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The fallacy of enzymatic hydrolysis for the
determination of bioactive curcumin in
plasma samples as an indication of
bioavailability: a comparative study
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Abstract

Background: Numerous health benefits have been demonstrated for curcumin which is extracted from turmeric
(Curcuma longa L). However, due to its poor absorption in the free form in the gastrointestinal tract and rapid
biotransformation, various formulations have been developed to enhance its bioavailability. Previous studies
indicate that the free form of curcumin is more bioactive than its conjugated counterparts in target tissues. Most
curcumin pharmacokinetics studies in humans designed to assess its absorption and bioavailability have measured
and reported total (free plus conjugated) curcumin, but not free, bioactive curcumin in the plasma because
enzymatic hydrolysis was employed prior to its extraction and analysis. Therefore, the bioavailability of free
curcumin cannot be determined.

Methods: Eight human subjects (4 male, 4 female) consumed a single dose of 400 mg curcumin in an enhanced
absorption formulation, and blood samples were collected over 6 h. Plasma was treated either with or without
glucuronidase/sulfatase prior to extraction. Curcumin and its major metabolites were analyzed using HPLC-tandem
mass spectrometry. In addition, the literature was searched for pharmacokinetic studies involving curcumin using
PubMed and Google Scholar, and the reported bioavailability data were compared based on whether hydrolysis of
plasma samples was used prior to sample analysis.

Results: Hydrolysis of blood plasma samples prior to extraction and reporting the results as “curcumin” obscures
the amount of free, bioactive curcumin and total curcuminoids as compared to non-hydrolyzed samples. As a
consequence, the data and biological effects reported by most pharmacokinetic studies are not a clear indication of
enhanced plasma levels of free bioactive curcumin due to product formulations, leading to a misrepresentation of
the results of the studies and the products when enzymatic hydrolysis is employed.

Conclusions: When enzymatic hydrolysis is employed as is the case with most studies involving curcumin
products, the amount of free bioactive curcumin is unknown and cannot be determined. Therefore, extreme
caution is warranted in interpreting published analytical results from biological samples involving ingestion of
curcumin-containing products.

Trial registration: ClinicalTrails.gov, trial identifying number NCT04103788, September 24, 2019. Retrospectively
registered.
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Background
Curcumin is the active polyphenolic constituent in tur-
meric derived from the rhizomes of Curcuma longa L.
Numerous human, animal and in vitro studies have
demonstrated the benefits of curcumin in health promo-
tion and prevention via an array of bio-actions, including
antioxidant, anti-inflammatory, cytoprotective, immuno-
modulating, metabolism regulating, antibacterial, anti-
fungal, antiviral, antineoplastic, and anti-depressant
properties [1–11]. However, unformulated and unpro-
cessed [regular] curcumin is highly insoluble in water,
and is known for its poor gastrointestinal absorption and
bioavailability. This limits its biological and physiological
effects at target tissues, leading to restricted usefulness
in general healthcare and disease prevention. To address
this issue, various formulations have been developed to
facilitate the bioavailability of curcumin [12, 13].
The current study assessed the effects of enzymatic

hydrolysis vs direct plasma extraction without hydrolysis
on the plasma levels of curcumin and its metabolites.
The bioavailability of commercially available curcumin
formulations was also compared and contrasted based
on the methods used in the preparation of plasma
samples for assessing the relative and comparative ab-
sorption of curcumin. The literature was searched for
pharmacokinetics studies involving curcumin in PubMed
and Google Scholar. Bioavailability is measured by
calculating the area under the curve (AUC) of the con-
centration time profile of a substance as curcumin. The
rate of absorption was expressed as the maximum con-
centration (Cmax) and time (tmax) at which the maximum
concentration is reached. By general definition, bioequiv-
alence can be defined as the absence of significant differ-
ences between different products or formulations in the
rate and extent [bioavailability] to which an active ingre-
dient becomes available to the site of action when ad-
ministered at the same molar dose under similar
conditions such that both safety and efficacy are the
same [14].

Curcumin metabolism
Curcumin when consumed orally undergoes rapid con-
jugation in the small intestine, liver and kidneys to cur-
cumin glucuronide, curcumin sulfate and methylated
curcumins which undergo rapid excretion in the urine
and feces [4, 5, 7, 11–16]. The primary metabolic path-
ways for curcumin are presented in Fig. 1. Curcumin oc-
curs in the blood primarily as these physiologically and
pharmacologically inactive conjugates with relatively lit-
tle free, bioactive curcumin, which is similar to other
polypyhenols. Extensive metabolic reduction to dihydro-
curcumin, tetrahydrocurcumin and hexahydrocurcumin
also occurs via intestinal microorganisms [5, 11–18]
(Fig. 1). All of these reduction products may have

physiological activities. However, these metabolites also
undergo rapid and extensive conjugation with glucuronic
acid, thus converting them into physiologically inactive
constituents which are eliminated via renal and fecal ex-
cretion [5, 11–13, 15–18]. Similar metabolic pathways
exist for the minor curcuminoids demethoxycurcumin
and bis-demethoxycurcumin.
Since curcumin is more physiologically active as com-

pared to its conjugated forms, it is generally assumed
that blood levels of free curcumin reflect its bio-efficacy
[5, 11–13, 15–18]. It is not clear what form of curcumin
exists within tissues and what constitutes the active form
at the cellular and molecular levels. Studies have sug-
gested that various oxidation products of curcumin may
be responsible for at least some of the biological activ-
ities [19–21]. Furthermore, it is not known whether con-
jugated forms of curcumin as curcumin glucuronide
reach target tissues and upon dissociation free curcumin
is released.
Human data on other polyphenols, such as quercetin,

have found small amounts of quercetin glucuronide in
macrophages of injured/inflamed sites of the human
brain [22]. Macrophages possess glucuronidase activity,
raising the possibility of polyphenol deconjugation, but
at only specific, diseased locations [22]. Deconjugation
of curcumin glucuronide under similar circumstances
has not been determined. Free curcumin in the blood
(plasma) currently is the best indicator of bioavailability
and bioequivalence.

Curcumin formulations
Various approaches have been used to overcome the poor
absorption, rapid phase 2 metabolism, and poor bioavail-
ability of curcumin [12, 13, 22, 23]. These strategies
include formulations with micelles, liposomes or inter-
action with macromolecules such as gelatin, and various
polysaccharides [12]. In addition, nano-particulate prepa-
rations of curcumin to enhance bioavailability have been
developed including nano-micelles, nano-emulsions,
nano-gels, polymers, dendrimers, conjugates and solid
dispersions. Although these formulations have demon-
strated varying degrees of increased absorbability of total
curcumin, some of these formulations have limited appli-
cations due to non-food grade ingredients, large material
loads with small curcumin delivery loads, or various regu-
latory issues [12].
Various formulations that have been developed in-

clude: a liquid droplet nanomicellar formulation contain-
ing Gelucire® and polysorbate 20 (BioCurc®); micronized
curcuminoids plus turmeric oil (BCM-95®; BioCurcu-
max®); co-administered with piperine (Curcumin C3

Complex®); formulated with phosphatidylcholine from
soy lecithin and microcrystalline cellulose (Meriva®); a
solid lipid curcumin particle (Longvida®); complexed
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with a hydrophobic carrier, cellulosic derivatives and
natural antioxidants (CurcuWIN®); a micro-particle
surface-controlled colloidal dispersion using ghatti gum
and glycerin (Theracurmin®); complexed with fenugreek-
derived galactomannan fiber (CurQfen®); complexed
with γ-cyclodextrin (Cavacurmin®); a matrix consisting
of glycerol esters of fatty acids, medium chain triglycer-
ides, hydroxymethylcellulose, sodium alginate and
microcrystalline cellulose (MicroActive Curcumin); a
mixture of surfactants, polar lipids and solvents (Hydro-
curc™), a complex of triacetin and panodan spray-dried
on porous silicon dioxide (Micronized Curcumin); a
whey-protein-curcumin conjugate (CurcuminPro®), and

a natural turmeric matrix formulation composed of
carbohydrates, proteins, fiber and volatile oil (Acumin®/
Cureit®) [12, 13, 24–38].
Pharmacokinetic studies have been conducted with

various curcumin formulations. However, it is very
difficult to compare and contrast the results from these
formulations because numerous experimental factors
may influence the results in addition to the inherent
effects of the formulations. Among the factors that
influence the results are the actual dose and dosage form
(tablet, capsule, softgel, and liquid) of curcumin, manner
of administration (with water or food or empty stom-
ach), subject characteristics and demographics (gender,

Fig. 1 Metabolic Pathways of Curcumin
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ethnicity, age, weight, diet, and others), plasma collection
time points and duration, and analytical methods (ex-
traction, enzymatic hydrolysis, assay and detection). In
addition, some studies have not provided adequate ex-
perimental detail to ascertain what was actually mea-
sured. Furthermore, it is not always clear whether the
term “curcumin” refers to actual curcumin or to a group
of curcuminoids. As a consequence, it is very difficult
and may be inaccurate to pool data from the various
studies for comparative purposes.
The most appropriate approach to comparing prod-

ucts is a direct head to head pharmacokinetic compari-
son in a cross-over designed study with normalization of
the results on the basis of Cmax/mg curcumin and AUC/
mg curcumin administered. The Cmax is the maximum
(peak) concentration of a substance (curcumin), and area
under the curve (AUC) provides information on the
amount (extent) of curcumin absorbed over a finite
period of time. The major pharmacokinetic index used
for determining bioequivalence (rate and extent of ab-
sorption) of various curcumin products is a graphic plot
of blood plasma concentration of the active constitu-
ent(s) against time (AUC) [14, 39, 40].
Although the Cmax is related to absorbability, it does

not reveal how much of the curcumin was absorbed.
AUC provides a direct measurement of bioavailability
[14, 39, 40]. Therefore, when comparing bioavailability,
the AUC/mg derived from normalization with the
administered dose provides a means of direct compari-
son. Unfortunately, claims of enhanced absorbability are
sometimes made in marketing materials based on only
the Cmax values between a given product and unformu-
lated standard 95% curcumin or with other formulations
of curcumin.

Hydrolysis vs no hydrolysis
A major pitfall of most pharmacokinetic studies involv-
ing the diverse curcumin formulations has been the lack
of demonstrated increase in free, bioactive curcumin in
the blood [26–38]. With relatively few exceptions [13,
24, 26], plasma samples are routinely subjected to hy-
drolysis with the enzymes β-glucuronidase and sulfatase
most commonly from Helix pomatia snail extracts to
generate total curcumin [26–38] because curcumin glu-
curonide and curcumin sulfate are the predominant cir-
culating but physiologically inactive conjugates of
curcumin. Thus, the resulting conclusions do not pro-
vide a clear understanding of the potential pharmacoki-
netic benefits of the formulations with respect to an
increase in free, bioactive curcumin. Without a concur-
rent measurement of free curcumin, determination of
total curcumin by itself gives no indication of the free
curcumin proportion, limiting conclusions about the po-
tential efficacy and bioavailability of curcumin.

When plasma samples are hydrolyzed, pharmacoki-
netic values for curcuminoids from standard unformu-
lated 95% curcumin are in the general range of 0.2–0.3
AUC/mg or lower [26, 27, 30, 33, 36]. It is not always
easy to determine if enzymatic hydrolysis was used be-
fore curcumin quantification in some studies based on a
description of the procedures employed. However, when
bioavailability results from these studies involving 95%
unformulated curcumin are in the same range of the re-
sults of studies with hydrolysis [23, 25], sample hydroly-
sis is a likely explanation, particularly when results from
non-hydrolyzed samples are at least an order of magni-
tude lower [13, 24].

Methods
The protocol (ESM-CLN#2018 T01) for this study was
approved prospectively by the Bio-Kinetic Clinical
Applications Institutional Review Board (Springfield, MO)
on March 26, 2018. The study was registered with Clinical-
Trials.gov, trial registration number: NCT04103788,
September 24, 2019.
Generally healthy human subjects (4 male and 4 fe-

male) were recruited into the study based on the inclu-
sion and exclusion selection criteria previously described
[13]. The subjects had an average age of 50.6 years and a
body mass index (BMI, kg/m2) of 30.3. The sample size
was adequate for this proof-of-concept study, aiming to
test the impact of the enzymatic hydrolysis step on the
plasma curcumin profile. No attempt was made to assess
effects of age, gender or BMI relative to the effects of en-
zymatic hydrolysis of the plasma samples. All subjects
reviewed and signed an informed consent form. Follow-
ing consumption of a standard FDA high-fat diet, each
subject orally consumed with 240 mL of water a micellar
advanced absorption study product containing 400mg
curcumin, coconut oil, polysorbate-20, and DL-alpha-
tocopherol which was delivered in six number zero (#0)
vegetarian capsules.
Blood samples were collected in vacutainer tubes with

EDTA as the anticoagulant from each subject over a 6 h
time period (0, 0.5, 1.0, 1.5, 2.0, 4.0, and 6.0 h). The
samples were immediately centrifuged at 2500 g at 4 °C
for 15min, and aliquots of 1mL plasma supernatant were
collected and deposited into cryotubes which were imme-
diately frozen and stored at − 80 °C until analyzed [13].
Aliquots of each plasma sample were treated with

glucuronidase and sulfatase enzymes as described by
Asai and Miyazawa [41]. All enzymatically hydrolyzed
and non-hydrolyzed plasma samples were extracted
according to the method of Cao et al. [42]. The samples
were analyzed for free curcumin, curcumin sulfate,
curcumin glucuronide, tetrahydrocurcumin, demethoxy-
curcumin and bis-demethoxycurcumin by high perform-
ance liquid chromatography/tandem mass spectrometry
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(HPLC/MS/MS) as previously described [13]. Area-under-
the-curve (AUC) and Cmax values were determined using
GraphPad Prism 7.0c. Free curcumin equivalents based on
molecular weights of each form (free curcumin being
100%) were calculated to derive the actual free curcumin
quantities (corrected) for each analyte.

Results
Direct extraction of plasma samples results in the detec-
tion and determination of free curcumin, free demetho-
xycurcumin, free bis-demethoxycurcumin, curcumin
glucuronide and curcumin sulfate. Following enzymatic
hydrolysis, curcumin, tetrahydrocurcumin, demethoxy-
curcumin and bis-demethoxycurcumin can be detected
in measurable amounts. Small amounts of demethoxy-
curcumin and bis-demethoxycurcumin are naturally
present in the curcumin product that was administered.
The effects of enzymatic hydrolysis on the AUC and

Cmax data of the primary curcuminoids in plasma of hu-
man subjects are presented in Tables 1 and 2, respect-
ively. The results indicate that enzymatic hydrolysis
increases the amount of total curcuminoids detected in
plasma by a factor of approximately 31-fold. Curcumin
glucuronide constituted the primary curcuminoid me-
tabolite detected in non-hydrolyzed plasma. The
amounts of curcumin sulfate, demethoxycurcumin and
bis-demethoxycurcumin were near the limits of detec-
tion in non-hydrolyzed samples, while demethoxycurcu-
min and bis-demethoxycurcumin were not detected in
hydrolyzed samples, therefore no data are presented for
these metabolites. No tetrahydrocurcumin was detected
in non-hydrolyzed plasma, while it constituted the ma-
jority of total curcuminoids detected in plasma that has
been hydrolyzed (Table 1). No tetrahydrocurcumin glu-
curonide standard was commercially available for the de-
termination of this metabolite in non-hydrolyzed
samples. These results strongly suggest that curcumin
was reduced to tetrahydrocurcumin and then rapidly
conjugated. When the amounts of curcuminoids in non-
hydrolyzed plasma are corrected with the amount of tet-
rahydrocurcumin as determined by hydrolysis, it appar-
ent that the total amounts of curcuminoids are similar
with and without hydrolysis.
The Cmax value for total curcuminoids increased by a

factor of approximately 19-fold when the plasma
samples were enzymatically hydrolyzed which freed

conjugated curcumin and its metabolites from their sul-
fate and glucuronide conjugates (Table 2).

Discussion
The results clearly demonstrate that the use of enzym-
atic hydrolysis of plasma samples prior to extraction and
analysis greatly exaggerates the amount of curcumin de-
tected. As noted above, pharmacokinetic studies with al-
most all enhanced absorption formulations have used
enzymatic hydrolysis to free conjugated curcumin prior
to analysis, and then reported the results as “curcumin”.
Readers of these studies may not understand that the
term “curcumin” or “total curcumin” actually refers al-
most entirely to inactive curcumin conjugates, and not
to free curcumin itself. What is not known is to what ex-
tent hydrolysis of plasma samples reflects the amount of
free curcumin in plasma as compared to the total
amount that is detected (free plus conjugated form). It
would be accurate to state results of hydrolyzed plasma
samples as free plus conjugated curcumin, not merely
curcumin.
A preliminary study [43] as well as a study [13] that

used direct sample extraction without hydrolysis and
compared the results with pharmacokinetic studies that
used enzymatic hydrolysis strongly suggested that en-
zymatic hydrolysis of plasma samples prior to solvent
extraction represented a large over-estimation of the
amount of free, bioactive curcumin.
The current study provides information regarding the

extent of this over-estimation of curcumin. Use of en-
zymatic hydrolysis results in an exaggeration of the bio-
logical and therapeutic potential of the various enhanced
absorption formulations that have relied on hydrolysis
for their pharmacokinetic determinations of curcumin.
Conjugates of curcumin exhibit minimal representation
as biomarkers of therapeutic activity, and cannot be
compared to the actions of free curcumin.
Although the use of enzymatic hydrolysis prior to solv-

ent extraction may be useful in comparing absorption of
curcumin with other studies that also use the same
quantification methods, no information is provided with
respect to the free, bioactive curcumin. Enzymatic
hydrolysis of plasma samples does not provide a true
and accurate reflection of the plasma levels of free, bio-
active curcumin. Because a substance is absorbed and
present in some form in the blood does not provide an

Table 1 AUC0-6h ± SEM (ng*h/mL) for human plasma samples from 8 subjects that were assayed with and without enzymatic
hydrolysis

NON-HYDROLYZED HYDROLYZED

Curcumin Curcumin Glucuronide Total Curcumina Curcumin Tetrahydrocurcumin Total Curcumina

0.36 ± 0.71 78.2 ± 20.3 53.9 ± 13.9 486 ± 105 1449 ± 217 1676 ± 179
aCorrected—curcumin quantity from each form adjusted by molecular weights for each analyte
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indication of bioavailability, bio-efficacy or imply that it
has high therapeutic potential.
The ability of any drug or exogenously administered

chemical (xenobiotic) to exert a specific physiological/
pharmacological effect will depend upon its absorption,
distribution, metabolism and excretion. Phase II
biotransformation pathways involved in xenobiotic me-
tabolism, including glucuronidation as well as sulfation,
are responsible for the inactivation, enhanced water
solubility and subsequent clearance of a wide range of
drugs and chemicals from the body, including curcumin
and other polyphenols [14–20, 37, 40, 44]. UDP-
Glucuronosyltransferases (UGTs) are the primary group
of enzymes that catalyze the conjugation of glucuronic
acid to polar groups on xenobiotics, resulting in more
polar, water-soluble and generally less physiologically
active metabolites [44]. These conjugates are also better
substrates for ATP-binding cassette (ABC) transporters
which facilitate export or efflux of drugs and toxins out
of cells and tissues [45, 46].
For the purpose of understanding metabolic pathways

and overall metabolism of xenobiotics including polyphe-
nolics such as curcumin, hydrolysis with glucuronidase
and sulfatase enzymes may be used [47]. Furthermore, the
application of enzymatic hydrolysis is useful when authen-
tic reference standards of the conjugates are not available.
However, this is not the case with curcumin because
curcumin glucuronide and curcumin sulfate reference
standards are available. Furthermore, enzymatic hydrolysis
as a reliable analytical procedure in the quantification of
glucuronidated and sulfated polyphenolic metabolites has
been questioned, and has been shown to negatively affect
recovery of the free-forms of polyphenols present in
plasma [48]. The study described above provides evidence
supporting this conclusion. As a consequence, the data
provided by the enzymatic hydrolysis of plasma samples
containing curcumin derivatives and metabolites is not a
reliable indicator of the actual levels of bio-active
curcumin.
Santos et al. [49] reviewed the methods used in study-

ing the pharmacokinetics of polyphenols which includes
curcumin. These authors noted that until about the
mid-1990s, hydrolysis of biological samples such as
plasma was widely used and total aglycones were mea-
sured. However, the subsequent development of more
sensitive analytical methods as high pressure liquid chro-
matography coupled with tandem mass spectrometry
(HPLC/MS/MS) has enabled the determination of the

parent polyphenols and their metabolites including con-
jugated forms following direct extraction with a high
degree of sensitivity and accuracy [47]. Thus, studies in-
volving curcumin pharmacokinetics that utilize hydroly-
sis of biological samples are not employing the most
accurate, reproducible and appropriate techniques.
Based on these considerations, the pharmaceutical

pharmacokinetics model and standard protocol involves
the determination of blood plasma levels of the active
form(s) of a xenobiotic, and not the amounts of the drug
that may be conjugated and converted to pharmaco-
logically inactive forms [39, 40]. Tamoxifen is a drug
widely used for the treatment of breast cancer, and is an
excellent example that can be used to highlight drug
pharmacokinetics [50]. Tamoxifen, like curcumin,
undergoes metabolism including demethylation, hydrox-
ylation, and extensive glucuronidation [50]. The glucuro-
nides are excreted in the bile and urine, similar to
curcumin glucuronide [13], and also undergo urinary ex-
cretion. Glucuronidation plays a major role in thera-
peutic resistance to tamoxifen and inter-individual
variability in responsiveness [50]. It is the plasma levels
of tamoxifen and its hydroxylated metabolites and not
the amount of the glucuronides or a combination of the
free and conjugated forms that is indicative of thera-
peutic potential and efficacy [50]. A similar case can be
made for curcumin.
Hydrolysis of plasma samples to assess the pharmaco-

kinetics of tamoxifen or any other xenobiotic including
curcumin that undergoes conjugation will result in false
and misleading results. Hydrolysis of plasma samples
can provide information regarding the conjugated me-
tabolites of any given substance including curcumin, but
it does not provide information regarding the amount of
free, bioactive curcumin.

Conclusions
The results of this study show that the use of enzymatic
hydrolysis of plasma samples greatly exaggerates the
amount of curcumin detected, resulting in a determin-
ation of free plus conjugated forms. The majority of
pharmacokinetic studies with various formulations de-
signed to enhance curcumin bio-accessibility and bio-
availability have not measured free, bioactive curcumin.
These studies have reported total (free plus conjugated)
curcumin in the plasma after conversion of inactive con-
jugated forms of curcumin to free curcumin through
enzymatic hydrolysis. Free curcumin levels cannot be

Table 2 Cmax ± SEM (ng/mL) for human plasma samples from 8 subjects that were assayed with and without enzymatic hydrolysis

NON-HYDROLYZED HYDROLYZED

Curcumin Curcumin Glucuronide Total Curcumina Curcumin Tetrahydrocurcumin Total Curcumina

0.71 ± 0.71 28.8 ± 13.4 19.5 ± 9.0 129.4 ± 44.7 313.5 ± 45.0 369.1 ± 39.1
aCorrected—curcumin quantity from each form adjusted by molecular weights for each analyte
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quantified when enzymatic hydrolysis is employed. Thus,
what is reported is not a clear and accurate indication of
enhanced plasma levels of free bioactive curcumin as a
result of the product formulation, and constitutes a mis-
representation of the results when plasma is enzymati-
cally hydrolyzed. Using enzymatic hydrolysis of plasma
samples to free conjugated and inactive forms of xenobi-
otics to assess bioavailability of bioactive constituents is
not an accepted or reliable practice within the pharma-
ceutical industry, nor should it be an accepted practice
within the dietary supplement industry. Based on
current knowledge of the biological effects of curcumin
and its metabolites, free curcumin in the blood (plasma)
is the best indicator of bioavailability and bioequivalence,
and therefore this is the indicator that should be
measured.
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