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Lung physiology research advanced significantly over the last 100 years. Respiratory
mechanics applied to animal models of lung disease extended the knowledge of the
workings of respiratory system. In human research, a better understanding of respiratory
mechanics has contributed to development of mechanical ventilators. In this review, we
explore the use of respiratory mechanics in basic science to investigate asthma and
chronic obstructive pulmonary disease (COPD). We also discuss the use of lung
mechanics in clinical care and its role on the development of modern mechanical
ventilators. Additionally, we analyse some bench-developed technologies that are not
in widespread use in the present but can become part of the clinical arsenal in the future.
Finally, we explore some of the difficult questions that intensive care doctors still face when
managing respiratory failure. Bringing back these questions to bench can help to solve
them. Interaction between basic and translational science and human subject investigation
can be very rewarding, as in the conceptualization of “Lung Protective Ventilation”
principles. We expect this interaction to expand further generating new treatments and
managing strategies for patients with respiratory disease.
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INTRODUCTION

Respiratory mechanics has been extensively studied during the last century (RAHN et al., 1946; Otis,
1977; Collett et al., 1985; Bates, 2005) with resultant improvement in our understanding of the
function of the respiratory system in health and disease states (MEAD et al., 1955; Reinert and
Trendelenburg, 1972; Dodd et al., 1988; Mador, 1991). Newfound knowledge of respiratory
mechanics has also been applied to different animal models of respiratory disease (Wanner and
Abraham, 1982; Wanner et al., 1990; Irvin and Bates, 2003).

Over the years, accumulated knowledge in respiratory mechanics has been incorporated into
mechanical ventilators and respiratory functional assessment of patients (Younes, 1992; Sinderby
et al., 1999; Jonkman et al., 2020). Respiratory mechanics became not only a tool for investigating
lung disorders. It was also used in developing treatments for failing respiratory system and in
designing strategies to prevent lung injury (Henderson et al., 2017).
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In this review, we describe some of the mathematical
approaches used in respiratory mechanics in animal models
and in patients and their application in the development of
mechanical ventilation. Finally, we will discuss how respiratory
mechanics is still important for both research and clinical care
and how it can provide insightful information moving respiratory
science forward.

RESPIRATORY MECHANICS IN ANIMAL
MODELS

Animal models have been extensively used to elucidate different
physiological mechanisms leading to respiratory disease
development, such as asthma and chronic obstructive
pulmonary disease (COPD).

Generally, the assessment of respiratory mechanics in animal
models is based on the acquisition of pressure and volume/flow
data. From these data, mathematical models whose parameters
have physiological significance are applied (Bates, 2005).

The most used model for evaluating respiratory mechanics is
known as the “equation of motion.” It is a linear one-
compartment model that assumes the respiratory system is
excited at a single frequency, usually very close to the
respiratory rate (Figure 1) (Bates, 2005). The parameters of
this model are respiratory system resistance, representing the
amount of pressure required to generate flows; and respiratory
system elastance, which is the amount of pressure required to
maintain volume changes in the respiratory system.

The equation of motion does not contemplate viscoelastic
phenomenon. Viscoelasticity is the property to accommodate
stress following changes in volume (stress relaxation) (Faffe and

Zin, 2009). It can be observed in pressure-time graph once
inspiratory flow is abruptly stopped. The slow pressure
decrease after inspiratory pause reveals stress relaxation
(Figure 2A). It results from parenchymal fiber conformational
adaptation (Faffe and Zin, 2009), changes in surface tension in
water-air interfaces or redistribution of air within lung regions
(Bates, 2009). Measurements in viscoelasticity add complexity to
equation of motion model.

The respiratory system has a high frequency dependence. This
led to the use of excitations with more than one frequency in
order to calculate the respiratory impedance that basically
characterizes the biomechanical behaviour of the respiratory
system in the frequencies contained in the excitation
(Figure 1) (Hantos et al., 1992).

For a better physiological understanding of respiratory
impedance, models are used whose parameters are correlated
with dissipative (airway resistance and tissue viscosity) and
conservative (elastance or tissue compliance) components. The
most used model for understanding respiratory impedance in
small rodents is the constant-phase model (Bates and Irvin,
2003). This model provides more detailed information on lung
mechanics comparing to equation of motion. It describes
proximal and distal airways with different parameters, which
can be useful to evaluate obstructive diseases.

Respiratory Mechanics in Animal Models of
Lung Disease
Respiratory mechanics have been studied in several animal
models of respiratory diseases. In experimental emphysema,
researchers observed a decrease in tissue elastance and
viscosity (see section “Respiratory mechanics in animal

FIGURE 1 |Mathematical models used to obtain functional parameters. (A). The equation of Motion: Paw (cmH2O) is airway pressure, measured at airway opening,
Flow (mL/s) is airway flow, R is Respiratory SystemResistance (cmH2O.s/mL), Vol (mL) is the Volume of air that has entered the lungs since the beginning of inspiration, E
(cmH2O/mL) is Respiratory System Elastance and P0 (cmH2O) is the airway pressure at the beginning of inspiration. (B). The Constant Phase Model (Z(f), cmH2O.s/mL)
is calculated as the pressure response (P(f), cmH2O) divided by ventilator generated flow (Flow(f), mL/s) at each frequency (f). Raw represents Newtonian resistance
(cmH2O.s/mL); i is imaginary number; Iaw is airway inertance (cmH2O.s

2/mL), Gtis is tissue viscance (cm H2O.s
(1−α)/mL); Htis is tissue elastance (cm H2O.s

(1−α)/mL).
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models”) related to alveolar destruction and loss of viscoelastic
properties (Bates, 2009; Ito et al., 2019a, 2019b). On the other
hand, repairing lung tissue with different components of
extracellular matrix also alters lung function. Changes in
collagen fibers types I and III and elastin in lung parenchyma
leads to loss of lung elasticity (Fietzek and Kuehn, 1976; Shifren
et al., 2007; Suki and Bates, 2008; Koenders, 2009).

Airway resistance increase is usually detected in experimental
models of asthma where structural changes in airways are the
major histological finding (Bates, 2009). Edema in
peribronchovascular areas also increases viscoelastic properties.
Airway hyperresponsiveness can be detected with a dose-
response curve to methacholine or the antigen itself (Wang
et al., 1986). Both constant phase model and equation of
motion can be used to describe respiratory function in these
animals (Bates, 2009) (see Figure 1 and section “Respiratory
mechanics in animal models” above).

Camargo et al. (2020) showed in an experimental model of
asthma in mice sensitized with ovalbumin that there was an

increased response of airway resistance when compared to the
control group. In addition, Possa et al. (2012); Righetti et al.
(2014) and Pigati et al. (2015), in an experimental model of
asthma showed that the worsening in mechanical parameters had
a positive correlation with markers of eosinophilic inflammation,
Th2 profile cytokines, oxidative stress (iNOS and 8- iso-
PGF2alpha), and extracellular matrix remodelling.

Oscillatory mechanics and the constant phase model (see
Figure 1 and section “Respiratory mechanics in animal
models” above) can be applied not only to whole lung, but
also to lung tissue in vitro. Using this technique, it is possible
to calculate resistance and elastance of lung tissue strips (Leite-
Júnior et al., 2003). For oscillatory mechanics, subpleural
parenchyma strips of the lower lobes are cut and the resting
length (Lr) and wet weight (W0) of each strip are measured
(Aristoteles et al., 2013; Righetti et al., 2014). Lung tissue strips are
composed of 86–90% alveoli, 5–8% blood vessels and 0.4–5%
airways (Ludwig and Dallaire, 1994; Aristoteles et al., 2013). The
tissue lungs are infused with Krebs solution (in mM: NaCl, 118;

FIGURE 2 |Respiratory mechanics in paralyzed and spontaneously breathing patients. (A). This is a representation of Flow, Volume and Pressure signals over time
for a patient under sedation and neuromuscular blockage. Since there is no respiratory muscle activity, equation of motion (see Figure 1A) can be applied. Compliance
(inverse of Elastance, displayed in Figure 1) and Resistance can be found using minimum square method or by the inspiratory pause special case displayed in (A).
Applying an inspiratory pause will simplify the equation allowing measurement of Static Compliance and Resistance. It also allows observation of viscoelastic
properties of the respiratory system, with the slow decrease in pressure (Stress Relaxation) once flow is abruptly stopped. (B). In non-sedated patients, respiratory
muscles interact with the ventilator. In this example, we show Pressure, Flow, Volume and Esophageal Pressure signal over time in a patient ventilated in Pressure
Support Mode. Muscle activity can bemeasured with an esophageal catheter. In this scenario, equation of motion needs to be adapted to include pressure generated by
respiratory muscles (Pmus). The model becomes less stable but esophageal pressure reveals several features of patient ventilator interaction. The observed changes in
tidal volumes over several breaths is caused by a change in patient’s effort detected by esophageal pressure. Additionally, we can observe the inspiratory effort triggering
mechanical ventilator (line α) and the prolongation of patient’s inspiratory effort into ventilator expiration (line β), distorting expiratory flow curve (arrow).
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KCl, 4.5; NaHCO3, 25.5; CaCl2, 2.5; MgSO4, 1.2; KH2PO4, 1.2;
glucose 10) and metal clips are glued to either end of the tissue
strips with cyanoacrylate. Steel wires are attached to the clips; one
side is connected to a force transducer and the other side is
connected to a servo-controlled lever arm. The lever arm is
capable of peak-to-peak length excursions. It is connected to a
function generator, which controlled the frequency, amplitude,
and waveform of the device oscillation (Ebihara et al., 2000; Pigati
et al., 2015). The resting tension (T) is set by the movement of a
screw thumb wheel system, which effected slow vertical
displacements of the force transducer. Length and force signals
are converted from analog to digital with an analog-to-digital
converter and recorded by a compatible computer. The resistance
(R) and elastance (E) of the lung tissue strip are estimate by the
recursive least-squares algorithm to the equation of motion
(Ludwig and Dallaire, 1994; Aristoteles et al., 2013; Righetti
et al., 2014; Pigati et al., 2015).

T � EΔ1 + R (Δ1/Δt) + K

Where T is tension, l is length, Δl/Δt is the length change per unit
of time, and K is a constant reflecting resting tension. The
unstressed cross-sectional area (A0) of the strip was obtained
from the formula:

A0 (cm2) � W0/(p x Lr)
In this sense, Nakashima et al. (Nakashima et al., 2008)

evaluated the active process of lung immune unresponsiveness
with oral ingestion of ovalbumin (oral tolerance) in guinea pigs
sensitized with ovalbumin and Starling (Starling et al., 2009)
evaluated the use of nitric oxide synthetase inhibitor in an
experimental model of asthma. In both studies oscillatory
mechanics identified the improvement in lung tissue resistance
and elastance parameters as a result of treatment. Furthermore,
changes in lung resistance and elastance also correlate with
changes in inflammation, oxidative stress, and remodelling in
the lung parenchyma (Righetti et al., 2014; Pigati et al., 2015).
Pigati et al. 2015 showed similar changes in resistance and
elastance of the respiratory system and lung tissue
strip. Moreover, tissue strip oscillatory mechanics can also
include dose-response curves after challenges with antigen or
methacholine. (Lanças et al., 2006). In recent decades, several
studies used this technique for measuring lung tissue resistance
and elastance in vitro (Xisto et al., 2005; Santos et al., 2008;
Starling et al., 2009; Aristoteles et al., 2013; Righetti et al., 2014;
Pigati et al., 2015) and these studies helped to support the
importance of alterations in the lung parenchyma of asthmatic
patients (Tulić and Hamid, 2003; Mauad et al., 2004; Martin,
2008).

Lung mechanics produces a simple description of the function
of the lungs and can be used to detect diseases and to analyse the
effects of potential treatments. The newmethodologies (lung strip
mechanics and oscillatory mechanics) described above allowed a
more complex and accurate description of lung function (Bates
and Irvin, 2003; Leite-Júnior et al., 2003; Lanças et al., 2006). In

the decades to come, lung mechanics will continue to play a
fundamental role in respiratory research and clinical care.

LUNG PHYSIOLOGY IN HUMAN
SUBJECTS: MECHANICAL VENTILATION
AND LUNG ASSESSMENT
Lung Physiology and Evolution of
Mechanical Ventilators
Besides allowing mechanistic investigation on several lung
diseases, respiratory physiology largely contributed to
evolution of mechanical ventilation. In the past century,
mechanical ventilation evolved from bulky and cumbersome
negative pressure chambers (iron lungs) to modern positive
pressure ventilators (Kacmarek, 2011). Over decades, many
features and ventilatory modes were added to ventilators. This
process was greatly assisted by knowledge gained in basic lung
physiology.

Incorporation of positive end expiratory pressure (PEEP) to
mechanical ventilators became widespread after the description
of Acute Respiratory Distress Syndrome (ARDS) in 1967
(Ashbaugh et al., 1967) and observations of hypoxemia
improvement with the use of PEEP (Ashbaugh et al., 1969).
Measurements of lung compliance using equation of motion and
responses to PEEP were important for defining the new
syndrome. Although compliance is not part of current ARDS
definition (Ranieri et al., 2012), it has been used in initial
characterizations of the syndrome (Ashbaugh et al., 1967;
Murray et al., 1988). Later, investigations on the role of PEEP
and tidal volume in ARDS contributed to understanding
Ventilation Induced Lung Injury (VILI) (Parker et al., 1990a;
Corbridge et al., 1990; Dreyfuss and Saumon, 1993); and were the
basis for developing Lung Protective Ventilation (Amato et al.,
1998; The Acute Respiratory Distress Syndrome Network, 2000).

Some ventilatory modes added in time to ventilators were
largely based on lung physiology. In Proportional Assist
Ventilation (PAV), lung compliance and resistance are used to
determine the amount of airway pressure delivered by the
ventilator (Younes, 1992). In Neurally-Adjusted Ventilatory
Assist (NAVA), electrical impulses generated by depolarization
of diaphragm fibers are captured and control the level of
ventilatory support (Sinderby et al., 1999). In Automatic Tube
Compensation (ATC), mechanical ventilators provide additional
pressure proportional to flow and endotracheal tube resistance
(Guttmann et al., 1993; L’Her, 2012).

Respiratory Mechanics Applied to Clinical
Care
Assessment of lung mechanics is used in daily clinical care. In
patients receiving invasive mechanical ventilation, the equation of
motion is used to describe lung mechanics and to assist in the
characterization of respiratory failure (Pham et al., 2017).
Physicians can measure increases in resistance (Figure 2) in
respiratory failure in patients with obstructive disease. Changes
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in resistance over the course of treatment can indicate worsening
or improvement of disease status and guide ventilatory support.

In ARDS, measurements of lung compliance (Figure 2)
inform the clinician about disease severity (Morales-Quinteros
et al., 2019; Panwar et al., 2020; Boscolo et al., 2021). In COVID
pandemic, lung compliance was employed to describe specific
phenotypes: patients with hypoxemia but little amount of lung
collapse and high compliance versus very low compliant lungs
with large amount of lung collapse (Gattinoni et al., 2020b). The
authors suggested different phenotypes could benefit from
different ventilatory strategies (Gattinoni et al., 2020a). This
approach was disputed by other researchers, who
demonstrated respiratory compliance in COVID patients were
similar to values previously reported in ARDS (Tobin, 2020; Ziehr
et al., 2020; Sjoding et al., 2021) and treatment should not be
changed. Early findings during a pandemic should be carefully
evaluated before changing current practice (Meyer et al., 2021).
Despite the controversy, use of physiological parameters to
further classify ARDS patients highlights the heterogeneity of
the disease (Khan et al., 2021). In the future, we might be able to
learn what parameters could determine changes in treatment
strategies.

Over decades, different physiological approaches have been
proposed to properly set PEEP levels in ARDS patients. Obtaining
lung pressure-volume curve and selecting PEEP levels according
to best compliance was initially used by Amato (Amato et al.,
1998). This is rather laborious and measuring lung compliance at
different PEEP levels after lung recruitment could be a suitable
simplification of this method. Calculating dead space and shunt
fraction was also used for PEEP selection (Ferluga et al., 2018;
Karbing et al., 2020; Tusman et al., 2020). Recently, measuring
potential recruitment has also been proposed (Chen et al., 2020).
And Talmor et al. (2008) proposed setting PEEP levels to
maintain a positive transpulmonary pressure, measured using

an esophageal catheter. They have shown improvements in
oxygenation but failed to demonstrate decrease in mortality
with this technique (Beitler et al., 2019). Unfortunately, an
ideal method for PEEP selection has not been found. Some
authors have used a FiO2-based table to guide PEEP setting.
This method can be suitable in the busy ICU environment but did
not reduce ARDS mortality (Brower et al., 2004). Additionally,
setting PEEP based on FiO2 level ignores that patients might
respond very differently. Physiological approaches could still be
useful in addressing this problem.

More recently, Gattinoni proposed the use of Mechanical
power, a new measurement of stress applied to lungs based on
energy delivered during mechanical ventilation (Gattinoni et al.,
2016). Mechanical power was based on equation of motion and
incorporated concepts of mechanical work displayed on
Campbell’s diagram (Cabello and Mancebo, 2006). Each
component of the equation of motion was multiplied by the
change in volume and Respiratory rate (Figure 3) to evaluate the
individual contribution to lung injury (Silva et al., 2019). The
usefulness of this new analysis is still under investigation. Some
authors believe it does not add substantial new information to
mechanical ventilation management (Costa et al., 2021). On the
other hand, mechanical power can be associated to biomarkers of
lung deterioration (Rocco et al., 2020). At a minimum, it
underscored the importance of respiratory rate as a source of
stress to lungs during ventilation.

The assessment of respiratory mechanics in spontaneously
breathing patients has always been a challenge. Respiratory effort
should be accounted for when applying equation of motion
(Grinnan and Truwit, 2005). Esophageal catheters can be used
to measure patients’ effort (Baydur et al., 1982), allowing the use
of equation of motion even in non-paralyzed patients (Figure 2).
On the other hand, new lungmechanics techniques evolving from
experimental physiology can be used in spontaneously ventilated

FIGURE 3 | Schematic representation of Mechanical Power. In panel (A)we display a single breath of a patient ventilated with Volume Assist Control. Graphs show
changes in Pressure, Flow and Volume over time and highlight points of interest: PEEP, peak pressure (Ppeak) and plateau pressure (Pplat, at end of inspiratory pause).
In figure (B), we display a Volume-Pressure loop with the same points of interest observed in panel (A). Dark gray area represents Resistive Mechanical Power, change in
pressure to overcome resistive respiratory forces integrated over change in volume (tidal volume); middle gray area represents Elastic mechanical power, change in
pressure to overcome elastic respiratory forces integrated over change in volume; light gray area represents PEEP mechanical power, a static component of pressure
representing baseline tension on the respiratory system also integrated over change in tidal volume. (Adapted from Silva et al., 2019).
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patients. Notably, forced oscillation technique, or oscillometry,
has contributed to a better understanding of lung function in
clinical routine and in research, particularly in patients with
obstructive disease (Peterson-Carmichael et al., 2016; Hantos,
2021; Lundblad and Robichaud, 2021).

Lung Protective Ventilation. Tidal Volume
Challenge
Initial basic research on the effects of PEEP and tidal volume in
ARDS (Parker et al., 1990b; Carlton et al., 1990; Corbridge et al.,
1990; Dreyfuss and Saumon, 1993) later translated in trials
investigating mechanical ventilation management strategies
(Amato et al., 1998; The Acute Respiratory Distress Syndrome
Network, 2000). Current guidelines for ARDS management
suggest limiting tidal volume to 6 ml/kg and plateau pressure
to 30 cm H2O (Griffiths et al., 2019; Papazian et al., 2019). This
strategy was named lung protective ventilation. It revealed that
mechanical ventilation can be harmful to lungs and defined new
targets for the health team. It also introduced the challenging idea
that aiming normal blood gas values during mechanical
ventilation could lead to worse outcomes. Higher pCO2 levels
(permissive hypercapnia) generated by reduction tidal volume
were initially regarded as benign. Later, some authors recognized
hypercapnia was associated to impaired immunologic response
and vascular tonus dysfunction. Hypercapnia increases
pulmonary resistance and can contribute to acute cor
pulmonale (Repessé and Vieillard-Baron, 2017; Barnes et al.,
2018). Nevertheless, the best current evidence still
recommends limiting tidal volume for ARDS patients despite
CO2 elevation. Patients with hypercapnia in this setting could be
managed with additional rescue strategies (Repessé and Vieillard-
Baron, 2017).

Lung protective ventilation concepts were further explored in
a later reanalysis of the initial ARDS trials (Amato et al., 2015).
The authors used a multilevel mediation analysis to conclude that
driving pressure (plateau pressure—PEEP) was the variable most
significantly associated to mortality. Although ARDS guidelines
advised against the use of targets of driving pressure (Papazian
et al., 2019), this measurement integrates the concepts of disease
severity (lung compliance) and ventilator management (tidal
volume). Further prospective trials are required but driving
pressure could become an essential parameter to monitor in
the future.

The success of managing mechanical ventilation during ARDS
led several authors to suggest the use of lung protective
ventilation in all patients receiving mechanical ventilation.
Indeed, initial observational studies suggested better outcomes
or decreased inflammatory cytokine production when limiting
tidal volume in non-ARDS patients (Determann et al., 2010; Neto
et al., 2012; Fuller et al., 2013). The initial observations were not
confirmed in a properly conducted clinical trial (Simonis et al.,
2018). As surprising this might look, one must remember that
patients with ARDS have lungs very different from normal and
from other patients on mechanical ventilation. Limiting tidal
volume can be useful in some scenarios, as operating rooms, but
can be very challenging in ICU. Some individuals would require

deep sedation and muscle paralysis to limit tidal volume
regardless of the ventilatory mode selected, adding significant
morbidity to patient care. Patients waking from sedation after
uneventful surgery that develop large tidal volume on
spontaneous breathing should probably be extubated and not
deeply sedated. COPD patients could benefit from lowering tidal
volume and minute ventilation, but probably would handle very
poorly high respiratory rates that might be required if tidal
volumes are greatly reduced (Marini, 2011).

Even in ARDS patients, duration of strict protective
ventilation can bring challenges to caring team. Although
essential in the beginning of care, limiting tidal volumes can
be difficult in some patients once sedation and muscle paralysis
are withdrawn. Maintaining long periods of sedation and
paralysis can lead to muscle weakening and prolong time on
mechanical ventilation (Kress et al., 2000; Girard et al., 2008;
Reade and Finfer, 2014). On the other hand, patients with high
ventilatory drive will produce large tidal volumes regardless of
ventilatory mode selected (Yoshida et al., 2013; Papazian et al.,
2019).

The importance of ventilatory drive and its contribution to
lung injury is still under investigation. It has been recognized that
patients can generate significant amount of inspiratory pressure
during respiratory failure, both before and after being intubated.
Large inspiratory pressure swings will translate into large
transpulmonary pressure irrespective of the settings on non-
invasive ventilation device (before intubation) or mechanical
ventilator (after intubation) (Brochard et al., 2017). Even when
volume assist control mode is selected, patients with large swings
generate intrathoracic pressure reduction that can produce lung
edema, increases in left ventricle afterload and double triggering
in ventilator, which doubles or triples tidal volumes (Pohlman
et al., 2008; Pinsky, 2018; Sottile et al., 2020). The contribution or
spontaneous breathing patterns to lung injury has been named
P-SILI (Patient Self Inflicted Lung Injury). Although some
authors have advised against using those new concepts to
manage ventilator at this stage due to lack of experimental
and clinical data (Tobin et al., 2020), this will be an important
topic to explore. The relative importance of spontaneous effort in
producing lung injury will need to be balanced against the
deleterious effects of extending sedation and muscle paralysis.

Guidelines for properly managing those patients are still
missing. We will need further cooperation between basic and
clinical science to understand the limits of lung protective
ventilation. We need to understand when this strategy is
absolutely required warranting muscle paralysis; and when we
can be more flexible on these rules. We also need to understand
what other lung disorders require limiting tidal volume.

Respiratory Mechanics in Obstructive Lung
Diseases
Patients with respiratory failure secondary to obstructive lung
disease can require mechanical ventilation. Ventilatory strategies
for these patients are designed to avoid air trapping and intrinsic
PEEP (PEEPi) generation (Reddy and Guntupalli, 2007). PEEPi is
produced when expiratory time is insufficient to allow complete
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tidal volume exhalation, usually when both airway resistance and
respiratory rate increase. Air is trapped inside the lungs,
increasing intrathoracic pressure, decreasing venous return and
increasing patients’ effort to trigger the ventilator and generate
inspiratory flows (Pepe and Marini, 1982; Marini, 2011).
Mechanical ventilator settings should allow enough expiratory
time to minimize the impact of PEEPi. Although limiting tidal
volume can be beneficial, low minute ventilation and high
expiratory time should be main targets (Reddy and Guntupalli,
2007).

In obstructive patients, equation of motion can be used to
measure lung resistance and monitor the response to treatments:
bronchodilators, antibiotics andmanagement of airway secretion.
PEEPi can be measured with expiratory pause, informing bedside
decisions on setting ventilator parameters.

However, there are limitations for the use of lungmechanics in
those patients. Equation of motion is usually applied only to
inspiratory phase, where airway pressure variation is significant.
Measurement of airway resistance during expiration is often
neglected despite its importance in generating PEEPi. Some
patients in respiratory failure reach a condition of expiratory
flow limitation, where airways collapse at the mid-end expiration
(Bates, 2009). In this scenario, expiratory flow becomes
independent of pressure gradient and expiratory airway
resistance cannot be defined using equation of motion.

Additionally, patients on mechanical ventilators are often
awake and have spontaneous breathing. In this setting, if
pressure generated by respiratory muscles is not measured
(Figure 2B), lung mechanics cannot be properly assessed.
PEEPi measurement requires long expiratory pause which is
usually not possible in patients with spontaneous breathing
(Grinnan and Truwit, 2005). And since PEEPi is highly
dependent on respiratory rate, values of PEEPi obtained
during neuromuscular block are hardly valid when patients
resume respiratory effort.

In the future, widespread use of esophageal pressure
catheters can allow monitoring of respiratory effort and
assessment of lung mechanics in patients with spontaneous
breathing (Grinnan and Truwit, 2005). PEEPi can also be
measured using esophageal pressure monitoring (Marini,
2011). Methods for measuring expiratory resistance and
detecting expiratory flow limitation can become easier.
Finally, oscillatory mechanics at the bedside can provide
information on dissipative forces of the respiratory system
even in patients with spontaneous breathing (see section
Oscillometry). It could then allow the analysis of lung
resistance in patients with obstructive lung disease without
the requirement of deep sedation.

LUNG PHYSIOLOGY STILL NOT AT
BEDSIDE PRIMETIME

For different reasons, several physiological approaches developed
in the lab did not reach bedside yet and will be discussed in the
paragraphs below. Some of these techniques are laborious or
provide data clinicians are not ready to use. Some techniques, on

the other hand, did become commercially available but are still
seldom employed.

Multiple inert gas elimination technique (MIGET) was
designed for determining ventilation/perfusion distribution
throughout the lungs using several gases with different
solubility on blood. MIGET advanced knowledge of
respiratory physiology in different species and elucidated
mechanisms of hypoxia in different disorders (Wagner, 2008).
The technique is very laborious and requires not only injection of
several gases but also a pulmonary catheter for measuring cardiac
output and gas detector. It provides useful clinical information
and could be used to select PEEP levels or describe functional
lung behaviour during treatment. Its complexity, however,
prevented widespread clinical application.

Electrical Impedance Tomography (EIT) evolved from very
simple and inaccurate devices to monitor respiratory rate into
complex continuous monitors of lung ventilation. Recent
advances in the technique also included perfusion and V/Q
distribution measurement using electrocardiography-gated
impedance signals or following hypertonic saline infusion
(Costa et al., 2009; Nguyen et al., 2012). There should be
some caution in interpreting perfusion measured by
impedance technique. Impedance signals should not be able
to detect perfusion defects in small capillaries if pulmonary
blood flow to major arteries remains unchanged (Deibele
et al., 2008). Therefore, some authors believe perfusion EIT
will be more useful as a non-invasive tool for diagnosing
pulmonary embolism rather than small V/Q mismatch
(Maciejewski et al., 2021). However, the technology is still
evolving and methods for diagnosing small perfusion defects
could arise.

Although not used in many ICUs, EIT became commercially
available and can provide useful information on ventilation
during patient care. It can be used to improve PEEP titration
since it displays both overdistention and lung collapse. It also
provides a visual and numerical analysis of ventilation
homogeneity, can detect pneumothorax in real time and
displays patterns of ventilation during spontaneous efforts
(Coppadoro et al., 2020; Maciejewski et al., 2021). In the
present, there is not enough supporting evidence for the use of
EIT, but it can become an important monitoring device in the
future.

Measuring resting lung volumes has always been difficult in
clinical and research settings. Nitrogen-washout measurements
have been proposed by some authors. The technique uses changes
in FiO2 concentrations and nitrogen dilution to estimate lung
volumes (Olegård et al., 2005; Dellamonica et al., 2011). The
process, however, is time-consuming and cannot be applied
continuously in a busy ICU. Nevertheless, measuring resting
lung volumes can be used to properly set tidal volumes.
Guidelines for ARDS management suggest limiting tidal
volumes to 6 ml/kg of ideal body weight, which is calculated
based on patient height to correct for different lung sizes
(Papazian et al., 2019). However, ARDS patients have different
lung volumes not only because of different body constitution but
also because of extension of the disease (Chiumello et al., 2008;
Mattingley et al., 2011). Scaling tidal volume to actual size of lungs
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could allow settings targeted not only to each patient, but also to
each phase of the disease (Chiumello et al., 2008; Macintyre, 2016;
Umbrello et al., 2017; Pelosi et al., 2021).

Patients’ effort monitoring has been possible to measure for
decades using esophageal catheters (Baydur et al., 1982).
Although commercially available and proposed by many
different research groups, the technique is seldom employed
(Akoumianaki et al., 2014). Misplacement of the catheter,
patients’ discomfort and lack of clear clinical benefit could
explain the low enthusiasm for the approach. On the other
hand, as we manage patients with less sedation and greater
levels of interaction with ventilators, measuring effort can
become important. If future research relates respiratory effort
to lung injury, spontaneous breathing should be carefully
handled.

Oscillometry
Oscillometry or forced oscillation technique consists of
applying flow or pressure oscillations at the entrance of the
airways and monitoring the response obtained with the
oscillations in order to calculate the impedance of the
respiratory system. Impedance is the mechanical load of the
respiratory system to ventilation.

Initially, the forced oscillation technique was used in apnea
situations so that voluntary respiratory efforts did not mask the
actual physiological condition of the respiratory system.
However, with signal processing techniques, it became possible
to use oscillometry in spontaneously ventilating patients by
superimposing a high-frequency pressure waveform on the
tidal breathing pattern (Peterson-Carmichael et al., 2016) and
still calculate the impedance of the respiratory system with the
effects of breathing minimized.

The constant-phase model (see section ‘Respiratory
mechanics in animal models’ and Figure 1) applied in small
rodents is not suitable for patients because of the low
frequency broadband excitation needed (Lundblad and
Robichaud, 2021). So, the analysis of the human respiratory
impedance is based mostly on the frequency response
behaviour of impedance, a complex mathematical function
with real and imaginary components. This analysis strongly
helps the understanding of respiratory physiology, as the real
component is related to dissipative energy (resistance) and the
imaginary component is related to conservative energy
(elastance) of the respiratory system (Lundblad and
Robichaud, 2021).

According to Hantos (Hantos, 2021), manoeuvres using
oscillometry involving large but slow changes in lung volume
allows for fine mapping of respiratory mechanics exceeding the
tidal range and a novel intra-breath modality is capable of
tracking the dynamic changes in respiratory system.

Technical standards for respiratory oscillometry have been
published (King et al., 2020) and commercial devices are
becoming popular.

BACK TO BENCH

Basic science and lung physiology helped to develop and advance
mechanical ventilation at bedside and they still can be very
important for the challenges ahead.

Lung protective ventilation does not answer all questions in
respiratory failure. It was crafted long ago, when mechanical
ventilation care was substantially different. Awake patients
interacting with ventilators bring additional challenges. How
far should we go to limit tidal volume? Should we continue to
keep low levels of sedation in patients with high respiratory drive?
Should we tolerate higher tidal volumes once the initial
inflammatory phase of ARDS is over and oxygenation starts to
improve? And how should we handle patients without ARDS
with high respiratory drive and tidal volumes?

Measuring effort, lung volumes, lung inhomogeneities, pattern
of ventilation and V/Q distribution or mechanical power can
provide some of these answers. At the same time, ventilators used
for small animals incorporated some of the technologies
developed at the bedside, as pressure support ventilation.
P-SILI and the effects of respiratory effort can be further
investigated in animal models.

The advent of ECMO (extracorporeal membrane
oxygenation) has brough additional complexity to the field.
Once limited to operating rooms, ECMO use in ICU became
more popular after influenza (H1N1 in 2009) and COVID (2020)
pandemics (Combes et al., 2018; Barbaro et al., 2020). Although
very expensive and invasive, ECMO can provide all the
respiratory support required by some patients. Ventilators can
then be adjusted to provide very minimum ventilation. The
optimal setting and how long a patient should be maintained
in ECMO are still under investigation (Tonna et al., 2021).

CONCLUSION

The study of lung mechanics has substantially contributed to
development of knowledge of respiratory diseases. It was also a
cornerstone in the creation and evolution of mechanical
ventilation. The combination of basic, translational and
applied sciences has proved very useful in respiratory
physiology leading not only to better understanding
physiopathology but also to designing supportive treatment. In
the years to come, we expect this partnership to continue as we
face new challenges in managing patients with respiratory failure.
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