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Neuroimaging Studies in Obsessive Compulsive 
Disorder: A Narrative Review

Arpit Parmar, Siddharth Sarkar

ABSTRACT

Obsessive compulsive disorder (OCD) is a relatively common psychiatric illness with a lifetime prevalence of 2–3% in 
general population. The pathophysiology of OCD is not yet fully understood, however over the last few decades, evidence 
for abnormalities of cortico‑striatal‑thalamic‑cortico (CSTC) circuitry in etiopathogenesis of OCD has accumulated. Recent 
brain imaging techniques have been particularly convincing in suggesting that CSTC circuits are responsible for mediation 
of OCD symptoms. Neuroimaging studies, especially more recent studies using functional neuroimaging methods have 
looked for possible changes seen in the brain of patients with OCD, the specificity of the findings (as compared to other 
psychiatric illnesses) and the effects of treatment (pharmacotherapy/psychotherapy) on such changes were observed. This 
narrative review discusses the neuroimaging findings seen in patients with OCD with a special focus on relatively more 
recent neuroimaging modalities such as magnetic resonance spectroscopy and magnetoencephalography.
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INTRODUCTION

Obsessive compulsive disorder (OCD) is characterized 
by recurrent intrusive thoughts  (obsessions) and 
repetitive behavior (compulsions), often as an attempt to 
neutralize anxiety and distress caused by the obsessions. 
The lifetime prevalence in the general population is 
estimated at 2–3%.[1] It has considerable direct and 
indirect costs and has a detrimental impact on many 
factors of quality of life, including level of education, 
employment status, and financial independence of the 
patients and their family members.[2,3]

The pathophysiology of OCD is not yet fully 
understood, however over the last few years, evidence 
for abnormalities of fronto cortico‑striatal‑thalamic 
circuitr y has accumulated.[4‑6] This narrative 
review discusses the neuroimaging findings seen 
in patients with OCD with a special focus on 
relatively more recent neuroimaging modalities such 
as magnetic resonance spectroscopy  (MRS) and 
magnetoencephalography (MEG).
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OBSESSIVE COMPULSIVE DISORDER 
PATHOPHYSIOLOGY

Although OCD was considered a primarily psychiatric 
disorder initially, recent evidence suggests that structural 
and functional changes occurs in specific areas of the 
brain in patients with OCD leading to conceptualization 
of OCD as a neuropsychiatric disorder.[7] Apart from the 
role of serotonin system in the development of OCD, 
evidence also suggests a possible role of dopaminergic 
mechanisms in OCD manifestation.[8] Furthermore, 
there is growing evidence suggesting the role of gamma 
amino butyric acid (GABA) as well as glutamate (Glu) 
in the OCD expression.[9]

Clinical observation suggests that OCD has a 
neuro‑developmental basis. There is evidence which 
links neurological dysfunction to OCD, such as OCD 
developing after head trauma, streptococcal infection, 
encephalitis as well as comorbid tic disorders such as 
Tourette’s syndrome.[10] Further evidence of neurological 
involvement in OCD comes from the fact that these 
patients show increased levels of neurological soft signs 
as compared to healthy people.[11,12] In addition, these 
patients show a significant impairment in neurological 
function including abnormalities of motor circuits as 
compared to healthy controls.[13] A neuro‑degenerative 
hypothesis has also been postulated which suggests 
that neuronal loss in the inhibitory pathways leads to 
functional hyperactivity in the cortico‑limbic loop (a 
primary circuit implicated in OCD pathophysiology).[14]

FUNCTIONAL NEUROANATOMY OF 
OBSESSIVE COMPULSIVE DISORDER

In the last few decades, improvement in imaging 
technology has led to advancement in our understanding 
of neural basis of OCD pathophysiology. Recent 
brain imaging techniques have been particularly 
convincing in suggesting that specific brain circuits 
are responsible for mediation of OCD symptoms.[5] 
Pathophysiological abnormalities in the prefrontal‑basal 
ganglia‑thalamic‑prefrontal circuits are believed to 
underpin OCD.[15] Dysfunction in these circuits may be 
associated with implicit processing deficits and intrusive 
symptoms.[16]

Orbitofrontal and cingulate cortex sends robust 
excitatory  (glutaminergic) projections to ventral 
striatum and caudate nucleus. The caudate nucleus 
sends GABA‑ergic projections to globus pallidus which, 
in turn, sends inhibitory projections to thalamus. Two 
serial inhibitory outputs suggest the possibility of 
reverberating circuit. This abnormality is thought of 
as inherent to the functional neuropathophysiology of 

OCD.[16,17] This circuitry is composed of two loops: A 
direct pathway  (from cerebral cortex‑striatum‑globus 
pallidus‑substantia nigra and pars reticularis‑thalamus 
back to cortex) and an indirect pathway (from cerebral 
cortex  ‑  striatum‑globus pallidus‑subthalamic 
nuc l eu s ‑ g l obu s  pa l l i du s  re j o in s  common 
pathway‑thalamus back to cortex).[7] Caudate is involved 
in cortical information processing for behavioral response 
initiation and thus, has an important role in procedural 
learning  (i.e.  acquisition of new habits and skills 
requiring minimal consciousness or awareness). Four 
cortico‑striatal‑thalamic‑cortico  (CSTC) circuits are 
implicated in OCD pathophysiology: (1) Circuit involving 
projections from sensorimotor cortex via putamen (2) 
circuit involving projections from paralimbic cortex via 
the nucleus accumbens (3) projections from orbitofrontal 
cortex to ventromedial caudate nucleus (4) projections 
from dorsolateral prefrontal cortex  (DLPFC) via 
dorsolateral caudate nucleus.[18] Other areas implicated 
in OCD pathophysiology include amygdala and 
hippocampus. Structural changes have been reported 
in all these areas in patients with OCD.[19]

STRUCTURAL NEUROIMAGING STUDIES 
IN OBSESSIVE COMPULSIVE DISORDER

Computed tomography scan and magnetic resonance 
imaging
Multiple structural imaging modalities including 
computer tomography (CT) and magnetic resonance 
imaging (MRI) have been tried in patients with OCD 
to identify the regions involved in the pathogenesis of 
OCD. An X‑ray CT scan study reported significantly 
decreased volume of caudate nucleus in patients 
with OCD as compared to normal healthy controls. 
However, other structures such as lenticular nuclei 
and ventricles were similar in size in both the groups 
suggesting a possible involvement of caudate nucleus in 
OCD.[20] Similarly, an early MRI study demonstrated 
significantly lower caudate nucleus volume in patients 
with OCD as compared to normal controls, but other 
areas including prefrontal cortex were normal.[21] 
Other structural imaging studies of OCD have also 
suggested the presence of abnormalities, mainly 
involving fronto‑striato‑thalamic circuitry.[15,22] A 
review of structural neuroimaging studies in anxiety 
disorders including OCD reported alterations in the 
caudate nucleus, putamen, globus pallidus, and striatal 
region.[23]

Voxel‑based morphometry
Recently, volume‑based morphometry studies have 
been used to explore the entire brain for candidate 
regions. In a study by Valente et al., gray matter volume 
was found to be increased in the orbitofrontal and 
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parahippocampal regions in OCD patients as compared 
to healthy controls.[24] A more recent study found a 
significant reduction of gray matter volume in inferior 
and medial frontal gyrus, cingulate gyrus, superior 
temporal gyrus, and insula, and concluded that parietal 
cortex has a possible role in OCD pathophysiology.[25] 
Similarly, a mega‑analysis showed that OCD patients 
have significantly smaller volumes of frontal gray and 
white matter (WM) bilaterally including dorsomedial 
prefrontal cortex, anterior cingulate cortex, and inferior 
frontal gyrus as compared to healthy subjects.[26] 
Treatment‑related changes have also been suggested 
in these areas. A recent study done on treatment naïve 
OCD patients reported smaller gray matter volume 
in the left putamen which was undetectable after 
treatment with fluoxetine and cognitive behavioral 
therapy (CBT).[27]

FUNCTIONAL NEUROIMAGING STUDIES 
IN OBSESSIVE COMPULSIVE DISORDER

Functional imaging techniques indirectly measure the 
activity levels in specific brain areas and have been 
used to determine whether the structures thought to 
be involved in OCD are abnormally active.[28] Four 
types of studies have been used using functional 
neuroimaging to know the pathophysiology of 
OCD: (1) Comparison of OCD patients and healthy 
controls at baseline (2) studying OCD patients before 
and after treatment and comparing them to healthy 
controls to measure changes in cerebral activities which 
may correspond to treatment  (3) scanning patients 
during symptom provocation task and in control states 
and (4) scanning patients during a cognitive task and 
comparison conditions. Functional neuroimaging 
studies in OCD are consistent as compared to findings 
in other psychiatric illnesses.[29] Early studies of 
OCD used single‑photon emission CT (SPECT) and 
positron emission tomography  (PET) scans. These 
studies as well as recent studies using functional MRI 
have shown increased activation in the areas of basal 
ganglia  (predominantly head of caudate), anterior 
cingulate, and orbitofrontal cortex in OCD patients as 
compared to normal healthy controls.[7,30]

Positron emission tomography scan
OCD and its association with disorders involving basal 
ganglia structures led to the suggestion that OCD 
patients might have abnormal metabolic activity in basal 
ganglia and other associated areas.[31] PET scan is an 
imaging technique which produces a three‑dimensional 
image of functional processes in body using radiotracers 
such as fludeoxyglucose. The concentration of the 
tracer images indicate metabolic activity of the brain 
tissues. Studies using fluorodopa‑PET in patients 

with OCD suggested increased metabolism in the 
orbitofrontal cortex,[32] caudate nucleus,[33] anterior 
cingulate cortex, lenticular nucleus and thalamus,[34] 
and parietal cortex.[35] PET studies have also been 
applied to access the alteration in local metabolic 
rates of glucose  (LMRGlc) in OCD patients before 
and after treatment. The most consistently reported 
findings after treatment are decrease of LMRGlc 
in the orbito‑frontal cortex,[32,36‑38] anterior frontal 
gyrus,[34,37] and caudate nucleus.[33,36,38‑41] Thus, OCD 
therapy is thought to ameliorate OCD symptoms by 
decreasing functional activity along orbitofrontal‑basal 
ganglia‑thalamo‑cortical circuits. The change in glucose 
metabolism, although not consistent, has also been 
found to correlate with change in symptom severity 
in OCD.[39] Few studies reported that lower relative 
glucose metabolism in orbitofrontal cortex might be 
associated with greater improvement in OCD symptoms 
in patients treated with pharmacotherapy.[38,42] In 
summary, PET studies in OCD indicate increased 
metabolism in various regions of brain including 
caudate, orbito‑frontal cortex, and prefrontal cortex, 
which are a part of CSTC circuit.

Single‑photon emission computed tomography scan
Hexamethylpropyleneamine oxime‑SPECT studies 
have demonstrated increased uptake in prefrontal 
region,[43] medial frontal cortex,[44] decreased uptake in 
the left basal ganglia,[45] and decreased uptake in the 
right caudate nucleus.[46] Treatment‑related changes 
have also been reported in studies using SPECT scan. 
Ho Pian et  al. in a SPECT study using fluvoxamine 
for 12  weeks found that regional cerebral blood 
flow levels decreased significantly in the left caudate 
and the left and right putamen in both responders 
and nonresponders.[47] Another study reported that 
responders to pharmacotherapy showed diffuse 
reduction of regional cerebral blood flow in prefrontal 
region from high pretreatment levels.[43] Diler et  al. 
studied 12 children with OCD and found that caudate 
and prefrontal cingulate showed significant regional 
cerebral blood flow reduction after treatment with 
paroxetine for 12 weeks.[48] Similar changes have also 
been reported in caudate and prefrontal cortex after 
psychotherapy.[49,50] The findings suggest potential 
reversibility of the brain abnormalities with treatment 
seen in patients with OCD.

Some studies also focus on transporter density and 
receptor availability for binding of drugs in OCD.[51] A 
SPECT study showed decreased binding of dopamine 
transporters in OCD patients after treatment with 
selective serotonin reuptake inhibitors  (SSRIs) in 
basal ganglia as compared to baseline, and changes in 
binding ratio was correlated with changes in symptom 
severity on Y‑BOCS score.[52] These findings suggest the 
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potential role of dopaminergic system in basal ganglia 
in OCD symptom improvement.

Functional‑magnetic resonance imaging
Functional‑MRI (f‑MRI) studies have tried to explore 
the alterations in brain metabolism in the brain 
regions of CSTC circuit in patients with OCD using 
conflict tasking, Stroop interference, multi‑source 
interference tasking, and reversal learning paradigms.[53] 
A study done by Chamberlain et al. reported decreased 
activation in several cortical and subcortical structures 
including caudate and orbito‑frontal cortex in OCD 
patients.[54] Similar findings were also reported in 
the first‑degree relatives of OCD as compared to 
normal healthy controls suggesting a shared familial 
neurobiology. Similarly, another f‑MRI study reported 
significantly decreased brain activation during planning 
in DLPFC, thalamus, and parietal cortex not only in 
OCD patients, but also in their monozygotic twins.[55]

Few studies also looked for possible changes in 
brain activation patterns before and after treatment 
with medications as well as psychotherapy. Nakao 
et  al. found that after symptom improvement, 
symptom provocation task‑related activation in the 
orbitofrontal cortex, prefrontal cortex, and anterior 
cingulate cortices decreased.[56] Conversely, Stroop’s 
task‑related activation in the parietal cortex and 
cerebellum increased. Pretreatment activation in the 
right cerebellum and left superior temporal gyrus was 
positively correlated with improvement in the Y‑BOCS 
scale and predicted subsequent treatment response 
to fluvoxamine.[57] Another study suggested that 
following improvement with cognitive behavior therapy, 
the cerebellum and parietal lobe showed increased 
activation, and the orbitofrontal cortex, middle 
frontal gyrus, and temporal region showed decreased 
activation during Stroop task.[58] In a recent study using 
CBT, it was found that patients of OCD with greater 
clinical improvement showed more stable activation in 
palladium.[59] All these studies point toward the role of 
the various regions of CSTC circuitry being involved 
in OCD pathophysiology and possible normalization 
of such changes after effective treatment.

NEWER NEUROIMAGING MODALITIES 
AND OBSESSIVE COMPULSIVE 
DISORDER

Magnetic resonance spectroscopy
MRS allows in vivo and noninvasive assessment of brain 
biochemistry. Basic principles underlying MRS are 
the same as MRI, but add an additional dimension of 
information by detecting the resonance frequencies of 
different metabolites. More commonly, 1H‑MRS is done 

as a single voxel in which a spectrum is acquired from the 
specific area of the brain, while MRS imaging provides 
metabolic maps. This technique provides data regarding 
the levels of N‑acetyl aspartate  (NAA, a marker of 
neuronal density and integrity), choline (Cho, a marker 
of cellular density and precursor of neurotransmitter 
acetyl Choline), creatine  (Cr, a marker of cellular 
energy), myo‑inositol  (mI, a marker of membrane 
turnover and myelination), and the complex named 
Glx formed by Glu and glutamine; both of them are 
involved in the synthesis of GABA.[60,61]

Various study designs have been used to look into 
OCD pathophysiology using MRS. This includes 
comparison of OCD patients and healthy controls,[62,63] 
comparison of OCD patients with other psychiatric 
disorders,[64] comparing OCD patients before and 
after treatment,[65‑67] comparison of OCD treatment 
responders to nonresponders,[66] comparing OCD 
patients during performance of a cognitive task to a 
comparison condition,[53] and the use of genetic paradigm 
along with MRS to determine the association between 
neurological finding and genetic polymorphism.[68]

Many MRS studies reported reduction in NAA levels 
in OCD patients in various regions of brain involved 
in CSTC circuitry including corpus striatum, thalamus, 
basal ganglia, and anterior cingulate cortex.[69,70] This 
suggests reduction in neuronal viability in brain regions 
involved in neurobiology of OCD. Similarly, studies also 
suggest higher levels of Glx and Glu in patients of OCD 
in areas such as caudate nucleus and anterior cingulate 
cortex  (hyperglutaminergic state).[66,70] A few studies 
also report an increase in the levels of mI, indicating 
a compensatory increase in phospholipid synthesis, 
membrane turnover, and myelination in the brain 
regions involved in the pathophysiology of OCD.[70]

Some of the studies also report treatment‑related 
changes in these metabolite levels in patients with 
OCD. They suggest increase in the levels of NAA and 
decrease in the levels of Glx and mI after successful 
treatment with SSRIs.[66,71] Similar changes have also 
been reported by studies in which psychotherapy was 
used as a treatment modality.[67] However, such studies 
are scarce. In summary, these MRS studies suggest 
reduction in neuronal viability and hyperglutaminergic 
state in the areas of CSTC circuitry, which are 
potentially reversible after successful treatment.

Diffusion tensor imaging
Diffusion tensor imaging  (DTI) is comparatively 
a younger imaging method as compared to other 
methods and permits the quantification of the 
diffusion characteristics of water molecules in  vivo. 
Water molecules diffuse more freely along myelinated 
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tracts than across them within cerebral WM, which is 
known as anisotropy. Any reduction in anisotropy is 
indicative of altered tissue integrity and suggests change 
in underlying WM tracts.[72] The most commonly 
used parameters include fractional anisotropy, axial 
diffusivity, and radial diffusivity.

As with all neuroimaging studies, results of DTI studies 
in OCD are heterogeneous. However, a few findings 
are commonly reported by many of the studies. Most 
studies done among adult OCD population report 
decreased WM connectivity in OCD as compared 
to normal healthy controls.[73‑75] Some of the studies 
reported increased WM connectivity, in adults and 
adolescent OCD patients.[76,77] Such alterations are most 
commonly reported in corpus callosum and cingulate 
bundle, anterior thalamic radiation, and parietal 
WM.[78,79] The finding of altered WM structures in 
cingulate and thalamus concurs with the concept of 
CSTC circuitry involvement in patients with OCD. 
However, changes reported in parietal WM constitute 
a new aspect which needs to be explored further. Such 
alterations vary as a function of clinical characteristics 
and may be amenable to pharmacologic treatment.[72]

Near‑infrared spectroscopy
Near‑infrared spectroscopy (NIRS) is a neuroimaging 
technique well‑suited for psychiatric disorders with 
improved safety, no requirement of larger devices, and 
lower cost, as compared to other techniques. NIRS 
has almost 10  times higher spatial resolution and 
can be used repeatedly over a prolonged period in a 
normal posture unlike other neuroimaging techniques. 
Although it has been used widely to assess brain 
function in psychiatric illnesses such as schizophrenia, 
depression, and bipolar disorder, only few studies have 
looked for potential changes seen in patients with OCD 
using NIRS. Adult patients with OCD showed reduced 
prefrontal cortical hemodynamic responses as compared 
to normal controls during verbal fluency and Stroop 
color‑word tasks.[80,81] Similar finding has also been 
reported in pediatric patients.[82] These studies suggest 
a notion that the prefrontal cortex plays an important 
role in the pathophysiology of OCD. However, studies 
using NIRS in OCD are limited with a small sample 
size and so the findings need to be replicated using a 
larger sample.

Magnetoencephalography
Recently, MEG has been used to investigate spontaneous 
brain activity in patients with OCD. It is a neuroimaging 
tool with high temporal as well as spatial resolution. It 
represents brain activity more directly than techniques 
such as SPECT or PET (which uses intermediates such 
as cerebral blood flow or glucose metabolism). MEG 

is a potential localizing tool for neuronal function, 
especially in psychiatric disorders. An initial study 
examined the evoked MEG signals in OCD patients 
during the encoding, retention, and retrieval phases of 
delayed matching‑to‑sample working memory task and 
reported that increased MEG activity was phase‑specific 
in OCD.[83] During encoding, the activation was 
increased in insula. During retention, the activation was 
reduced in DLPFC and occipital and parietal sulcus. 
During retrieval, the activation was increased in insula 
extending toward the parietal cortex. The results are 
consistent with a hypothesis of compensatory effortful 
inhibitory control. Another study done on ten OCD 
subjects reported clustering of slow MEG activity over 
the left DLPFC providing further evidence of role of 
prefrontal cortex in OCD pathophysiology.[84] Similarly, 
another study reported that prestimulus alpha was 
lower in OCD patients as compared to controls.[85] 
Task‑phase specific reduction in alpha event‑related 
desynchronization was also seen in thalamocortical 
network which suggested relation of alpha oscillations 
and thalamocortical network to the etiology of OCD.

Limitations of neuroimaging studies in obsessive 
compulsive disorder research
As already described, neuroimaging studies have 
not produced consistent results. Although, most of 
these studies suggest a role of CSTC circuitry and 
other associated areas, many studies fail to do so. 
These differences can be attributed to a multitude 
of factors including small sample sizes resulting in 
insufficient statistical power. Many studies included 
patients with other comorbid axis‑I illnesses or 
patients already on psychotropics, making it difficult 
to ascertain specificity of the findings reported.[64,86] 
Matching the OCD patients with controls, especially 
gender and age is also a critical factor, which might 
lead to mixed results. As few studies only include 
female patients, it is difficult to compare their results 
with other studies.[87] Heterogeneity also exists in 
the methodology of these studies in terms of their 
inclusion and exclusion criteria. Severity of illness, age 
of onset, and duration of illness may all have a bearing 
on the findings and so, classifying the patients in one 
group as OCD (which is a heterogeneous group with 
a diverse set of symptoms) may lead to difficulties in 
interpretation. In addition, it is important to study the 
differential neural correlates of specific OCD symptoms 
which may have the differences in their neural basis.[88] 
Various imaging‑related issues also lead to difficulties 
in interpretation. For example, a voxel‑based method 
gives details of specific brain regions and so, it has the 
potential to miss the abnormalities in other brain areas. 
The differences such as spatial resolutions also lead to 
difficulty in interpretation.
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CONCLUSIONS AND FUTURE 
DIRECTIONS

Despite the differences in study methodology of the 
studies, it is evident that neuroimaging studies point 
toward a role of CSTC circuitry in the pathophysiology 
of OCD. Various neuro‑imaging studies conducted till 
date have broadly implicated mainly four regions in 
the pathophysiology of OCD symptoms. These regions 
are orbitofrontal cortex, cingulate cortex, thalamus, 
and the head of caudate nucleus. Several authors 
have suggested that these regions form a circuit that 
is hyperactive in OCD. Dysfunction in these circuitry 
plays an important role in implicit processing deficits 
and intrusive symptoms.[16] These findings are further 
supported by neuropsychological and treatment studies. 
However, there is a need for further studies to explore 
the role of other brain areas in the pathophysiology of 
OCD. For example, some studies implicate amygdala in 
OCD pathophysiology.[89] Models involving amygdala 
are important to understand the OCD pathophysiology 
as it has been involved in emotional appraisal of 
external stimuli and acquiring and consolidating 
reactions to conditioned fear (factors relevant to OCD 
symptomatology).[90] Disorder‑specific changes in 
the brain also need to be studied in greater depths. 
The role of CSTC circuitry and its application in 
OCD symptomatology is still in its infancy and such 
explanatory model needs to be studied. More studies 
to find out the specific functional abnormalities within 
this circuit are required. Longitudinal studies are still 
limited and so there is a need to follow the unfolding 
of changes occurring in brain as OCD symptoms 
evolve (using a high‑risk group such as the first‑degree 
relatives of patients with OCD).This may lead to 
possible identification of specific brain regions involved 
in the development of specific symptom  (obsession, 
compulsion, urge intensification, and so on). It 
would provide a more comprehensive and complete 
understanding of the disorder and would also help in 
determining the most appropriate time for treatment 
induction.
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