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Abstract: The co-localization of platelets and tumor cells in hematogenous metastases has long
been recognized. Interactions between platelets and circulating tumor cells (CTCs) contribute to
tumor cell survival and migration via the vasculature into other tissues. Taking advantage of the
interactions between platelets and tumor cells, two schemes, direct and indirect, were proposed to
target the modified human serum albumin submicron particles (HSA-MPs) towards tumor cells. HSA-
MPs were constructed by the Co-precipitation–Crosslinking–Dissolution (CCD) method. The anti-
CD41 antibody or CD62P protein was linked to the HSA-MPs separately via 1-ethyl-3-(-3-dimethyl
aminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) EDC/NHS
chemistry. The size of modified HSA-MPs was measured at approximately 1 µm, and the zeta
potential was around −24 mV. Anti-CD41-HSA-MPs adhered to platelets as shown by flowcytometry
and confocal laser scanning microscopy. In vitro, we confirmed the adhesion of platelets to tumor
lung carcinoma cells A549 under shearing conditions. Higher cellular uptake of anti-CD41-HSA-MPs
in A549 cells was found in the presence of activated platelets, suggesting that activated platelets can
mediate the uptake of these particles. RNA-seq data in the Cancer Cell Lineage Encyclopedia (CCLE)
and The Cancer Genome Atlas (TCGA) database showed the expression of CD62P ligands in different
types of cancers. Compared to the non-targeted system, CD62P-HSA-MPs were found to have higher
cellular uptake in A549 cells. Our results suggest that the platelet-based and platelet-mimicking
modified HSA-MPs could be promising options for tracking metastatic cancer.

Keywords: human serum albumin (HSA); platelets; circulating tumor cells; submicron particles;
adhesion

1. Introduction

Hematogenous metastasis, a multi-step and complex process, is responsible for most
cancer-related deaths [1]. Cancer cell spread begins when cancer cells acquire invasive
potential, facilitating their escape from the primary tumor. The epithelial to mesenchymal
transition (EMT) of tumor cells is considered to be the main driving force for cancer cell
spread and CTC production [2–4]. After entering the vasculature, most CTCs die due to
the hemodynamic forces, anoikis, and the immune system [5]. The surviving tumor cells
exit the vasculature through endothelial cells [6].

Platelets can be activated by tumor cells and subsequently attach to the CTCs as
a protective shield to help the CTCs survive in circulation [7–9]. The ATP released by
tumor cell-activated platelets opens the endothelium barrier, allowing tumor cells to mi-
grate transendothelially and, thereby, enhance cancer cell extravasation [10]. During the
past decades, many studies have revealed receptor–ligand interactions between activated
platelets and tumor cells, such as CD62P (P-selectin) and P-selectin ligands [11,12]. These

Int. J. Mol. Sci. 2022, 23, 14277. https://doi.org/10.3390/ijms232214277 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232214277
https://doi.org/10.3390/ijms232214277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1546-5540
https://orcid.org/0000-0002-1029-5258
https://orcid.org/0000-0002-2573-2289
https://doi.org/10.3390/ijms232214277
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232214277?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 14277 2 of 14

findings lay the groundwork for the use of platelet-mediated delivery technology to treat
cancer diseases.

In view of the important role of platelets in tumor pathogenesis, there is a growing
interest in utilizing platelets to develop efficient anti-tumor therapeutic approaches. For
instance, anti-PD-L1 antibodies were linked to the surface of platelets to treat breast carci-
nomas and leukemia [13,14]; covering particles with platelet membranes is another strategy
that has been discussed [15,16]. However, platelets are easy to be activated and distorted
during the manufacture of platelet carriers in vitro and increase the probability of forming
a thrombus after re-transfusion. Platelets, similar to red blood cells, face restrictions in
proper storage and contamination. Long-term maintenance of the biological functions of
modified platelets is difficult. Furthermore, increased exogenous platelet numbers can
result in tumor-related thrombosis and promote tumor progression [17]. Therefore, drug-
loaded autologous platelets can be considered the ideal medium to deliver drugs to tumor
cells. Mimicking some functions of platelets by protein particles could also be an excellent
strategy to avoid the disadvantages caused by the exogenous platelet.

Human serum albumin (HSA), the most abundant plasma protein, has been used as
a multifunctional drug delivery platform in the biomedical field. The extensive research
and application of HSA are attributed to its good biocompatibility, biodegradability, non-
toxicity, and non-immunogenicity [18]. Some anticancer medications, including paclitaxel,
Methotrexate, and 5-fluorouracil, are used successfully when coupled with albumin [19–21].
Abraxane® (nanoparticle albumin-bound paclitaxel) for breast cancer treatment is already
in clinical application [22,23]. Although HSA possesses great biological properties as a
drug carrier, further research is still required to improve its selective targeting capability.
Our team has developed a successful technique called Co-precipitation–Crosslinking–
Dissolution (CCD) for the fabrication of protein particles [24–26]. Human serum albumin
submicron particles (HSA-MPs) produced by this technique were already used as a vehicle
platform successfully loaded with riboflavin and Doxorubicin [27,28].

In this study, we explored two drug delivery strategies that take advantage of the
adhesion ability of platelets to CTCs (Figure 1A). (1) CD41, also known as GpIIb, is a
cell-surface protein expressed at high levels on platelets. The anti-CD41 antibody-modified
HSA-MPs are designed to trail tumor cells by hitchhiking on the platelet. (Figure 1B).
(2) The mechanism of platelet aggregation around tumor cells includes the binding of
biomolecules such as CD62P, which belongs to the selectin family. CD62P translocates
to the platelet surface when platelets are activated, mediating the adhesion of platelets
to the endothelial cells, leukocytes, and tumor cells [29,30]. We revealed the expression
of common ligands for CD62P, including CD44, SELPLG, and CD24 [31], in pan-cancer
analysis using TCGA and CCLE datasets. The CD62P enabled the HSA-MPs to specifically
bind to the upregulated receptors on the surface of tumor cells. The platelet-mimicking
particles with platelet-specific protein modifications, CD62P-HSA-MPs, were constructed
to directly target tumor cells specifically (Figure 1C).
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Figure 1. Schematic of targeting strategies. (A). Schematic of the circulating tumor cell captured by 
activated platelets in vivo, adhering and escaping through gaps of the endothelium. (B). Anti-CD41-
HSA-MPs hitchhiked on platelets to target circulating tumor cells indirectly. (C). CD62P-HSA-MPs 
target a tumor cell directly mediated by the CD62P on the surface of the HSA-MPs. 

2. Results and Discussion 
2.1. Characterization of Anti-CD41-HSA-MPs and CD62P-HSA-MPs 

The size, polydispersity index (PDI), and zeta potential of anti-CD41-HSA-MPs and 
CD62P-HSA-MPs were analyzed by Zetasizer Nano ZS. Both particles showed a submi-
cron size ranging from 0.9 to 1 µm, and the zeta potentials were around −24 mV (Table 1). 
When compared to reported HSA-MPs manufactured using the CCD method, the modi-
fied HSA-MPs’ sizes increased slightly [28,32,33]. 

Table 1. Particle size and zeta potential. 

Sample 
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(PDI) 
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Conductivity 

(mS/cm) 
anti-CD41-HSA-MPs 952 ± 41 0.24 ± 0.03 −25 ± 1 1.3 ± 0.1 

CD62P-HSA-MPs 974 ± 15 0.26 ± 0.11 −24 ± 2 1.4 ± 0.1 
HSA-MPs 847 ± 24 0.26 ± 0.11 −26 ± 1 1.3 ± 0.1 

2.2. Platelet Adhesion to the A549 Tumor Cells In Vitro 
The adhesion ability of activated platelets to the CTCs was an essential basis in this 

study. Platelets were isolated from healthy humans and activated under shearing condi-
tions using a rheometer to verify the adhesion between activated platelets and A549 cells. 
As shown In Figure 2A–C, the fluorescence intensity quantified by a flow cytometer in the 
APC channel also showed similar results. The percentage of A549 cells with APC anti-
CD41 antibody-labeled or Alexa 647 anti-CD62P antibody-labeled platelets were 65 ± 11% 
and 50 ± 8%, respectively. The fluorescent images (Figure 2D) showed the adhesion of the 
platelet to the A549 tumor cell under the fluorescence microscope. The platelets were la-
beled with anti-CD41 antibody (red fluorescence) and the activated ones were labeled 

Figure 1. Schematic of targeting strategies. (A). Schematic of the circulating tumor cell captured by
activated platelets in vivo, adhering and escaping through gaps of the endothelium. (B). Anti-CD41-
HSA-MPs hitchhiked on platelets to target circulating tumor cells indirectly. (C). CD62P-HSA-MPs
target a tumor cell directly mediated by the CD62P on the surface of the HSA-MPs.

2. Results and Discussion
2.1. Characterization of Anti-CD41-HSA-MPs and CD62P-HSA-MPs

The size, polydispersity index (PDI), and zeta potential of anti-CD41-HSA-MPs and
CD62P-HSA-MPs were analyzed by Zetasizer Nano ZS. Both particles showed a submicron
size ranging from 0.9 to 1 µm, and the zeta potentials were around −24 mV (Table 1).
When compared to reported HSA-MPs manufactured using the CCD method, the modified
HSA-MPs’ sizes increased slightly [28,32,33].

Table 1. Particle size and zeta potential.

Sample Average Size
(nm)

Polydispersity Index
(PDI)

Zeta Potential
(mV)

Conductivity
(mS/cm)

anti-CD41-HSA-MPs 952 ± 41 0.24 ± 0.03 −25 ± 1 1.3 ± 0.1
CD62P-HSA-MPs 974 ± 15 0.26 ± 0.11 −24 ± 2 1.4 ± 0.1

HSA-MPs 847 ± 24 0.26 ± 0.11 −26 ± 1 1.3 ± 0.1

2.2. Platelet Adhesion to the A549 Tumor Cells In Vitro

The adhesion ability of activated platelets to the CTCs was an essential basis in this
study. Platelets were isolated from healthy humans and activated under shearing conditions
using a rheometer to verify the adhesion between activated platelets and A549 cells. As
shown In Figure 2A–C, the fluorescence intensity quantified by a flow cytometer in the
APC channel also showed similar results. The percentage of A549 cells with APC anti-CD41
antibody-labeled or Alexa 647 anti-CD62P antibody-labeled platelets were 65 ± 11% and
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50 ± 8%, respectively. The fluorescent images (Figure 2D) showed the adhesion of the
platelet to the A549 tumor cell under the fluorescence microscope. The platelets were
labeled with anti-CD41 antibody (red fluorescence) and the activated ones were labeled
with Alexa 488 anti-CD62P antibody (green fluorescence). Many more platelets were
labeled with the APC anti-CD41 antibody than with the Alexa 488 anti-CD62P antibody,
probably due to the lower number of activated platelets and the fact that CD62P on the
platelets itself acts as a binding site to the A549 cells.
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+ APC anti-CD41 antibody, and A549 + platelets + Alexa 647 anti-CD62P antibody (250 platelets/tu-
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body separately. The A549 cell and platelet populations were identified by their forward scatter 
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Figure 2. Adhesion of platelets to A549 cells under shearing conditions analyzed by flow cytometry
and confocal laser scanning microscopy. (A). Dot plots of A549 cells, platelets, A549 cells + platelets +
APC anti-CD41 antibody, and A549 + platelets + Alexa 647 anti-CD62P antibody (250 platelets/tumor
cell). The platelets were labeled with APC anti-CD41 antibody or Alexa 647 anti-CD62P antibody
separately. The A549 cell and platelet populations were identified by their forward scatter (FSC) and
side scatter (SSC). (B). Histograms of the fluorescence intensity in the tumor cell population for A549
cells + APC anti-CD41 antibody (control), A549 cells + Platelets + APC anti-CD41 antibody, A549
cells + Alexa 647 anti-CD62P antibody (control), and A549 cells + Platelets + Alexa 647 anti-CD62P
antibody. (C). Percentage of A549 cells with adhering platelets labeled with APC anti-CD41 antibody
or Alexa 647 anti-CD62P antibody. (D). Representative image of platelets adhering to A549 tumor
cell as observed under the confocal laser scanning microscope. The platelets were labeled with APC
anti-CD41 antibody (red fluorescence) and Alexa 488 anti-CD62P antibody (green fluorescence). The
yellow color represents overlapped red and green fluorescence.
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Platelets are one of the first circulating cells that CTCs encounter during metasta-
sis. Most CTCs only survive in circulation for a short time before being trapped in the
endothelial cells of blood vessels or eliminated by the immune system. Under shear
stress, approximately 0.1% of CTCs are physically protected by the platelet-rich thrombi
surrounding them [34,35]. Activated platelets cover the CTCs as “coats” and prevent
cancer cells from being eliminated, promoting cancer progression. The expression of four
platelet activation markers, including CD62P, GPIIb/IIIa, lysosomal glycoprotein, and
phosphatidylserine, significantly increases following transitory exposure to higher shear
strain rates [36]. In vitro, we confirmed the adhesion of platelets to the A549 cells under
shearing conditions through flow cytometry and microscopy. This process can be explained
by the activation of platelets under shear stress and the translocation of the tumor cell
receptors, such as CD62P, to the activated platelet surface, which mediates the adhesion of
platelets and tumor cells.

2.3. Anti-CD41-HSA-MP Adhesion to Platelets In Vitro

The results of the adhesion experiments performed by incubating platelets with the
FITC-labeled HSA-MPs (20 particles/platelets) for 30 min are summarized in Figure 3.
The flow cytometry results showed that the adhesion percentage of anti-CD41-FITC-HSA-
MPs to the platelets was slightly higher than that of non-modified control FITC-HSA-
MPs (Figure 3B). The higher mean fluorescence intensity of platelets in the FITC channel
(Figure 3C) and typical fluorescence microscope images (Figure 3D) indicated that more
anti-CD41-HSA-MPs adhere to the A549 cells than control HSA-MPs.

It should be noted that the number of activated platelets is small. The majority of
platelets in natural blood circulation are resting platelets. Platelets can be activated in large
numbers under certain conditions, such as disease or injury. CD41, a cell-surface protein, is
highly expressed on platelets and is used as a biomarker for platelets. It is a good choice
to regard CD41 as a platelet-binding target for HSA-MPs. It is more efficient to use the
anti-CD41-HSA-MPs hitchhiking on platelets, which could be activated under pathological
conditions, than hitchhike on activated platelets only.

2.4. Cellular Uptake of Anti-CD41-HSA-MPs in A549 Cells Pre-Incubated with Platelets

Gp60, SPARC, Gp18, and Gp30 are the major albumin-binding proteins that are
overexpressed in multiple tumors and the primary mechanism responsible for the uptake
of albumin in tumors, a process that includes transcytosis through endothelium and
endocytosis in tumor cells [37–39]. Because of the expression of albumin-binding proteins
on the cell surface, the A549 cell line is a widely used tool for studying the interaction of
albumin particles and tumor cells [27,33,40]. It has already been shown that the HSA-MPs
can bind to and be endocytosed by A549 cells [27].

A549 cells were pre-incubated with arachidonic acid-activated platelets for 30 min and
then FITC-labeled anti-CD41-HSA-MPs or HSA-MPs were added and the samples were
incubated for 24 h. The fluorescence intensity analyzed by the flow cytometer (Figure 4)
showed a significantly higher cellular uptake of anti-CD41-HSA-MPs than that of HSA-
MPs in the presence of platelets. In the absence of the platelets, the cellular uptake of
anti-CD41-HSA-MPs was reduced and had no difference with HSA-MPs. Measurement of
fluorescence using flow cytometry allowed us to determine the A549 cells with internalized
or adherent particles. The fully internalized particles were then retained by quenching
the fluorescence of the remaining extracellular particles using Trypan blue. The cellular
uptake percentage and MFI value decreased in all groups after quenching. However, the
cellular uptake of anti-CD41-HSA-MPs in the presence of platelets was still significantly
higher than that of HSA-MPs, which means that the platelet-adhering anti-CD41-HSA-MPs
could be internalized more efficiently by A549 cells than the HSA-MPs in the presence of
activated platelets.
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microscopy images of HSA-MPs and anti-CD41-HSA-MPs with platelets. 
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Figure 3. Adhesion of anti-CD41-HSA-MPs to platelets (A). Flow cytometry histograms of the
fluorescence intensity in the platelet or FITC-HSA-MP populations (black line: platelets only; blue
line: FITC-HSA-MPs only), and in the populations of platelets incubated with FITC-HSA-MPs or
platelets incubated with anti-CD41-FITC-HSA-MPs, respectively. (B). Percentage of platelets with
adhered FITC-HSA-MPs or anti-CD41-FITC-HSA-MPs. (C). Mean fluorescent intensity (MFI) values
of the platelet population in the FITC channel. * p < 0.05. (D). Representative confocal laser scanning
microscopy images of HSA-MPs and anti-CD41-HSA-MPs with platelets.
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Figure 4. Adhesion vs. cellular uptake of anti-CD41-HSA-MPs and HSA-MPs in A549 cells analyzed
by flow cytometry with or without pre-incubation with activated platelets. Adhering particles are
excluded by quenching with Trypan blue. The upper graphs show the percentage of events in the
A549 cell population with enhanced fluorescence in the FITC channel. The lower graphs show the
corresponding Mean Fluorescence Intensities. * p < 0.05.

The results could be explained by platelets serving as a connection between anti-CD41-
HSA-MPs and tumor cells. The activated platelets could adhere to tumor cells. Hitchhiking
of HSA-MPs on platelets via anti-CD41 promotes the possibility of particle/tumor cell
interaction due to the adherence of activated platelets to the cells. The internalization of
the anti-CD41-HSA-MPs is then further supported through the albumin-binding receptor
proteins on the surface of the tumor cells. This means that the anti-CD41-HSA-MPs could
detect the tumor cells with the help of platelets in the circulation and could be used to
deliver anticancer drugs, avoiding an ex vivo treatment of platelets.

2.5. Cellular Uptake of CD62P-HSA-MPs in A549 Cells

A549 cells were incubated with FITC-labeled CD62P-HSA-MPs or HSA-MPs for 24 h,
and the resulting fluorescence per cell was measured by flow cytometry after quenching
or not. The HSA-MPs served as a control. The cellular uptake percentage and MFI in
the CD62P-HSA-MP group were both higher than those in the HSA-MP group with and
without quenching (Figure 5). This means that CD62P-HSA-MPs could be internalized
more efficiently than the HSA-MPs by the A549 cells.

The CD62P-HSA-MPs are expected to be used to specifically affect the formation of
platelet “coat” through competitive inhibition. These results help us further in the next step
to develop a targeted and sustained drug delivery system. We realize that the interactions
between targeted drug carriers and cancer cells may differ in a physiological experimental
environment, such as in the presence of other natural blood cells. It may be necessary
to perform in vivo tests in the future to explore the effects of the modified HSA-MPs in
the circulation.
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2.6. The Expression Level of the Ligands to CD62P in CCLE and TCGA Databases

CD62P has been suggested as an essential molecule for the adhesion of platelets to
tumor cells. CD62P ligands, αIIbβ3 integrins–fibrinogen-αVβ3, CLEC-2–PDPN, and TLR4–
HMGB1 are other receptor–ligand interactions that support the activation of platelets and
aggregation on tumor cells [41–43]. Compared to the other receptor–ligand interactions,
the related research on CD62P and its ligands is more extensive and in-depth. Gong et al.
demonstrated that CD62P expression on platelets in the peripheral blood of cancer patients
was significantly higher than that in healthy patients [44]. Moreover, different kinds of
CD62P ligands, such as CD44, SELPLG, and CD24, have been shown overexpressed in
different human carcinomas [31,45–50]. In practical drug delivery applications, tumor cells
should be compared with noncancerous cells with low platelet-binding capacity when
evaluating the platelet-mimicking carriers targeting tumor cells. In this instance, a high
level of targeted binding with tumor cells is conducive to the use of a carrier system.

RNA-seq data in the CCLE database showed that CD44, SELPLG, and CD24 were
expressed in almost all types of tumors (Figure 6A). Then, we retrieved the differential
expression pattern of CD44, SELPLG, and CD24 in 33 types of cancers and adjacent normal
tissues from the TCGA database. Our analysis showed that the expression of ligands was
significantly higher in 17 cancers out of 33 types of cancers (Figure 6B). The above results
provided a basis for the application of the CD62P-based albumin tumor-targeting carrier in
tracking different types of CTCs.
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3. Materials and Methods
3.1. Materials

APC anti-CD41 antibody, Alexa 647 anti-CD62P antibody, and Alexa 488 anti-CD62P
antibody were purchased from BioLegend (San Diego, CA, USA). Anti-CD41 antibody (Bi-
otin) was purchased from Antibodies.com (Cambridge, UK). CD62P protein was purchased
from Sino Biological (Eschborn, Germany). Human serum albumin solution (200 g/L HSA,
145 mM NaCl) was from Grifols (Frankfurt, Germany). Dimethyl sulfoxide (DMSO) and
sodium hydroxide (NaOH) were purchased from Carl Roth (Karlsruhe, Germany). Ethylene
diamine tetra-acetic acid (EDTA) was purchased from Fluka (Buchs, Switzerland). Glu-
taraldehyde (GA), sodium carbonate (Na2CO3), magnesium chloride (MnCl2), phosphate-
buffered saline (PBS), glycine, sodium borohydride (NaBH4), and fluorescein isothiocyanate
(FITC) were purchased from Sigma-Aldrich (Munich, Germany). 1-Ethyl-3-(3-dimethyl
aminopropyl) carbodiimide hydrochloride (EDC), 2-(N-morpholino)ethanesulfonic acid
(MES), and (hydroxymethyl) aminomethane (Tris) were purchased from Thermo Scientific
(Rockford, IL, USA). N-Hydroxysuccinimid (NHS) was purchased from Fluka (St. Louis,
MO, USA). Arachidonic acid was purchased from Mölab (Langenfeld, German).

3.2. Preparation of Human Serum Albumin Particles (HSA-MPs)

The HSA-MPs were fabricated by the CCD technique [24,27,28]. Briefly, equal volumes
of 0.125 M MnCl2 with 10 mg/mL HSA and 0.125 M Na2CO3 were quickly added under
stirring for 30 s at room temperature to produce HSA-MnCO3-MPs. According to the
experimental needs, 0.025 mg/mL FITC in DMSO was added in the previous step. Then,
0.05% HSA solution was added to the suspension and incubated for an additional 5 min
under stirring to prevent agglomeration of the particles. We then washed the HSA-MnCO3-
MPs with 0.9% NaCl three times (3000 g, 5 min). The suspension was then cross-linked
with 0.1% glutaraldehyde (GA) for 1 h at room temperature. Next, it was incubated with
0.08 M glycine and 0.625 mg/mL NaBH4 for 30 min to quench the remaining GA. Finally,
0.25 M EDTA was used to dissolve the MnCO3 templates (30 min). The obtained particles
were washed three times (1000 g, 10 min) and stored in 0.9% NaCl for further use.
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3.3. Preparation of Anti-CD41-HSA-MPs and CD62P-HSA-MPs

Anti-CD41 antibody was coupled to HSA-MPs through 1-ethyl-3-(-3-dimethyl amino-
propyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) EDC/NHS
chemistry. First, HSA-MPs were repeatedly washed with activation buffer (50 mM MES
buffer, PH 6). Then, 4.8 mM EDC and 48 mM NHS were simultaneously added to a 0.1%
HSA-MP solution. This mixture was incubated at room temperature for 30 min. Afterwards,
the anti-CD41 antibody was added to reach a 10 µg/mL concentration. We then mixed the
solution well and then allowed the reaction to proceed for 2.5 h. Quenching was performed
by adding glycine to a final 4 mg/mL concentration. Finally, the solution was washed
with blocking buffer (50 mM Tris pH 8 and 0.5% HSA), and the final anti-CD41-HSA-MPs
were stored in the blocking buffer. The same method was used during the preparation of
CD62P-HSA-MPs (Figure 7).
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3.4. Particle Characterization

The size, polydispersity index (PDI), and zeta potential of the anti-CD41-HSA-MPs
and CD62P-HSA-MPs in 10 mM NaCl were measured by Dynamic Light Scattering (Ze-
tasizer Nano ZS, Malvern Instruments Ltd., Malvern, UK). The results were expressed as
mean ± standard deviation.

3.5. Cell Culture

The human pulmonary adenocarcinoma cell line A549 was a gift from Prof. Sergio
Moya (CIC biomaGUNE, San Sebastian, Spain). The A549 cell line was cultured in RPMI
1640 medium (Corning, New York, NY, USA) supplemented with 10% FBS (Biochrom,
Berlin, Germany) and 1% penicillin–streptomycin. The cells were incubated at 37 ◦C and
5% CO2 in the incubator (Thermo Scientific, Waltham, MA, USA).

3.6. Preparation of Platelets

Blood samples from healthy human volunteers (EA1/110/21—Ethics committee
Charité) were collected into 0.105 M Na3 citrate tubes (366575, BD Vacutainer). The platelet-
rich plasma (PRP) was isolated by centrifugation from whole blood (150× g, 15 min).

3.7. Adhesion of Platelets to Tumor Cells under Shearing Condition

Under normal hematological circumstances, the platelets activated in response to
shear stress [51]. The high shear rates were able to induce platelet activation [36]. After
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trypsinization, A549 cells were incubated in PRP (tumor/platelet = 1/250) for 30 min under
3000 s−1 shear rate in a high-performance rheometer (Physica MCR 301, Anton Paar, Graz,
Austria) at 37 ◦C. The platelets were marked with APC anti-CD41 antibody, Alexa 647
anti-CD62P antibody, or Alexa 488 anti-CD62P antibody. The percentage of cells with
the adhesion of particles and the mean fluorescence intensity (MFI) of A549 cells were
quantified by flow cytometry in the APC channel (BD FACS Canto II, Franklin Lakes, NJ,
USA). The samples were also observed under a fluorescence microscope (CLSM ZeissLSM
510 meta, Zeiss MicroImaging GmbH, Jena, Germany).

3.8. Adhesion of Anti-CD41-HSA-MPs to Platelets

The PRP and anti-CD41-FITC-HSA-MP suspensions (20 particles/platelet) were mixed
in the EP tube and incubated on the rotator at 37 ◦C. After 30 min of coincubation, the
samples were fixed with 4% paraformaldehyde in PBS. After that, the adhesion of anti-
CD41-FITC-HSA-MPs to platelets was analyzed using flow cytometry in the FITC channel
and observed under the fluorescence microscope

3.9. Cellular Uptake Assay

In 24-well plates, A549 cells were seeded and incubated overnight. The medium
was then replaced with fresh serum-free medium containing FITC-labeled HAS-MPs, anti-
CD41-HAS-MPs, or CD62P-HSA-MPs (MPs/A549 = 5000/1) and co-incubated for 24 h. The
activated platelets were prepared by incubating with arachidonic acid (5 mg/mL) for 30 min
at 37 ◦C. To investigate the effect of activated platelets on cellular uptake, we pre-incubated
A549 cells with arachidonic acid-activated platelets for 30 min before incubation with HAS-
MPs or anti-CD41-HSA-MPs for an additional 24 h (MPs/Platelets/A549 = 5000/250/1).
The samples with or without Trypan blue quenching allow us to differentiate and quantify
the fluorescent particles that have been completely engulfed versus those that are merely
adhering to the cell membrane. Typan blue quenches the fluorescence of the HAS-MPs left
on the surface of the cells. The flow cytometer quantified the cellular uptake percentage
and MFI of A549 cells.

3.10. Validation of CD62P Ligand Expression Level in TCGA and CCLE Databases

CD62P binds to several common ligands, including CD44, SELPLG, and CD24. The
Cancer Cell Line Encyclopedia (CCLE) project (accessed on 6 July 2022, https://www.
broadinstitute.org/ccle) was used to validate the expression profiles of CD44 and SELPLG
in 1091 cell lines. The Cancer Genome Atlas (TCGA) database (accessed on 7 July 2022,
https://portal.gdc.cancer.gov/) was used to validate the CD44 and SELPLG expression in
33 cancers. Different gene expression analysis was performed using the limma package
in R studio software to determine whether CD44 or SELPLG expression varied between
tumors and normal tissues.

3.11. Statistical Analysis

In addition to the statistical methods mentioned above, Student’s t-test was used to
explore the association between the groups. Data were expressed as mean ± standard
deviations (SD). * p < 0.05, ** p < 0.01, and *** p < 0.001 were thought to be statistically
significant.

4. Conclusions

In this study, anti-CD41-HSA-MPs were designed to target CTCs by hitchhiking on
platelets to track tumor cells. CD62P-HSA-MPs were used to adhere the tumor cells by
taking advantage of the conjugation of CD62P. Both resultant modified HSA-MPs demon-
strated the tumor cell-targeting ability in vitro. In summary, the platelet-based and platelet-
mimicking human serum albumin submicron particles offered a promising approach for
metastatic cancer therapy and tracking through accurate targeting for tumor cells.

https://www.broadinstitute.org/ccle
https://www.broadinstitute.org/ccle
https://portal.gdc.cancer.gov/
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