltd. (Beijing Solarbio
Technology Co., Ltd, Beijing, China). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide (MTT) was purchased from MedChemexpress CO., Ltd. (MedChemexpress CO., Ltd,
HY-15924, NJ, US). All chemicals were used directly without further purification.

2.2. Characterization

Fourier transform infrared spectroscopy (FTIR) using KBr powder-pressed pellets with
approximately 1 wt.% of the sample was recorded on a Perkin–Elmer Spectrum GX-spectrophotometer
(Waltham, MA, US) with a spectral resolution of 1 cm−1 and scan number of 32. The morphology
of all samples was observed by scanning electron microscopy (SEM) using a FEI-SEM system (FEI
Helios Nanolab 600i, Hillsboro, OR, US) operating at 5 kV. For particle size estimation, more than 100
particles on the SEM images were averaged. Transmission electron microscopy (TEM) images were
obtained using a FEI Tecnai G2F30 electron microscope (FEI, Hillsboro, OR, US) operating at 200 kV.
The X-ray diffraction (XRD) pattern of the samples was recorded using a X PertPowder (PANalytical
B.V., Almelo, Netherlands). The X-ray tube was operated at 40 kV and 40 mA (Cu Kα radiation with
Ni filter, λ = 1.5406 Å). UV-visible spectra were recorded using the Evolution 201 (Thermo, Waltham,
MA, US) UV-Visible spectrophotometer with 1 cm quartz cuvettes.

2.3. Synthesis of UiO-66-NH2@EPSQ Core/Shell Nanocomposite Materials

UiO-66-NH2 nanoparticles were prepared according to the procedure reported in literature [49].
Typically, 0.0628 g of ZrCl4 (0.34 mmol, 98%) and 0.0808 g of 2-aminoterephthalic acid (0.34 mmol, 98%)
were added into blue-capped bottles with 100 mL of DMF. The bottle was then injected with 0.6 mL of
acetic acid (glacial). The system was stirred for 24 h at 100 ◦C in an oil bath. After the reaction, the
nanoparticles were separated by centrifugation and washed with DMF three times and with distilled
water three times. Light brown UiO-66-NH2 nanoparticles were obtained after freeze drying.

The as-prepared UiO-66-NH2 nanoparticles (0.2 g) were dispersed in the mixture of 80 mL of
methanol and 66 mL of water and ultrasonicated for 6 h. The system was combined with 0.2 g of
sodium ligninsulfonate and 2 g of PVP and stirred for 10 min at room temperature. The suspension
was transferred to an ice bath and stirred for 10 min. The suspension was combined with 4 mL of
ammonia solution and dropwise with 1 mmol (for nanocomposites A), 2 mmol (for nanocomposites
B), or 3 mmol (for nanocomposites C) γ-glycidyloxypropyltrimethoxysilane. The suspension was
first stirred for 6 h in an ice bath and stirred for 12 h at room temperature. After the reaction, the
nanoparticles were separated by centrifugation and washed three times with methanol and water.
The final core/shell structured UiO-66-NH2@EPSQ nanocomposites were obtained after freeze drying.
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2.4. Drug Loading and Release

Ibuprofen loading: According to the weight ratio of Wdrug/Wcarrier listed in Table 1, a certain
amount of ibuprofen and a corresponding amount of UiO-66-NH2@EPSQ nanoparticles were added
into a vial containing 3 mL of ethanol and 7 mL of water. The system was first stirred for 6 h at
37 ◦C and stirred overnight at room temperature. The system was transferred to a dialysis bag with a
molecular weight cut off of 3500 Da and immersed in 200 mL of deionized water for 12 h with gentle
stirring at room temperature to form drug-loaded particle suspensions for the next step.

Table 1. Materials and dosage of drug loading experiment.

Code Wdrug/Wcarrier Ibuprofen UiO-66-NH2@EPSQ
1 A1 0.5 0.0020 g 0.0042 g
A2 1.0 0.0041 g 0.0041 g
A3 2.0 0.0081 g 0.0041 g

2 B1 0.5 0.0020 g 0.0044 g
B2 1.0 0.0042 g 0.0043 g
B3 2.0 0.0080 g 0.0042 g

3 C1 0.5 0.0022 g 0.0043 g
C2 1.0 0.0044 g 0.0043 g
C3 2.0 0.0083 g 0.0042 g

1 A1–A3 was loaded with nanocomposites A; 2 B1–B3 was loaded with nanocomposites B; 3 C1–C3 was loaded with
nanocomposites C.

In vitro release: the dialysis bag was rinsed with water and then put into the PBS solution (pH 7.4).
In intro drug release tests with ibuprofen on the UiO-66-NH2@EPSQ nanoparticles were performed
with gentle stirring at room temperature. 3 mL of PBS solution was taken out from the released external
solution at regular intervals, and then 3 mL of fresh PBS solution was added to keep the volume of the
external solution constant. The absorbance of the PBS solution taken out from the released external
solution at every interval was recorded with Evolution 201 UV-Vis spectrophotometer to determine the
drug concentration in the solution. The cumulative release amount of the drugs was estimated by the
concentration of ibuprofen in the solution.

2.5. Stability Test and Cytotoxicity Study

The stability test of UiO-66-NH2@EPSQ nanocomposites in PBS solution (pH 7.4) was conducted
as follows: UiO-66-NH2@EPSQ nanocomposites (0.2 g) were well dispersed in 20 mL PBS solution
under vigorous stirring and soaked for 1, 3, 5 and 7d at room temperature. The samples were separated
by centrifugation, washed twice with water and finally the dry powders were obtained after freeze
drying process. FTIR technique was utilized to characterize the stability of the materials after soaking
in PBS solution.

The cytotoxicity of nanocomposite A, B, and C was assessed by MTT assay. HeLa cells were
provided by Shanghai cell bank (Chinese Academy of Sciences, Shanghai, China). 5 × 103 cells/well
of HeLa cells were seeded in 96-well plate and incubated in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fetal bovine serum, 1% Penicillin-Streptomycin for 24 h before
treated by the composites. Then, nanocomposite A, B, and C with different concentrations (10, 50, and
100 µg/mL) were added into 100 µL culture medium and co-cultured with HeLa cells for 24 h, 48 h and
72 h respectively. Culture medium without composites was used as a blank control. Subsequently,
cells were washed with PBS twice, and added 200 µL culture medium and 0.5 mg/mL MTT solution
to each well to be incubated for 4 h. Then the MTT-medium mixture was removed and 150 µL of
DMSO was added to each well and vibrated for 10 min to fully dissolve the formazan crystals. The
absorbance of the above DMSO solution at 570 nm was measured by a microplate reader (EPOCH2T,
Bio-tek, VT, US). The cell viability was calculated as follows: viability (%) = (mean absorbance value of
treatment group/mean absorbance value of control) × 100%. All samples were analyzed in triplicate.
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Cell viability was further analyzed with the Live/Dead cell staining kit (BB4126-1, Best Bio, Shanghai,
China). 1 × 104/well of Hela cells were seeded into 24-well plate, and treated by nanocomposite A,
B, and C with different concentrations (10, 50, and 100 µg mL−1) for 72 h, and stained with 2 µM
Calcein-AM and 4 µM PI for 30 min at room temperature. Cells were finally observed with fluorescence
microscopy (Leica, DMI8, Weztlar, Germany) and analyzed with Image-Pro Plus software (Media
Cybernetics, Bethesda, MD, USA).

3. Results and Discussion

3.1. Synthesis and Characterization of UiO-66-NH2@EPSQ

UiO-66-NH2, a kind of MOF built from [Zr6O4(OH)4] octahedron clusters and 2-aminoterephthalic
acid ligands, has received considerable attention because of its promising chemical and physical
properties and potential applications in drug delivery [50–52]. As shown in Figure 1a, UiO-66-NH2

nanoparticles with regular octahedron structure and size of approximately 90 nm were prepared
via a solvothermal process using ZrCl4 reacted with 2-aminoterephthalic acid. UiO-66-NH2@EPSQ
composites were fabricated by the hydrolysis–condensation of organosilane precursor on the surface of
UiO-66-NH2 nanoparticles. After coating with the organosilica layer, UiO-66-NH2@EPSQ particles with
clear spherical shape and diameter of approximately 110–120 nm were obtained with the organosilica
shell having a thickness of approximately 10–15 nm (Figure 1b–d). The coating of the organosilica layer
on UiO-66-NH2 particles was confirmed by the TEM images (Figure 2), with the core shell structure
could be clearly figured out.
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In the FTIR spectra shown in Figure 3, the characteristic peak at 3400 cm−1 is assigned to the
–NH2 group on UiO-66-NH2 particles and the peak at 1258 cm−1 represents the stretching vibration of
C–N, [53,54], which becomes weaker after wrapping with PSQ. For the spectra of UiO-66-NH2@EPSQ
(Figure 3b–d), the characteristic absorption peaks of Si–O–Si appear at 1039 and 1095 cm−1 [55]. After
coating with PSQ, the peak shape of the stretching modes of the carboxylic groups in the NH2–BDC
ligand at 1436 and 1385 cm−1 becomes similar to that of UiO-66, which could be due to the decrease
in the –NH2 functional group [56]. No obvious peaks were found within 900–980 cm−1 for the
characteristic absorption peak of epoxy functional, which resulted from the ring-opening reaction
occurred between the –NH2 group from UiO-66-NH2 and the epoxy groups from EPSQ.
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The XRD pattern demonstrated the high crystallinity of the as-prepared UiO-66-NH2 (Figure 4).
The strong peaks at−5◦ and−8◦ are consistent with the XRD pattern of the UiO-66-NH2 framework [57].
The high intensity of the XRD characteristic peaks indicates a highly crystalline structure for UiO-66-NH2

synthesized by the solvothermal process. For the XRD pattern of UiO-66-NH2@EPSQ, two strong
peaks were found within 5◦–8◦, and all other peaks became weak or disappeared after wrapping with
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EPSQ. This finding is mainly due to the amorphous organosilica material coated on the outer layer of
UiO-66-NH2.
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3.2. Loading and Release Behavior of Ibuprofen with UiO-66-NH2@EPSQ as Carriers

Ibuprofen, a typical anti-inflammatory drug, was introduced into the UiO-66-NH2@EPSQ
nanocomposite to explore its capabilities as a drug carrier. The drug loading characteristics of
the particles prepared from different amounts of organosilane precursors are shown in Table 2.
The samples showed high drug capacity. Drug loading efficiency (DLE) and drug encapsulation
efficiency (DEE) are used to estimate the drug capacity of carriers. DLE is defined as the ratio of the
amount of drug in the nanoparticle to the total amount of the nanoparticles [58]. DEE is defined
as the ratio of the amount of drug in the nanoparticle to the total amount of drug added for the
preparation [59]. For all samples, DLE is basically close to the input ratio. When the input ratio is 50%,
the DLE is above 46%; when the input ratio is 100%, the DLE is above 98%; when the input ratio is
200%, the DEL is above 193%. Meanwhile, the DEEs for all samples are basically above 97%. The high
drug loading capacity of composite carriers is thought to be partially attributed to the interaction
between amino or epoxy groups on the carriers and carboxylic groups on ibuprofen molecules.

DLE =
md −m f

mp
× 100% (1)

DEE =
md −m f

md
× 100% (2)

Er =
Ve
∑n−1

i=1 Ci + V0Cn

md
(3)

In Formulas (1)–(3): DLE: drug loading efficiency, %; DEE: drug encapsulation efficiency, %; Er:
cumulative drug release, %; md: total amount of drug added for the preparation, mg; mf: amount of
drug in the nanoparticle, mg; mp: total amount of nanoparticles, mg; Ve: supplementary PBS solution
volume, 3 mL; Ci: drug concentration in the release solution during the ith replacement, mg/mL; V0:
volume of the release solution, mL; Cn: drug concentration in the release solution during the (i + 1)th
replacement, mg/mL; and n: total number of samples.



Pharmaceutics 2020, 12, 98 8 of 15

Table 2. Drug loading parameters of UiO-66-NH2@EPSQ composite with different Wdrug/Wcarrier ratios.

i 1 Wdrug/Wcarrier

DLE DEE

Ai Bi Ci Ai Bi Ci

1 mmol 2 mmol 3 mmol 1 mmol 2 mmol 3 mmol

1 50.0% 46.6% 46.6% 50.1% 97.9% 97.9% 97.9%
2 100.0% 98.5% 98.5% 100.1% 98.5% 98.5% 97.9%
3 200.0% 193.1% 193.1% 193.5% 97.7% 97.7% 97.9%

1 A1–A3 was loaded with nanocomposites A; B1–B3 was loaded with nanocomposites B; C1–C3 was loaded with
nanocomposites C.

Figure 5 shows the release behavior of ibuprofen from UiO-66-NH2@EPSQ particles with different
nanocomposites (Figure 5a,c,e) at different drug doses (blue, red, and black). The system has a
sustained release property. In Figure 5a,c,e, the cumulative release of drugs also increased with the
maximum release percentage with increasing drug dosage or approximately 80% for composite A
with Wdrug/Wcarrier is 2. With increasing silane precursor, that is, the increase in amine, hydroxyl,
epoxy, ether bond, and other functional groups, the cumulative release of Wdrug/Wcarrier = 2 shows a
decreasing trend. In addition, with the increase of the drug loading amount, the release time prolonged
to reach the plateau and it is speculated that longer releases and higher release rates could be achieved
by increasing the drug loading amount.

Pharmaceutics 2020, 12, x 8 of 15 

 

plateau and it is speculated that longer releases and higher release rates could be achieved by 
increasing the drug loading amount. 

 
Figure 5. Cumulative release rate–time relationship diagram of the drug loaded with (a) nanocomposites 
A; (c) nanocomposites B; and (e) nanocomposites C, at different drug doses (blue, red, and black). The 
kinetic modelling of the drug release from nanocomposites A: (b) Higuchi model; (d) Korsemeyer-
Peppas model; and (f) Kopcha model. 

Higuchi model [60]: The model assumes release from an insoluble matrix as a time-dependent 
progression in which Fickian diffusion is presumed: 𝑀𝑡 = k√𝑡 (4) 

Korsmeyer-Peppas model [61,62]: The model follows release from a spherical polymeric system 
in which there may be diffusion or erosion: 𝑀𝑡/𝑀∞ = k𝑡 (5) 

Kopcha model [63]: The model is used to define the amount of diffusion and erosion and their 
effects on the release rate: 

Figure 5. Cumulative release rate–time relationship diagram of the drug loaded with (a) nanocomposites
A; (c) nanocomposites B; and (e) nanocomposites C, at different drug doses (blue, red, and
black). The kinetic modelling of the drug release from nanocomposites A: (b) Higuchi model;
(d) Korsemeyer-Peppas model; and (f) Kopcha model.



Pharmaceutics 2020, 12, 98 9 of 15

Higuchi model [60]: The model assumes release from an insoluble matrix as a time-dependent
progression in which Fickian diffusion is presumed:

Mt = k
√

t (4)

Korsmeyer-Peppas model [61,62]: The model follows release from a spherical polymeric system
in which there may be diffusion or erosion:

Mt/M∞ = ktn (5)

Kopcha model [63]: The model is used to define the amount of diffusion and erosion and their
effects on the release rate:

Mt = A
√

t + Bt (6)

in these equations, Mt and M∞ represent the amount of drug dissolved at time t and at infinite time,
respectively. The kinetic constants are represented by k.

From Figure 5b,d,f and Table 3, it can be concluded that the ibuprofen drug release kinetics
from UiO-66-NH2@EPSQ fitted into Higuchi’s mode, indicating that release occurred by diffusion.
Correspondingly, a Kopcha’s model fitting displayed high A/B values and small B values, indicating
release mechanisms were predominantly based on a diffusion process. In addition, the low cumulative
release rate/reloaded to the system are believed due to the interaction force between UiO-66-NH2@EPSQ
and ibuprofen molecules.

Table 3. Parameters obtained by fitting the drug release profiles from the UiO-66-NH2@EPSQ with
kinetic models.

Wdrug/Wcarrier
Higuchi Korsemeyer-Peppas Kopcha

R2 k R2 n R2 A B A/B

0.5 0.8346 0.03595 0.7797 1.1137 0.8418 0.07127 −0.005 −14.254
1 0.4757 0.04387 0.5000 0.5255 0.4233 0.04255 1.8687×10−4 227.698
2 0.7890 0.10161 0.8654 0.3072 0.8825 0.32482 −0.03005 −10.809

3.3. Stability Test

Compared with other MOF-based drug carriers, UiO-66-NH2 has a high degree of connectivity of
the metal clusters in the crystal structure, generating exceptional mechanical stability and chemical
stability in a broad range of pH values. In addition, the amino group on the UIO-66-NH2 opens
up the possibility of post-modification of UiO-66-NH2 with multiple properties [64–68]. Meanwhile,
polysilsesquioxanes (PSQs), an organosilica with organic/inorganic hybrid structure, have high stability,
biocompatibility, and easy functionalization [40,48]. Figure 6 shows the FTIR spectra of UiO-66-NH2

and UiO-66-NH2@EPSQ nanocomposite A, B, and C after soaking in PBS solution (pH 7.4) at room
temperature for a certain period of time. For the sample of UiO-66-NH2, after soaking for a week, the
absorption peak at 1655 cm-1 assigned for C=O obviously decreased sharply (Figure 6a). However, for
the FTIR spectra of UiO-66-NH2@EPSQ nanocomposites A, B, and C, after soaking for a week, there
was no obvious change in each peak. This finding demonstrates that PSQ protected the structure of
UiO-66-NH2.

3.4. Cytotoxicity Test

The biocompatibility of the nanoplatform was evaluated by in vitro cytotoxicity assay. Cytotoxicity
was investigated by incubating UiO-66-NH2@EPSQ particles with HeLa cells and assessed using MTT
assay and live/dead staining assay at different concentrations (10, 50, and 100 µg mL−1). As shown in
Figure 7, the cell viability remains stable even after incubation for 72 h, regardless of the concentration
of the particles. In addition, in Figure 8, there were no dead cells (red fluorescence) even treated



Pharmaceutics 2020, 12, 98 10 of 15

by 100 µg mL−1 nanocomposites for 72 h. These results clearly demonstrate that the synthesized
UiO-66-NH2@EPSQ particles have very low cytotoxicity.
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4. Conclusions

MOF nanocomposites are currently attracting much attention as newly emerging drug carriers.
In this study, we reported a drug delivery system based on the nanocomposite of amine-functionalized
MOF (UiO-66-NH2) embedded with the active organosilica of PSQ layers. The success of the fabrication
was confirmed by FTIR, XRD, SEM and TEM characterizations. The obtained organosilica encapsulated
MOF (UiO-66-NH2@EPSQ) demonstrated high water stability and high drug loading capacity with
ibuprofen as a model drug. Ibuprofen from the nanocomposite was also studied. Finally, the
preliminary biological studies were performed, which showed that the obtained drug carrier had
considerably lower cytotoxicity. We believe that this new nanocomposite delivery system has great
potential as a biocompatible system for safe and controlled release of hydrophobic drugs.
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