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Abstract: Nocturnal monitoring of continuous, cuffless blood pressure (BP) can unleash
a whole new world for the prognostication of cardiovascular and other diseases due to
its strong predictive capability. Nevertheless, the lack of an accurate and reliable method,
primarily due to confounding variables, has prevented its widespread clinical adoption.
Herein, we demonstrate how optimized machine learning using the Catch-22 features,
when applied to the photoplethysmogram waveform and personalized with direct BP data
through transfer learning, can accurately estimate systolic and diastolic BP. After train-
ing with a hemodynamically compromised VitalDB “calibration-free” dataset (n = 1293),
the systolic and diastolic BP tested on a distinct VitalDB dataset that met AAMI criteria
(n = 116) had acceptable error biases of −1.85 mm Hg and 0.11 mm Hg, respectively [within
the 5 mm Hg IEC/ANSI/AAMI 80601-2-30, 2018 standard], but standard deviation (SD)
errors of 19.55 mm Hg and 11.55 mm Hg, respectively [exceeding the stipulated 8 mm
Hg limit]. However, personalization using an initial calibration data segment and subse-
quent use of transfer learning to fine-tune the pretrained model produced acceptable mean
(−1.31 mm Hg and 0.10 mm Hg) and SD (7.91 mm Hg and 4.59 mm Hg) errors for systolic
and diastolic BP, respectively. Levene’s test for variance found that the personalization
method significantly outperformed (p < 0.05) the calibration-free method, but there was
no difference between three machine learning methods. Optimized multimodal Catch-22
features, coupled with personalization, demonstrate great promise in the clinical adop-
tion of continuous, cuffless blood pressure estimation in applications such as nocturnal
BP monitoring.

Keywords: cuffless blood pressure estimation; nocturnal monitoring; machine learning;
deep learning; transfer learning; photoplethysmogram waveform

1. Introduction
Cuffless blood pressure (BP) estimation based on continuous measurements, e.g., us-

ing the photoplethysmography (PPG) and electrocardiogram (ECG) signals rather than the
intermittent cuff-based measurement of BP, has gathered significant attention recently [1].
PPG is an optical measurement of tissue underneath the sensor and reflects heart activity
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non-intrusively and non-invasively [2]. While the intent of such BP monitoring is to mini-
mize patient discomfort and harness the significant advantages of continuous measurement
compared with intermittent clinical cuff BP measurements taken during the day, there is a
more compelling reason to remove any barriers related to its clinical adoption: nighttime
or nocturnal BP.

Continuous measurement of nocturnal BP is a far better predictor of cardiovascular
disease and stroke than daytime BP [3]. Furthermore, nocturnal hypertension can occur
in people whose daytime BP is normal [3]. Spikes in BP during sleep can have potentially
serious health implications that include heart failure and other such cardiovascular or renal
diseases. Nighttime BP, therefore, has strong prognostic value in predicting outcomes. It
allows for the diagnosis of masked hypertension due to isolated nocturnal hypertension.
It offers information on cardiovascular modulation during sleep for both healthy and
diseased conditions. In addition, monitoring BP during the night can help measure the
effect of drug- or device-based treatment over a 24 h period [4]. Nonetheless, nocturnal
hypertension is not easy to measure as routine BP checks are mostly taken during daytime
hours. Because it is not practical to make frequent cuff-based BP measurements at night, an
accurate and reliable method for cuffless and continuous BP measurement is critical for the
measurement of nocturnal BP.

Measurement of cuffless, continuous BP using PPG has, however, been fraught with
a myriad of challenges [5,6]. Clinical adoption of cuffless devices has been slow due to
the issue of trusting the measurement in the individual patient [7,8]. To address this need,
the European Society of Hypertension created revised recommendations [9] for the vali-
dation of cuffless BP measuring devices, with the goal of providing a standard for clinical
acceptance of such devices. These recommendations include six stepwise device-specific
tests depending upon device type and include both static and dynamic tests as well as tests
based on device position, exercise, treatment, sleep, and re-calibration. They are based on
a comprehensive, demanding, and complex methodology built on established principles
from the American Association of Medical Instrumentation (AAMI), The International
Organization for Standardization (ISO), and European Society of Hypertension.

Various machine learning (ML) and deep learning (DL) techniques have been utilized
on measures associated with systolic blood pressure (SBP), diastolic blood pressure (DBP),
and mean arterial pressure (MAP), including PPG, bioimpedance, tono-arteriogram (TAG)
or other waveforms, pulse rate, and demographic data. Zhao et al. [1] comprehensively
reviewed the enabling technologies for wearable and cuffless BP platforms for continuous
as well as “beat to beat” BP measurement that include sensor designs, pulse transit time-
based analytical models, and ML algorithms. They compared the various multimodal input
modalities, features, implementation algorithms, and performances to monitor BP. They
concluded that measurement reliability can only be achieved by evaluating sufficient popu-
lation size with intra- and inter-individual BP diversity. They suggested that continuous BP
monitoring (with TAG tracking) should be a key area of focus in the field. The various ML
and DL algorithms recently used to estimate SBP, DBP, and MAP using cuffless, continuous
approaches are shown in Table 1. While some studies found bias and standard deviation
(SD) errors that met the AAMI criteria (of <5 mm Hg bias and <8 mm Hg SD, respectively),
these studies had some major data biases. They were either prospective studies conducted
on healthy subjects or they had selective pre-processing that eliminated outliers and poor
quality signals that are inherent in any PPG or ECG signal. Furthermore, all of these studies
were short term, ranging from 10 s to a maximum of a few hours (as shown in Table 1), such
that it was not possible to verify the method over a longer time period, which is critical for
continuous monitoring. None of the studies therefore accounted for longer-term variations
in BP that could result in long-term drift errors.
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Table 1. Literature review of various recent machine and deep learning methods used for BP
estimation. MAE = mean absolute value.

Authors Year Sensor
Signal Method Used Sample Size Data Source Study Duration Mean ± SD Errors

(mm Hg)

Tanveer et al. [10]/2019 ECG, PPG

Artificial neural
network-long

short-term memory
network

39 (hemodynami-
cally

compromised)
Prospective Short term (40 s) SBP: 1.10 (MAE)

DBP: 0.58 (MAE)

Eom et al. [11]/2020 PPG

Convolution neural
network and

bi-directional gated
recurrent network

15
(healthy) Prospective Short term (<1 h) SBP: −0.20 ± 5.83

DBP: −0.02 ± 4.91

Sadrawi et al. [12]/2020 PPG
Genetic deep
convolution
autoencoder

18 (healthy,
hemodynami-

cally
compromised)

Prospective Short term
(<6 h)

SBP: −1.66 ± 7.496
DBP: 0.66 ± 3.31

Athaya et al. [13]/2021 PPG U-net deep learning
architecture

100 (hemody-
namically

compromised)

MIMIC, MIMIC
III Short term (3.4 h)

SBP: 3.68 ± 4.42
DBP: 1.97 ± 2.92
MAP: 2.17 ± 3.06

Jeong et al. [14]/2021 ECG, PPG

Convolution neural
network-long

short-term memory
combination

48 (healthy) Prospective Short Term (<800 s) SBP: 0.2± 1.3
DBP: 0.0± 1.6

Fan et al. [15]/2021 ECG
Bi-layer long

short-term memory
network

942 (hemody-
namically

compromised)
MIMIC II Short Term (~230 s)

SBP: 7.69 ±10.83
DBP: 4.36 ± 5.90
MAP: 4.76 ± 6.47

Hu Q et al. [16]/2022 PPG

Convolution neural
network with

attention mechanism,
multi-task learning

1825 (hemody-
namically

compromised)

UC, Irvine
database Short Term (<20 min) SBP: 0.97 ± 8.87

DBP: 0.55 ± 4.23

Ibtehaz et al. [17]/2022 PPG
Two-stage cascaded
convolution neural

network

942 (healthy and
hemodynami-

cally
compromised)

MIMIC III Short Term (<30 min)
SBP: 5.7 ± 9.2
DBP: 3.4 ± 6.1
MAP: 2.3 ± 4.4

Jiang et al. [18]/2022 ECG, PPG Neural network with
multi-task learning

3000 (hemody-
namically

compromised)
MIMIC-II Short Term (60 h)

SBP: 4.04 ± 5.8
DBP: 2.29 ± 3.55
MAP: 2.46 ± 3.58

Mahmud et al. [19]/2022 ECG, PPG

Shallow
one-dimensional

auto-encoder (U-net
architecture)

942 (hemody-
namically

compromised)
MIMIC II Short Term

(<21 min)
SBP: 2.73 (MAE)
DBP: 1.17 (MAE)

Seok et al. [20]/2021 BCG Convolution neural
network 30 (healthy) Prospective Short Term

(<10 s)
SBP: 0.93 ± 6.24
DBP: 0.21 ± 5.42

Treebupachatsakul
et al. [21]/2022 ECG, PPG

Fourier
transformation

followed by deep
learning

>2500 (healthy
and hemodynam-

ically
compromised)

Kachuee et al.,
2015 [22] Short Term (<30 min) SBP: 7

DBP: 6

Mahardika et al. [23]/2023 PPG, ABP

Convolution neural
network, long

short-term memory
network

55 MIMIC-III Short Term (<5 min) SBP: 0.13 ± 7.04
DBP: 0.48 ± 3.79

Vliet et al. [24]/2024 PPG
Machine learning
algorithm—exact

method not disclosed
124 Prospective Short Term

(<30 s)
SBP: ±3.7 ± 4.4
DBP: ±2.5 ± 3.7

Huang et al. [25]/2024 BCG Deep learning UUNet 40 (nighttime) Kansas dataset Short term (<30 min) SBP: −0.19 ± 8.31
DBP: −0.04 ± 4.48

Liu et al. [26]/2025 BCG, IPG Random forest,
XGBoost 17 Prospective

(healthy) Short term (<18 min) SBP, MAD: 3.54
DBP, MAD: 2.57

Accurate and reliable estimation of BP in a cuffless device that is reliable for long
time periods is challenging, with SBP proving more difficult to estimate than DBP (see
Table 1). Previously [27], we laid out the theory behind cuffless BP estimation using de-
mographic information and features extracted from (i) pulse arrival time (PAT) or pulse
transit time (PTT) and (ii) pulse wave morphology (PWM). We demonstrated that the use
of a high-quality PPG signal [28,29], selective features, and an optimal machine learning
algorithm can provide promising results in estimating SBP and DBP. The motivation for the
present paper, therefore, was to extend to a reliable long-term, clinically acceptable method
using a three-fold strategy: (i) to evaluate performance improvements when using over
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1500 subjects from the VitalDB (PulseDB) database; (ii) to investigate a state-of-the-art fea-
ture extraction algorithm called Catch-22 (CAnonical Time-series Characteristics), selected
through highly comparative time-series analysis on PPG waveforms; and (iii) to measure
the impact of targeted personalization by using the SBP and DBP obtained from the test
subject as personalization and feed it back into the general training algorithm through trans-
fer learning. Catch-22 is a method of extracting a relatively small set of relevant features
from the pantheon of features utilized in time-series analysis. This small set of features
(including linear and non-linear autocorrelation, successive differences, value distributions
and outliers, and fluctuation scaling properties) has exhibited strong classification or re-
gression performance in past studies and is minimally redundant. Personalization is a
calibration that fine-tunes the general models using a small segment of the target subject’s
data consisting of the mean and SD of the BP signal. The data are used for calibration in the
training dataset and for insertion into the the main algorithm layers using transfer learning.
Alternatively, a calibration-free method [22] also exists that does not use any target subject
data for training or insertion into the main algorithmic layers. Our hypothesis is that the
use of this large dataset, along with the selective features on key waveform inputs and
personalization, will significantly enhance the accuracy for SBP and DBP, comparing with
intra-arterial BP as the gold standard and ensuring its reliability for continuous application.
We tested for statistically significant differences in error means as well as variances between
the two calibration methods (personalization versus calibration-free) and three training
algorithms (Lasso, random forest and ResNET).

The European Society of Hypertension working group on blood pressure monitoring
and cardiovascular variability issued a statement in 2022 [7] recommending at that time
against the adoption of devices estimating BP using cuffless methods in clinical practice.
According to their consensus statement, although cuffless sphygmomanometers are a
promising technology, standardization of accuracy, tracking of dynamic variations, and
suitability for long-term use is required—and the existing literature had not demonstrated
these characteristics. For widespread use in clinical practice, evidence is needed not only
for measurement in healthy subjects but also in pre-hypertensive and hypertensive patients
to ensure that the system can be used in the same way as, or instead of, current blood
pressure monitors. Therefore, until a device is developed that can meet these requirements,
its use in clinical practice cannot be recommended. We adopted a different approach to
address this exact issue. Our key contribution, therefore, is based on the premise that the
SBP and DBP, estimated non-invasively by our method, is reliable only if the flow or the
pulse arrival time is within a certain quantum band. A change in flow or pulse arrival
time outside this band triggers a personalization or calibration that would ensure that
accuracy is preserved. Any creep due to confounding factors contributing to a large BP
variance, especially over longer time periods, would no longer be relevant in increasing
such inherent variance. This approach ensures that the accuracy and reliability of the BP
estimates is maintained over the long term for hypertensive or hypotensive subjects and
therefore could be suitable for clinical adoption.

This paper is organized in the following manner. The Methods section describes
the experimental methods consisting of the patient data, feature extraction, method of
analysis consisting of the machine and deep learning model training with hyperparameter
selection, and method of analysis consisting of the personalized and calibration-free model
testing and statistical analysis. The Results section shows the descriptive and statistical
data results comparing the two calibration methods and three algorithms. Finally, the
Discussion section elaborates on the key insights obtained from the data, the limitations,
and future research directions.
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2. Methods
2.1. Human Data Ethical Statement

This study utilized data from the publicly available VitalDB dataset [30]. All subjects
are deidentified. Human studies permissions and procedures, including written informed
consent, were the responsibility of the data originators. Data acquisition and disclosure
were approved by the Institutional Review Board of Seoul National University Hospital
(H-1408-101-605), and the study was registered at clinicaltrials.gov (NCT02914444).

2.2. Patient Data

Wang et al. [30] pre-processed and extracted data from the larger PulseDB database to
create the VitalDB database. The PulseDB database is the largest filtered and cleaned database
to date that enables a standardized, reliable, and reproducible evaluation of cuffless BP
estimation models [31]. VitalDB contains hemodynamically compromised patient recordings
(with demographic information) of continuous waveform ECG, PPG, and ABP data, sampled
at 125 Hz, recorded over 5 to 10 days from ICU patients who underwent surgeries in the
Seoul National University Hospital, South Korea. The criteria used by Wang et al. [30] for
extraction included the presence of ECG lead-II, fingertip PPG, and ABP signals. Wang
et al. [30] extracted, filtered, and cleaned data for invalid samples, saturated and flatline
signals, and quality of the signals (see [30], Sections 2.4 and 2.5). The R-wave peaks of the ECG
signals were detected for each record using the Pan–Tompkins QRS detection algorithm [32].
Systolic peaks of the PPG signal were located using Elgendi’s algorithm [33], and diastolic
valleys were located as the minimum between every two consecutive systolic peaks. Next,
Wang et al. [30] divided each signal (ECG, PPG, and ABP) into contiguous 10 s segments
that were, on average, 9 min apart. Segments having more than three consecutive samples
of the same value equaling the minimum or maximum amplitude within the segment, or
more than 1 s of the same amplitude (i.e., saturated/flatlined) for any signal, were removed.
Reference SBP and DBP values of each segment were defined as the average beat-to-beat SBP
and DBP values within that segment. This pre-processing, extraction and signal processing
was implemented by [30]. We further removed the ECG, PPG, and ABP signals with less than
3 peaks.

Wang et al. [30] then assembled a subset of 1525 subjects that met the American
Association of Medical Instrumentation (AAMI) test data inclusion criteria to ensure a
uniform representation of hypotensive and hypertensive subjects. The 1525 subjects were
sub-divided by Wang et al. [30] into 1293 subjects for training, 116 for validation, and
116 for testing. The AAMI criteria [34] were applied to the test dataset and mandate at
least 85 subjects in this test dataset. At least 5% of these subjects must belong to each of
the following categories: an SBP below 100 mm Hg, an SBP above 160 mm Hg, a DBP
below 60 mm Hg, and a DBP above 100 mm Hg. In addition, at least 20% of the subjects
must each have an SBP over 140 mm Hg and a DBP over 85 mm Hg. The test dataset
met these criteria. Per subject, we randomly selected 19, 7, and 7 “10-s segments” for
each of training, validation, and testing, respectively. The 19 segments were randomly
chosen because for 1293 subjects, they gave a total of 24,567 data segments, which were well
above fit parameter requirements (10 times 840 fit parameters or 8400) of the deep learning
ResNET algorithm. As detailed below, only 3 test values per subject were evaluated for
estimation error from the 7 available test segments as stipulated by the AAMI criteria.
Seven segments were randomly chosen and arranged in numeric order because the first
segment was used for personalization, 3 test values per subject were required by the AAMI
criteria, and 3 additional data segments had to be extracted to maintain independence
of the direct pressure calibration values if the flow criteria were not met in the initial 3
segments, as explained in Section 2.5 below.



Bioengineering 2025, 12, 493 6 of 19

2.3. Feature Extraction

From every 10 s data segment, we extracted the “Catch-22” set of 22 features (see
Appendix A) [35]. This set includes a generation of small, canonical subsets of features
that display high performance across a given ensemble of tasks. They also exhibit comple-
mentary performance characteristics with each other. Catch-22 uses linear and non-linear
autocorrelation, successive differences, value distributions, outliers, and fluctuation scaling
to extract features that reduce dimensionality, are minimally redundant, and facilitate
feature-based time-series analysis.

In addition to the Catch-22 features, we also extracted the following features: the mean
and SD of the PPG, two temporal features (PAT and heart rate), and four PPG morphology
features. The PAT was extracted from each data record by computing the average of the
first 3-time intervals between the ECG R-peak to the ensuing PPG valley. The heart rate
was derived from the average time interval for the same three consecutive ECG R-peak to
R-peak intervals. The four PPG morphology features were extracted as an average from
three successive beats, randomly selected. The features were the average time interval
over 3 beats between the valley and peak of the PPG waveform, the average time interval
over 3 beats between the peak of the same PPG waveform and valley of the subsequent
PPG waveform, the peak amplitude over 3 beats, and the derivative of the PPG peak
amplitude computed as the average of the slope of the line connecting the valley to the
peak over 3 beats. We also used the demographic features of age and sex, giving a total
of 32 input features for the calibration-free method. For the personalized dataset only, we
also utilized in a unique manner (see below) the two additional features of ABP mean
and standard deviation, as the VitalDB data did not contain any cuff BP measurements.
In practice, a systolic and diastolic reading obtained from a cuff, or any other reliable
direct BP measurement method, would be used to substitute for these ABP features. This
resulted in the use of a total of 34 input features for personalization. These same set of
features were analyzed for relevance using Shapely analysis and then used in all three ML
algorithms to enable a comparison of the performance among the three algorithms. Figure 1
shows a schematic diagram of the flow steps consisting of feature extraction, training,
hyperparameter selection, and testing.

2.4. Method of Analysis—Machine Learning Model Training

We trained three model forms on the training data (unless noted otherwise below),
Lasso (linear regression with ML), random forest (ML) and ResNET (DL), for each of SBP
and DBP estimation using the ML and DL toolbox from MATLAB R2023. These model
forms include varying levels of complexity and number of fit parameters (Lasso having
the lowest and ResNET the highest). They are widely used for predictions ranging from
Lasso, which has the lowest number of fit parameters (100), to random forest (492) and
ResNET with the highest number of fit parameters (840). Lasso is an extension of the linear
regression model, while random forest and ResNET use alternate approaches based on
non-linear decision-making that work well in predictive applications. Table 2 below shows
a comparison between the three methods.

Lasso (least absolute shrinkage and selection operator) is a regression analysis method
that chooses key features and performs regularization to prevent overfitting and enhance
the prediction accuracy and interpretation of the resulting model. Lasso extends the
ordinary least squares regression by adding a penalty term to the regression equation. The
penalty term is the sum of the absolute values of the coefficients, which helps in shrinking
some coefficients to zero, effectively performing feature selection. Lasso uses an elastic net
hyperparameter (“alpha”), an estimate of the Lasso to ridge variance, which controls the
strength of the penalty.
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Table 2. Comparison Table—Lasso, random forest, and ResNET.

Lasso Random Forest ResNET

Type Machine Learning Machine Learning Deep Learning

Principle Based on least square multiple
regression adjusted for overfitting

Based on an ensemble of decision
trees based on bagging or
boosting these trees

Based on multiple layers (18) of
convolution neural networks with
batch normalization and ReLU
activation function

Cross-validation Yes—10-fold Yes—10-fold Yes—5-fold

Complexity Low Medium High

Hyperparameter Alpha—Lasso to ridge ratio
Learning rate, leaf size, learning
cycles, splits and features to
sample

Number of epochs, learning rate

Computation time Low High High

Input feature type Binary, numerical Binary, numerical Binary, numerical, and categorical

Fit parameters 100 492 840

Data amount (>10 times fit
parameter) Can work with relatively less data Needs more data for effective

performance Needs large amounts of data
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For our Lasso models (Lasso command in MATLAB), BP prediction was based on a
linear model using least squares regression and 10-fold cross-validation. The elastic net
hyperparameter (“alpha”) was selected as 0.75 based on our prior experience [27]. The loss
curves from the validation dataset as well as the bias and variance of the validation dataset
were used post hoc to confirm these hyperparameters.

Random forest is an ensemble learning method (which we used for regression) that
works by bagging and averaging a multitude of decision trees using a random subset of
features from the main feature set. The training algorithm applies the bagging technique to
tree learners as follows: Given a training set with multiple responses, bagging repeatedly
“n” times selects a random sample with replacement of the training set and fitting trees to
these samples. After these “n” trees are trained, the predictions are averaged from all of the
individual regression trees.

For random forest models (random forest, fit ensemble command in MATLAB), pre-
diction was based on a trained regression ensemble model using 10-fold cross-validation
that included boosting several regression trees. We used the built-in MATLAB hyperpa-
rameter optimization function (OptimizeHyperparameters’, ‘all’) that cycled through the
lag and boost variations as well as the learning cycles, learning rate, minimum leaf size and
maximum number of splits, and number of sample variables to identify the most optimal
combination on the training dataset. This optimization led to the following hyperparame-
ters: LSBoost method, a learning rate of 0.22, 463 learning cycles, leaf size of 2 with 12 splits,
and 5 variables to sample. The loss curves from the training and validation dataset as well
as the bias and variance of the independent validation dataset were used to confirm these
hyperparameters.

For ResNET (using the deep learning application in MATLAB), the prediction used the
architecture shown in Figure 2. ResNET is a convolutional neural network architecture that
is 18 layers deep. It consists of an input layer and a fully connected layer; four processing
stages, each composed of a batch normalization layer, a ReLu layer, and a fully connected
layer; a fifth processing stage consisting of batch normalization layer and a fully connected
layer; two addition convolution neural network layers; and an output regression layer. The
model skips layers during training, allowing it to train easily and achieve better accuracy.
The number of epochs was chosen to be 50 as the performance saturated after 50 epochs,
with minimal improvement in performance, when tested on the validation dataset from 20
to 500 epochs. We used 5-fold cross-validation on the training data and the final chosen
hyperparameters included 50 epochs and a learning rate of 0.001. The loss curves from the
training and validation dataset as well as the bias and variance of the validation dataset
were used post hoc to confirm these hyperparameters.
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2.5. Method of Analysis—Personalized and Calibration-Free Model Testing

The 7 randomly selected test segments in the test dataset were placed in sequential
order, 1, 2, 3, . . ., 7. Not all segments reserved for testing were used as such, and segment
1 from each subject was designated as the personalization segment that was never used for
testing. Personalization consisted of the ABP mean and SD features, whose values were
always taken from a data segment occurring sooner in time than the test segment, from
the same subject. By default, the mean and SD of the ABP values for test segment 1 (the
personalization segment) were set aside. Then, test segment 2 was paired with 5, 3 with 6,
and 4 with 7. If the mean PPG value from segment 2 differed by ≤5% from the mean PPG
value of segment 1, then the default mean and standard deviation ABP from segment 1 was
the personalization input for segment 2, and segment 5 was unused for testing. Otherwise,
the ABP mean and ABP standard deviation from segment 2 were the personalization inputs
for segment 5 (making segment 2 the personalization trial), and segment 2 was unused
for testing. (We refer to this switch in the personalization trial as re-calibration.) The other
32 input features always came from the test segment used. Similar conditional testing was
performed on the two other paired segments, with segment 1 always being used as the
default. Three test results were thus computed per subject. This personalization ensured
that subject-specific information was inserted as an input layer to the algorithm. The ABP
mean and SD values from a test segment were never used when testing that segment. For
calibration-free models, testing using the 32 input features was conducted on the same
3 segments per subject, for which testing was performed using the personalized method.
Doing so balanced the test dataset between the personalized and calibration-free methods.

Note that a cutoff of a 5% change in the mean PPG signal in personalization was selected
empirically by evaluating the estimated systolic BP error SD using the ResNET algorithm as
the mean PPG threshold was varied. The systolic error SD for change in mean PPG by 4%,
5%, and 6% was found to be 6.56 mm Hg, 7.91 mm Hg, and 8.34 mm Hg, respectively. Thus, a
5% change in mean PPG was used as it gave a systolic error SD <8 mm Hg as required by the
AAMI criteria.

2.6. Statistical Analysis

For each combination of the ML algorithm and model training approach (personalized,
calibration-free), we measured the test data bias (mean error or ME), mean absolute error
(MAE), and SD error between estimated SBP and, separately, DBP in comparison with the
corresponding labelled ABP data.

ME (Mean Error) =
1
n

.∑ n
i=1

(
Âi − Ai

)
(1)

SD (Standard Deviation) =

√
1

n − 1
.
[
∑ n

i=1

((
Âi − Ai

)
− ME

)2
]

(2)

MAE (Mean Absolute Error) =
1
n

.∑ n
i=1

∣∣∣(Âi − Ai
)∣∣∣ (3)

RE (Residual Error) =
(

Âi − Ai
)

(4)

where n is the number of total estimations, Ai is the ith reference SBP or DBP value, and Âi
is the ith SBP or DBP value estimated by the model.

ME and SDE are estimators of the BP estimation bias, and the range of errors in which
the model’s error on the population resides, under the assumption of normally distributed
residual errors. Because mean arterial pressure (MAP) is correlated with SBP and DBP, we
did not show it separately. We also computed the number of residual errors below 5 mm Hg,
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10 mm Hg, and 15 mm Hg as required by the British Society of Hypertension standard for
BP monitoring. Two-way analysis of variance (ANOVA) with post hoc multiple comparison
tests were used to test significant differences in the means (for each of the 3 ML algorithms),
per subject per case (for each of the two calibration methods). Levene’s test was similarly
used to test for significant differences in the variances. In all tests, p < 0.05 was considered
as significant.

3. Results
Demographic information for the utilized VitalDB subjects is reported in Table 3. At

least 40% of the subjects were female, and over 85% were above 40 years of age. Model
re-calibration is highly dependent on the hemodynamically compromised nature of the
subject data and was required for over 35% of the subjects based on our data sample. The
average time duration between the personalization data segment and the first test data
segment was 25.6 h; between the personalization and second test data segments was 26.2 h;
and between the personalization and third data segments was 26.6 h.

Table 3. Subject demographics—VitalDB dataset (n = 1525).

Descriptor Training Subjects Validation Subjects Test Subjects

Male 751 (58%) 69 (59%) 69 (59%)
Female 542 (42%) 47 (41%) 47 (41%)

Age (>40 years) 1137 (88%) 103 (89%) 103 (89%)
Total 1293 116 116

Table 4a,b show summary estimation errors for SBP and DBP for the three algorithms
and the two calibration methods. For both the calibration-free dataset as well as the
personalization dataset, each bias error easily met criterion 1 of the IEC 80601-2-30 [34]
standard of ≤5 mm Hg. As shown in Table 4a, none of the SDs for SBP or DBP using the
calibration-free method met the AAMI requirements of the AAMI/IEC 80601-2-30 [34]
standard. However, the SDs for both the SBP and DBP using the personalization method
met these requirements when used with the random forest and ResNET methods. Bland–
Altman plots [36] for the SBP and DBP using the ResNET algorithm (which had the lowest
SD error) are shown in Figure 3.

Table 4. (a) Calibration-free method errors using the AAMI standard—bias (µ) ± standard deviation
(SD) and mean absolute error (MAE) from each machine learning model derived from the estimated
SPB and DBP using the calibration-free method for the test dataset (n = 348 or 116 × 3) extracted
from VitalDB. All errors are in mm Hg. (b) Personalized method errors using AAMI standard—bias
(µ) ± standard deviation (SD) and mean absolute error (MAE) from each machine learning model
derived from estimated SPB and DBP using the personalized method for the test dataset (n = 348 or
116 × 3) extracted from VitalDB. All errors in mm Hg. (c) Performance comparison with the British
Hypertension Society (BHS) standard (n = 348).

(a)

Lasso Random Forest ResNET

µ ± SD (MAE) µ ± SD (MAE) µ ± SD (MAE)

SBP −2.11 ± 18.78 14.25 −1.08 ± 18.76 14.20 −1.86 ± 19.55 14.69
DBP −0.68 ± 11.77 9.18 −0.24 ± 11.06 8.56 0.11 ± 11.55 9.06

(b)

Lasso Random Forest ResNET

µ ± SD (MAE) µ ± SD (MAE) µ ± SD (MAE)

SBP * −1.51 ± 8.04 4.88 −1.32 ± 7.97 4.95 −1.31 ± 7.91 4.83
DBP * −0.52 ± 4.69 2.62 −0.43 ± 4.62 2.60 0.10 ± 4.59 2.65
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Table 4. Cont.

(c)

Absolute Difference

≤5 mm Hg ≤10 mm Hg ≤15 mm Hg Grade

BHS Standard SBP, DBP

60% 85% 95% A
50% 75% 90% B
40% 65% 80% C

Worse than C D

Proposed Model: Personalized, ResNET
SBP 65.8% 91.7% 95% A

DBP 85.9% 96.8% 98.6% A

* All values for mean error and SD are within the AAMI standard limits for bias or an ME of 5 mm Hg and for
an SD of 8 mm Hg with the random forest and ResNET methods. Note: The personalization method used BP
information from the test subject data and transferred this learning to the general trained algorithm layers.
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using ResNET, n = 116 × 3. Blue lines show ± 2 standard deviations. a. SBP comparison. b. DBP
comparison. Axis scales differ between plots.
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Furthermore, Table 4c shows the performance of the ResNET model with the British
Hypertension Society (BHS) standard [37], which assigns grades to performance based
on the percentage of readings below 5 mm Hg, 10 mm Hg, and 15 mm Hg. The ResNET
method received grade A for both SBP and DBP.

A two-way analysis of variance for statistical differences in bias errors (separately for
each of SBP and DBP) was conducted using the test segments of the 116 subjects compared
between the three ML algorithms and two calibration methods. For each of SBP (p = 0.97)
and DBP (p = 0.99), ML algorithm–calibration method interactions existed. Thus, we
proceeded to paired-multiple comparisons (separately for SBP and DBP) between each ML
algorithm–calibration method combination. All comparisons were not significant for SBP
(p ≥ 0.29) and for DBP (p ≥ 0.23).

Levene’s test is a statistical method to assess the difference between the variances
of two independent datasets. It uses the mean absolute error to test the null hypothesis
that the variances of two datasets estimated using different methods or using different
algorithms (also referred to as the homogeneity of variance or homoscedasticity) are equal.
A p-value of less than 0.05 indicates a difference between the variances in the datasets
assuming normal distribution and random sampling. Our objective in using this test was
(i) to infer statistically whether the variance of the data estimated using the personalization
method differed from the variance of data estimated using the calibration-free method;
and (ii) to infer statistically whether the variance of the data estimated using the three ML
algorithms varied from each other.

Table 5 presents the result of Levene’s absolute test for the statistical difference in
variances (based on absolute value and separately for SBP and DBP) comparing the three
ML algorithms and two calibration methods using the first utilized test segment of the
116 subjects. For both SBP and DBP, the calibration method used had a significant impact
on the variances, while the ML algorithm used showed no such impact. Post hoc paired
multiple comparisons with Bonferroni correction conducted for the three algorithms for
both SBP and DBP found that the personalization method was significantly better than the
calibration-free method for variance (p ≤ 0.00).

Table 5. Levene’s test: F-test and p-value results for significant differences in variances for SBP and
DBP estimation errors between 3 ML algorithms and 2 calibration methods (n = 116).

Method
SBP DBP

F-Statistic, p-Value F-Statistic, p-Value

Machine Learning Algorithm F(1) = 0.00, 0.99 F(1) = 0.19, 0.82
Method (Calibration-free vs. Personalized) F(2) = 45.9, 0.00 F(2) = 46.9, 0.00

Significant difference (in bold).

We next wanted to investigate if subject BP would be better estimated by the most
recent “ground truth” measurement, absent of any information provided by physiological
measurements. Thus, for each subject, we computed the error between SBP (and, sepa-
rately, DBP) from each ABP signal of each personalization segment vs. the ABP signal of
their paired test segments. Again, ABP signals are used herein as surrogates for BP cuff
measurements. Table 6 also shows statistical results comparing the “ground truth” errors
with those found when using the ResNET algorithm. There was no difference in bias error
for either SBP (p = 0.26) or DBP (p = 0.05). However, the values estimated by our algorithm
exhibited significantly lower variance error for each of SBP (p = 0.00) and DBP (p = 0.00).
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Table 6. Summary results of “ground truth” evaluation and statistical comparisons between ground
truth and values estimated using the ResNET algorithm (n = 116).

Method
Systolic BP Estimation Errors Diastolic BP Estimation Errors

Bias SD MAE Bias SD MAE

Estimated by algorithm (in mm Hg) −1.31 7.91 4.83 0.10 4.59 2.65
Estimated using ”ground truth” (in mm Hg) −1.21 19.46 14.75 −0.40 13.68 9.87

p-values and F-statistic, bias (ANOVA) F = 1.28, p = 0.26 F = 2.06, p = 0.15
p-values and F-statistic, variance (Levene’s test) F = 91.42, p = 0.00 F = 99.04, p = 0.00

Significant difference (in bold). SD—Standard deviation. MAE—Mean absolute error.

4. Discussion
In our previous paper [27], we presented a theoretical framework for estimation of

continuous BP using cuffless devices. In this publication, our goal was to apply this
theoretical framework on a large dataset to see the impact of scale as well as feature
selection and personalization (using mean PPG flow change as the re-calibration criterion)
in enhancing the BP estimates. We utilized the standardized and reliable VitalDB dataset,
containing hemodynamically compromised (diseased) subjects having a wide range of BP
values including abnormal BP values, to see the impact of scaling sample size, optimal
feature extraction, and personalization using this framework.

We applied a unique Catch-22 feature extraction algorithm [35] on the PPG and ECG
waveform data, and along with temporal (pulse arrival time and heart rate), demographic,
and morphology data, we estimated the SBP and DBP using a calibration-free method.
Despite optimizing the hyperparameters for each algorithm, our SD results with the Lasso,
RF, and ResNET methods were outside the 8 mm Hg SD limits of the BP performance
standard criterion 1 [34]. These results showed that ML or DL algorithms trained on even
larger scale datasets using the features, signals, and models we used could not fully learn
them to reduce the variability within acceptable limits for commercial deployment, due to
the large variability created by the confounding factors.

We then explored the use of personalization to reduce SD errors within the model.
Personalization involves fine-tuning the model using ”subject specific” data and has been
used by others. Schrumpf et al. [38] used transfer learning to fine-tune a specific layer
of their model with a small amount of template data from the target subject. Leitner
et al. [39] used transfer learning that personalized specific network layers to reduce the
number of required training samples, which further improved the performance of the BP
estimation. Bresch et al. [40] used single-parameter personalization on the performance
of multi-parameter models, which significantly enhanced continuous BP tracking. We
extracted the mean and SD from a personalization ABP data segment to fine-tune the
pretrained architecture of the main general model classifier and tested the model on distinct
test set data segments. A 5% change in the mean PPG signal was then used as a criterion
to re-calibrate or re-personalize the general model classifier. The use of this criterion
ensured that re-calibration had to be performed only upon a presumed change in BP, as
characterized by a change in the mean PPG signal, rather than on a periodic basis. The
PAT could alternatively be used in place of the mean PPG signal as the criteria for re-
calibration. The anticipated frequency of this re-calibration likely depends on the extent
of disease associated with the hemodynamic compromise of the PPG flow or BP values.
For example, healthy subjects with minimal disruption in PPG flow and BP would be
expected to require re-calibration after a much longer time, while diseased subjects might
need it more frequently. Because our test dataset had a population with significant disease
conditions, over 35% needed a re-calibration approximately after every 24 h on average.
This personalization technique using the random forest or ResNET algorithm significantly
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reduced error variance to within the AAMI limits (Table 4b) as well as resulting in a BHS
grade A performance (Table 4c). It also ensured that this variance and performance would
not be affected by any long term drift or change in the hemodynamic state of the subject.

One key limitation of our method was that we used the arterial BP waveform from
the VitalDB dataset for personalization. A pressure-related waveform such as the TAG
waveform should also be explored instead of cuff measurements as a substitute for this
arterial BP waveform. In their review paper of emerging technologies for continuous and
cuffless BP monitoring, Zhao et al. [1] concluded that TAG tracking will be the next wave of
focused research in continuous BP monitoring. TAG sensors [41] are flexible sensors that can
lodge on curved or soft surfaces without causing discomfort. Therefore, they can measure
continuous, cuffless pulsations transmitted from the BP in the vascular wall of arteries to
the skin surface. These sensors capture a pulse waveform comprising the (i) percussion-
wave (or P wave), caused by the systolic pressure spike due to blood ejection from the
contracting left ventricle [42]; (ii) tidal wave (or T-wave), caused by the BP reflection from
the upper body; and the (iii) diastolic wave (or D-wave), caused by the BP reflection from
the lower body [43]. The TAG waveform with appropriate calibration for scaling could be a
convenient substitute for the arterial BP waveform in personalizing the subject-specific data
for estimation of the SBP and DBP and should be a topic of future research. Systolic and
diastolic BP values measured with a cuff-based BP monitor, as we outlined in the methods,
could also be for personalization. Such methods to non-invasively measure direct BP might
be inherently more noisy than intra-arterial blood pressure readings, and our models may
need to be further refined accordingly.

Another important limitation of our approach is the need for further improvement
in accuracy of the PPG-based approach based on the length of the test data segment as
well as using data from a more diverse population. While we used a 10 s data segment
for calibration, the optimal length of this data segment for calibration needs to be further
investigated. One final limitation of our method involves filtering to clean the VitalDB data,
which may have impacted the signal-to-noise ratio, contributing to the higher variation in
DBP and SBP estimates. Because this data cleaning and filtering was already conducted
from the shared VitalDB database, any methods that affected the signal-to-noise ratio would
have propagated into our residual errors.

In conclusion, our research clearly showed that personalization using “ground truth”
BP mean and SD values is a robust method for estimating future SBP and DBP reliably
over a long period of time, while a calibration-free method without personalization is
not. Personalization significantly reduces BP error variance in the short term as well as
over a longer period to address long-term drift. This makes it clinically meaningful for
commercial deployment over long time periods. We believe that the promising results from
this current research will provide a strong impetus for future work in this area and will be
the subject of our future research. In our future research, we will validate this method using
the European Society of Hypertension protocol [9] as well as using alternate direct blood
pressure methods for calibration, such as the cuff or TAG sensors. Our future research will
also focus on personalized models for diseases such as cardiac morbidity, chronic renal
failure, malignant and secondary hypertension, pre-eclampsia, and autonomic neuropathy,
to name a few, that could have significant implications for quality of life and healthcare
costs [3]. Such models based on high-quality real-world data from improved sensors,
coupled with optimized ML or DL algorithms and personalization, may also elucidate
other novel markers for improving diagnosis of diseases or improving clinical management
of patients.



Bioengineering 2025, 12, 493 16 of 19

Author Contributions: All authors contributed to the study conception and design. Material prepara-
tion and data collection were performed by R.S.K. Data analysis was performed by R.S.K. and E.A.C.
The first draft of the manuscript was written by R.S.K. and E.A.C. and all authors (E.A.C., S.R., S.J.
and A.G.) commented on previous versions of the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research had no funding, and the statements made herein are solely the responsibility
of the authors.

Institutional Review Board Statement: Institutional Review Board approval was obtained for this
study (Section 2.1).

Informed Consent Statement: Informed consent was obtained from all individual participants
included in this study (Section 2.1).

Data Availability Statement: The data are available upon request from Rajesh S Kasbekar, rkas-
bekar@gmail.com, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester,
MA, USA.

Acknowledgments: The authors cordially acknowledge Ali Gholipour for his contribution and
review of the article.

Conflicts of Interest: R.K. and E.C. are pursuing intellectual property protection for aspects of this
work. Author Anita Goel was employed by the company Nanobiosym Inc. The remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Appendix A. Catch-22 Detailed Description

Table A1. The Catch-22 feature set [30] captures twenty-two diverse time-series properties of the
diverse distribution of values in the time-series, linear and non-linear temporal autocorrelation
properties, scaling of fluctuations, covariance, and periodicity. It also includes two additional
features—mean and standard deviation [see Section 2.4, paragraph 1 for details].

# Feature Name Description

I. Distribution-related features

1 DN_HistogramMode_5 Mode of z-scored distribution (5-bin histogram)

2 DN_HistogramMode_10 Mode of z-scored distribution (10-bin histogram)

II. Simple temporal statistics

3 SB_BinaryStats_mean_longstretch1 Longest period of consecutive values above the mean

4 DN_OutlierInclude_p_001_mdrmd Time intervals between successive extreme events above the
mean

5 DN_OutlierInclude_n_001_mdrmd Time intervals between successive extreme events below the
mean

III. Linear autocorrelation

6 CO_flecac First 1/e crossing of autocorrelation function

7 CO_FirstMin_ac First minimum of autocorrelation function

8 SP_Summaries_welch_rect_area_5_1 Total power in lowest fifth of frequencies in the Fourier power
spectrum

9 SP_Summaries_welch_rect_centroid Centroid of the Fourier power spectrum

10 FC_LocalSimple_mean3_stderr Mean error from a rolling 3-sample mean forecasting
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Table A1. Cont.

# Feature Name Description

IV. Non-linear autocorrelation

11 CO_trev_1_num Time reversibility statistic

12 CO_HistogramAMI_even_2_5 Automutual information, m = 2, r = 5

13 IN_AutoMutualInfoStats_40_gaussian_fnni First minimum of the automutual information function

V. Successive differences

14 MD_hrv_classic_pnn40 Proportion of successive differences exceeding 0.04σ

15 SB_BinaryStats_mean_longstretch0 Longest period of successive incremental decreases

16 SB_MotifThree_quantile_hh Shannon entropy of two successive letters in equiprobable
3-letter symbolization

17 FC_LocalSimple_mean3_stderr Change in correlation length after iterative differencing

18 CO_embed2_Dist_tau_d_expfit_meandiff Exponential fit to successive distances in 2-d embedding space

VI. Fluctuation analysis

19 SC_FlucAnal_2_dfa_50_1_2_logi_prop_r1 Proportion of slower timescale fluctuations that scale with DFA
(50% sampling)

20 SC_FlucAnal_2_rsrangefit_50_1_logi_prop_r1 Proportion of slower timescale fluctuations that scale with
linearly rescaled range fits

V Others

21 SB_TransitionMatrix_3ac_sumdiagcov Trace of covariance of transition matrix between symbols in
3-letter alphabet

22 PD_PeriodicityWang_th0_01 Periodicity measure
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