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Nutrition represents one of the greatest environmental determinants of an individual’s
health. While nutrient quantity and quality impart direct effects, the interaction of nutrition
with genetic and epigenetic modifications is often overlooked despite being shown to
influence biological variation in mammals. Dissecting complex traits, such as those that
are diet or nutrition related, to determine the genetic and epigenetic contributions toward
a phenotype can be a formidable process. Epigenetic modifications add another layer of
complexity as they do not change the DNA sequence itself but can affect transcription
and are important mediators of gene expression and ensuing phenotypic variation.
Altered carbohydrate metabolism and rates of fat and protein deposition resulting
from diet-induced hypo- or hyper-methylation highlight the capability of nutritional
epigenetics to influence livestock commodity quality and quantity. This interaction can
yield either products tailored to consumer preference, such as marbling in meat cuts,
or potentially increasing productivity and yield both in terms of carcass yield and/or
offspring performance. Understanding how these and other desirable phenotypes result
from epigenetic mechanisms will facilitate their inducible potential in livestock systems.
Here, we discuss the establishment of the epigenome, examples of nutritional mediated
alterations of epigenetics and epigenetic effects on livestock production.

Keywords: epigenetics, livestock, nutrients, nutritional epigenetics, methylation

INTRODUCTION

In order to meet the dietary needs of the world’s projected population of 9.1 billion by 2050,
the Food and Agriculture Organization estimates that food production must increase by 70%
(FAO, 2009). Attaining this goal of increased food production, especially in developing countries,
will require the adoption of more efficient and sustainable production methods. In addition,
climate and environmental impacts will need to be considered in order to meet the estimated food
production targets. Taking advantage of nutritional epigenetics to increase or improve livestock
production can aid in sustaining and/or increasing food production. Nutritional epigenetics
involves the study of epigenetic mechanisms related to gene-diet interactions (Park et al., 2012).
Even though the effective utilization of nutritional epigenetics applied to livestock production is in
its infancy, a foundation of nutritional epigenetics research has been established and has validated
the direct relationship between nutrients, including vitamins, macronutrients, and phytochemicals,
and epigenetic modifications mainly through regulation of methionine cycle substrate availability
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and enzyme activity. However, diet may not only play a regulatory
role in the epigenetic makeup of the first generation consumer,
it may also impact progeny performance. This could be a key
driver for productivity improvement, particularly in systems such
as the swine and poultry industry, where reproductive cycles
are rapid with large offspring numbers. Initial steps in this
research field have identified the impact of plane of nutrition of
the dam on offspring phenotype. In an effort to elucidate the
contribution of epigenetic inheritance toward complex traits we
must also examine the potential of transgenerational epigenetic
inheritance through establishment of the epigenome, as well as
specific nutrient effects and nutritionally mediated impacts on
epigenetics.

The pathways governing nutritional regulation of epigenetic
modifications in turn can be considered at each level of the
substrate input, the molecular target, as well as the endpoint
product. Many molecular forms of epigenetic modification
have been described including changes in chromatin packaging
due to histone acetylation and methylation, repression of
gene expression by non-coding RNA, and repression of
gene transcription by DNA methylation. These epigenetic
mechanisms, in addition to others, have been recently described
in detail (Ibeagha-Awemu and Zhao, 2015; Triantaphyllopoulos
et al., 2016). Epigenetic effects include chemical modifications to
DNA base pairs that do not change the DNA sequence itself but
can affect transcription, thus resulting in phenotypic variation.
Ultimately, the primary goal is to understand how epigenetic
mechanisms will allow for inducible desirable phenotypes. The
purpose of this review is to highlight the interaction between
nutrition and epigenetics with respect to traits of economic
importance in livestock production.

ESTABLISHMENT OF THE EPIGENOME

To understand how epigenetic modifications mediate and affect
gene expression it is important to understand how and when the
epigenome is established. While we do not fully understand how
all of the complex epigenetic genome changes occur, we do know
that the genome is demethylated, or “erased,” and remethylated,
yet some epigenetic information is retained and transmitted to
the next generation. Furthermore, studies, primarily in mice, but
also in cattle (Dean et al., 2003; Yang et al., 2007) have provided
some understanding of the timing of these events. It is worth
noting that when these important biological processes occur, i.e.,
when the epigenome of the progenitor cells are being erased
and then re-established, represent critical times or “windows” in
which nutritional changes or disruptions may be perpetuated.
Studies have shown that perturbation, be they genetic or the result
of nutritional changes, during these critical windows of time
can directly affect the developing animal and/ or the cells that
contribute to future generations. Here we will review and discuss
the timing in which the genome undergoes the two different
cycles or waves of epigenetic reprogramming (Figure 1).

At fertilization genetic material from two haploid gametes
must come together to create a new diploid organism. Since the
mid 1970’s scientists have understood that one germ cell from

each sex are required for the development of a viable embryo.
Pathological analyses of human germ cell tumors have provided
important biological information regarding the difference of
parental genetic origins. Through histopathological analyses of
ovarian teratomas and hydatidiform mole, functional differences
of what the maternal and paternal genome each contribute to cell
growth and differentiation was recognized. Ovarian teratomas
occur in the ovary and consist of three germinative layers (Linder
et al., 1975) whereas hydatidiform mole occurs in the uterus
and only contain extra trophoblast (Kajii and Ohama, 1977;
Wake et al., 1978). However, both tumors arise from uniparental
genomes. Genetic analyses have shown that the cells which
result in ovarian teratomas consist only of the maternal genome
whereas the hydatidiform mole is only the paternal genome.
Furthermore, a series of pronuclear transfer studies in the early
1980’s using mice provided experimental evidence that the sex
of the parentally derived genome directly affects the developing
embryo (McGrath and Solter, 1984; Surani et al., 1984). These
studies provided the early conceptual framework and evidence
for two important concepts: first is that one of each parental
germ cell is necessary and second is the understanding of what
each of the maternal and parental genomes directly contribute
toward specific cell linages the proper development of a viable
fetus. While it may not be surprising that it is necessary to have
both a maternal and paternal genome for the development of a
viable embryo it does raise the question how are these genomes
differentiated such that parent of origin is readily identified at
fertilization.

At fertilization the parental genomes start to go through
global demethylation where prior epigenetic programming is
erased so that new totipotent cells can be reset for specific cell
linage determination in a manner which results in the correct
cellular differentiation. This is one cycle or wave of epigenetic
reprogramming which notably occurs of the developing zygote
within the maternal environment. However, because each of the
parental genomes is necessary to contribute specifically to the
different and specialized manner of the development of the zygote
the demethylation changes occur in a manner specific to the
parent of origin. The male pronucleus, for example, is rapidly
and actively demethylated involving Ten–Eleven Translocation
(TET) dioxygenases proteins (Tahiliani et al., 2009; Gu et al.,
2011; Hackett et al., 2013), whereas the maternal genome is
demethylated passively, i.e., methylation is lost via lack of
DNA methylation maintenance during replication, resulting in
a progressive loss of methylation at each cell division. After the
formation of the zygote and by the blastocyst stage most, but
not all, of the genome has undergone progressive demethylation
and has been erased. However, some specific genomic regions
escape post fertilization eraser or demethylation. For example,
these regions include intracisternal A particles (IAPs) and
imprinted genome differentially methylated regions (gDMRs).
As a result, some parental allele specific methylation expression
is transmitted to the next generation resulting in allele specific
expression of associated imprinted genes.

After implantation the cell mass or blastocysts undergoes
de novo methylation in a cell lineage specific fashion. DNA
methylation increases in the cells which give rise to the embryo,
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FIGURE 1 | The genome goes through two cycles or waves of epigenetic reprogramming. At fertilization the paternal genome is actively demethylated (blue
line), whereas the maternal genome is passively demethylated (red line). As a result most of the blastocyst genome is demethylated by implantation. However, some
regions of the genome, like imprinted differentially methylated regions (DMRs) and intracisternal A particles (IAP’s), maintain methylation allowing some epigenetic
information to be transmitted to the next generation (gray line). Subsequent to implantation the genome of the developing zygote goes through de novo methylation
completing the first wave of reprogramming. The degree of purple shading indicates the degree of methylation in the genome. After the primordial germ cells (PGC)
within the developing embryo are specified they will proliferate and migrate to the genital ridge and in doing so will go through genome demethylation. This marks the
beginning of the second wave of reprogramming. Upon sex determination and gametogenesis the genome is remethylated at different times in each sex. Germ cells
in the male gonad are remethylated in the developing embryo while in utero and the degree of methylation is denoted by blue shading. The prospermatogonia
proliferate and at puberty continually progress through meiosis to eventually produce mature spermatozoa. Conversely, female germ cells entire meiosis
unmethylated in utero and arrest in prophase 1 just before or at birth. During the follicular growth phase the oocyte genome will be remethylated, germinal vesicle will
extrude the first polar body and if fertilized will complete MII. As a result of oocyte remethylation occurs during the follicular growth phase of only the specific oocytes
when they are recruited. This figure was generated by combining and modifying images from the following related works: Data from Dean, W., Santos, F., and Reik,
W., Seminars in Cell & Developmental Biology, 14, 93–100, Elsevier, 2002; Data from Cowley, M., and Oakey, R., Molecular Cell, 48, 819–821, 2012; Data from
Smallwood, S.A. and Kelsey, G. Trends in Genetics, 28, 33–42, 2011; Data from Saadeh, H., and Schulz, R. Epigenetics and Chromatin, 7, 1–15, 2014.

a primitive ectoderm, but not the cells which give rise to
the placenta and yolk sac, or primitive endoderm (Ficz et al.,
2011). This process requires the cells to undergo both de novo
methylation via DNA methyl transferase (DNMT), DNMT3a,
DNMT3b, and DNMT3L (Okano et al., 1999; Suetake et al.,
2004), as well as methylation maintenance via DNMT1. Dnmt1
null mutant mice displayed embryo arrest and death, suggesting
that it is essential that these epigenetic marks are properly
maintained with continued cell division in a post implantation
growing embryo. It is possible that both de- and re-methylation
of specific genomic sites are necessary for both the control of
transcriptional activity required for the developing zygote as well
as the subsequent repression and therefore global silencing of
retrotransposons. This essentially completes one cycle or wave of
epigenetic reprogramming.

In the developing embryo it is important that a few cells
undergo germ cell specification. These primordial germ cells
(PGC) become the founder cell population which will ultimately
give rise to the germ cell population. Signaling events by
bone morphogenetic protein 4 (BMP4) induce the PGC to
express B-lymphocyte-induced maturation protein-1 (BLIPM1)
protein, and BLIMP1 suppresses homeotic genes (HOX) which
activate somatic cell differentiation (Saitou et al., 2002). These

PGC require sex specific epigenetic reprogramming for the
successful transition of gametogenesis. Germ cell specification
marks another wave or cycle of methylation reprogramming.
The proliferating PGC migrate to the genital ridge where they
arrive, settle and become the gonad. Although at least 70% of
somatic cells (Popp et al., 2010) and in particular, some genomic
regions (IAPs and imprinted DMRs) are not demethylated, germ
cells need to be reset so that they properly reflect the sex of
the developing embryo. As a result the PGC are erased, overall
methylation is generally less than 10% in PGCs (Popp et al.,
2010) prior to sex determination so that the correct genes
can subsequently be expressed to initiate proper sex specific
development of gametogenesis. Once sex is determined and
the proper cell lineages are set in the gonad, the genome is
remethylated. However, when this remethylation happens is very
different in male and female developing gonad. The differences
between when the male and female epigenome is established is
synonymous with the time frame wherein the cells that will give
rise to the next generation are vulnerable to epigenetics changes
and this also differs between the two sexes.

In the male embryo the germ cells will arrest in the first
growth phase (G1) of mitosis and all the prospermatogonia
will undergo remethylation before meiosis and birth. As such
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the maternal uterine environment is the direct influential
environment of the developing male embryo and male primary
germs cells remethylation. Subsequent to the establishment of
the epigenome and birth, male germ cells will undergo multiple
cell divisions, then meiosis prior to the development of mature
sperm. Therefore, the methylation established in the early cell
population needs to be maintained during cell replication post
puberty and throughout the reproductive years. Finally, volume
compacting necessary to produce the mature sperm is achieved
by the replacement of approximately 85% of the histones with
protamines in spermatozoa.

Conversely, in the female embryo, the PGCs remain in an
unmethylated state. In the PGCs, and only the PGCs of the female
embryo, there is a reduction in Xist RNA level to maintain two
active X chromosomes for subsequent gamete formation. The
female germ cells enter meiosis, complete pachytene and arrest
at diplotene stage of anaphase 1 at or before birth unmethylated.
It is not until after birth, during the follicular growth phase of
the oocyte that the arrested primary oocytes are remethylated.
Therefore, the critical window when the female genome is
remethylated and sensitive to changes is during the follicular
growth phase of those eggs. At puberty and in response to
endocrine signals the germinal vesicle oocyte resumes meiosis
and completes the first meiotic division. Subsequent to the
extrusion of the first polar body and upon fertilization the second
meiotic division (MII) will take place.

NUTRITIONAL MEDIATED ALTERATIONS
OF EPIGENETICS

While mechanistically naïve to the epigenetic process, the oft
considered “father of epigenetics”; Barker et al. (1989, 1990,
1993) reported anecdotal evidence of the heritable pattern linking
maternal malnourishment with prevalence of heart disease,
hypertension and type 2 diabetes in progeny. Many of these gene-
environment interactions exert small over-all effects, however,
others such as the hypomethylation and concomitant increase
in expression of melanocortin 4 receptor are directly linked to
obesity through stimulation of orectic signaling and thus energy
intake (Farooqi and O’Rahilly, 2008). There is a dichotomy
relating to lipid deposition between most mammals. Where
excess adiposity is associated with disease in humans and
biomedical model rodents; in livestock species selective and site
specific adiposity is associated with valued productive traits such
as reproduction, fecundity, fitness during times of reduced feed
availability and/or cold as well as deposition of intramuscular fat
as marbling.

It is well understood that there exists a substantial gene and
environment interaction when considering phenotypic variation,
and a key environmental player in these phenotypes is certainly
nutrient quality and quantity. In fact, two significant examples
of nutrient induced epigenetic events can be found in mice
(Waterland and Jirtle, 2004) and honeybees (Kucharski et al.,
2008). The agouti coat color phenotype in mice has been shown
to be influenced by maternal diet (Waterland and Jirtle, 2004).
Expression of the agouti gene in mice conveniently results in an

observable yellow coat color and obesity. However, if mice have
the Avy locus and are fed a ration with sufficient methyl donating
constituents; such as folate and betaine then the expression of
the agouti gene is diminished and imprinting decreases both the
yellow coat and the obesity. Agouti coat color in mice was the
first experiment to show that maternal diet had the ability to
affect epigenetic modifications and gene expression in offspring.
Whereas, honeybees utilize differential nutrition with genetically
identical larvae to generate their worker caste system (Kucharski
et al., 2008). Both of the previously mentioned studies provide
evidence that epigenetic events may be nutritionally induced.

Several reviews have outlined the various points of potential
interaction between nutrition and epigenetics, including
the impact of supplementation or biological deficiency
of macronutrients, as well as specific micronutrients and
secondary plant metabolites, on methylation (Choi and Friso,
2010; Anderson et al., 2012; Jiménez-Chillarón et al., 2012;
Shankar et al., 2013). Logically, the main focus of nutritional
epigenetics has been on the specific precursors, substrates and
enzymes required in the folate cycle, the methionine cycle,
and histone methylation, as these relationships are the most
direct. Jiménez-Chillarón et al. (2012) outlined the impact of
nutrients on methylation capacity by affecting (1) availability
of nutrient-derived substrates for S-adenosylmethionine (SAM)
synthesis, (2) pool size of nutrient-derived cofactors required
for folate- and methionine- cycle completion, or (3) circulating
concentrations of diet-derived regulators of DNMT expression
and activity. Targeted dietary supplementation with folate,
choline, or betaine appears to consistently increase DNA
methylation because these nutrients are methyl group donors
(Anderson et al., 2012; Crider et al., 2012). In addition to folate,
supplementation with other B vitamins, notably B2, B6, and B12,
also appears to increase DNA methylation because of their role
as cofactors in the methylation process (Powers, 2003; Craig,
2004). Though choline and betaine are both involved in the
conversion of homocysteine to methionine, supplementation
with these downstream amino acids appears to produce
a less consistent DNA methylation response (Waterland,
2006), but some success has been documented as outlined
below.

Dietary induced epigenetic modifications have been studied in
a variety of food animal or livestock species (Table 1). Nutrients
such as folic acid and betaine have been shown to influence the
function of enzymes that participate in the methylation process
(Van den Veyver, 2002). Folic acid and betaine undergo a series
of chemical reactions that result in the production of methionine
(Anderson et al., 2012). Subsequently, methionine is converted
to SAM, which donates methyl groups to DNMTs. The DNMTs
then covalently attach the methyl groups to the five position of
a cytosine base. This suggests that DNA methylation efficiency
could be affected by animal nutrition as factors involved in the
biochemical pathway that converts nutrients into SAM. When
methyl donors such as folate or betaine are restricted from
diet the observation of hypomethylation is generally anticipated.
This result was observed in a study performed in Scottish
blackface ewes where the extent of periconceptional availability
of nutrients linked to the methionine-folate cycle altered DNA

Frontiers in Genetics | www.frontiersin.org 4 October 2016 | Volume 7 | Article 182

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00182 October 21, 2016 Time: 15:40 # 5

Murdoch et al. Nutritional Epigenetics and Livestock Production

TABLE 1 | Examples of nutritional mediated alterations of epigenetics in livestock.

Dietary change Epigenetic
effects

Outcome Species Reference

Vitamin B12, folate and
methionine deficient

DNA methylation Hypomethylation in methyl-deficient diet Sheep Sinclair et al., 2007

Betaine supplementation DNA methylation Increased global measures of DNA methylation Chicks Hu et al., 2015

Betaine supplementation DNA methylation,
Histone
modification

PEPCK1 hypomethylated and enriched for H3K27me3.
PEPCK2 and FBP1 hypermethylated and enriched for
H3K4me3

Neonatal
Piglets

Cai et al., 2014

Zinc supplementation DNA methylation Hypomethylation and increased expression of gene A20 Hens Li et al., 2015

Variable zinc levels DNA methylation Hypermethylation in regulatory regions of gene ZIP4 Piglets Karweina et al., 2015

Restrictive feeding Histone
modification

Increased global measures of H3K9 acetylation and
reduction in H3K9me3 in IUGR pigs subjected to restrictive
feeding

Pigs Nebendahl et al., 2016

Folic acid supplementation DNA methylation Hypermethylation in IUGR piglets with folic acid
supplementation compared to piglets fed control diet

Pigs Jing-bo et al., 2013

Maternal protein
insufficiency

DNA methylation Hypomethylation in POMC and GR in the sheep brain Sheep Begum et al., 2012

Methylating micronutrients DNA methylation IYD gene differentially methylated between groups of pigs
with extreme obesity related phenotypes

Pigs Braunschweig et al., 2012

methylation (Sinclair et al., 2007). The nutrient deficient diet
included restriction of vitamin B12, folate and methionine. At
12 months of age there was no measureable difference between
offspring of ewes fed the control diet and the methyl-deficient
diet. However, at 22 months, male progeny of the ewes fed
the methyl-deficient diet had an estimated 25% greater body
fat compared to the control diet offspring. As expected, dietary
induced epigenetic modifications were found, and a majority of
those were unmethylated or hypomethylated CpGs associated
with the methyl deficient animals. Of perhaps more interest is
that 53% of the altered loci were specific to male offspring whereas
only 12% of the altered loci were specific to female offspring.

Betaine has been utilized in livestock and chickens as a
feed additive to improve a variety of economically important
traits (Eklund et al., 2005; Alirezaei et al., 2012). Furthermore,
dietary supplementation of methyl donors such as betaine
generally results in global DNA hypermethylation. Although,
recent publications pertaining to dietary induced epigenetic
modifications from supplemental betaine have shown both
hyper and hypomethylation in specific genes (Cai et al., 2014;
Hu et al., 2015). An investigation of cholesterol metabolism
through betaine supplementation in newly hatched chicks
showed increased protein content levels of DNMT1 and thus
increased measures of global genomic DNA methylation (Hu
et al., 2015). However, when specific gene promoters were
investigated for CpG methylation levels contrasting results
were found. Increased methylation was found in the promoter
regions of cholesterol-7alpha-hydroxylase, (CYP7A1) and sterol
regulatory element binding protein 1(SREBP1) while decreased
methylation levels were found in the promoter region of ATP
binding cassette sub-family A member 1 (ABCA1). In addition to
studying the effects of betaine supplementation on methylation,
Hu et al. (2015) investigated the relationship between betaine
supplementation and histone methylation. Histone mark, H3
lysine 27 trimethylation (H3K27me3) generally tends to be

associated with inactive gene promoters and therefore would be
expected to be upregulated in the presence of hypermethylation
(Davison et al., 2009). However, Hu et al. (2015) was unable to
examine expression of H3K27me3 and instead looked at protein
content levels. A decreased protein level of H3K27me3 was
found in the liver of betaine-treated chicks. Ultimately, these
results are not what one would expect and the authors propose
a variety of environmental effects as the potential source of
this inconsistency. In an another study, genes associated with
key enzymes that regulate gluconeogenesis were evaluated for
methylation, expression and histone status in piglets whose sows
were fed betaine supplemented diets throughout pregnancy (Cai
et al., 2014). Phosphoenolpyruvate carboxykinase 1 (PEPCK1)
gene promoter was found to be hypermethylated but promoter
regions of phosphoenolpyruvate carboxykinase 2 (PEPCK2) and
fructose-1, 6-bisphosphatase (FBP1) were hypomethylated in
livers of piglets prenatally exposed to betaine. As expected the
methylation levels were inversely proportional with expression
levels. When examining histone enrichment, PEPCK1 was found
to be enriched for H3K27me3 while PEPCK2 and FBP1 were
found to be enriched for histone mark H3 lysine 4 trimethylation
(H3K4me3). These results are not surprising, given that histone
mark H3K4me3 tends to be associated with gene activation. Cai
et al. (2014) have shown that the interaction of DNA methylation
and histone modifications result in modified gene expression.

The effects of dietary supplementation of certain micro-
elements relative to epigenetic modifications, such as zinc (Zn),
have only recently been studied (Sharif et al., 2012). Current
thinking of Zn relative to the methylation process is that Zn
deficiency may limit the production of betaine-homocysteine-
S-methyltransferase (BMHT). BMHT catalyzes the transfer of
methyl groups from betaine to homocysteine, a key component
of one-carbon metabolism (Anderson et al., 2012), and is a
precursor to SAM. It is possible that Zn deficient diets may
hinder the production of SAM which in turn would limit
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SAM’s methyl donor function. A limited number of studies have
been published that investigate the dietary effects of Zn relative
to DNA methylation and expression. Epigenetic effects in the
promoter region of gene A20, an anti-inflammatory protein, was
investigated in progeny of hens whose dietary Zn intake had been
altered (Li et al., 2015). The authors show evidence that increased
levels of Zn in the maternal diet lead to hypomethylation and
subsequently increased expression of gene A20 in offspring. In
another gene specific study involving DNA methylation and Zn,
alternative results were found. A study involving three groups of
piglets, each with a different dietary Zn level, found that DNA
methylation levels increased in regulatory regions of the gene
ZIP4 (Karweina et al., 2015), a zinc transporter involved in the
uptake of Zn in the small intestine. The authors go on to confirm
a negative correlation between dietary Zn concentrations and
expression levels of ZIP4. Dietary Zn levels have shown varying
response on methylation in each of these gene specific studies.
Until a methylation based genome-wide analysis is performed, we
will not be able to draw tangible conclusions regarding the effects
of Zn on DNA methylation.

Another nutritionally mediated impact on epigenetics is that
induced through maternal dietary protein insufficiency. This
research overlaps with studies evaluating imprinting associated
with “intrauterine growth retardation (IUGR)” since maternal
protein insufficiency generally manifests as reduced birth
weight of offspring. Low birthweight associated with protein
insufficiency is correlated with elevated risk for hypertension,
hepatic steatosis, cardiovascular disease and leptin and insulin
resistance (Mazzio and Soliman, 2014). When methylation
was examined on a candidate gene basis between IUGR and
normal birthweight pigs, increased methylation was observed
in the promoter region of two genes, fibroblast growth factor
receptor 4 (FGFR4) and protein tyrosine phosphatase, receptor
type, S (PTPRS) (Nebendahl et al., 2013). Subsequently, histone
modifications were examined in tissues derived from the same
group of pigs (Nebendahl et al., 2016). Key findings include
increased global measures of (histone mark H3 lysine 9)
H3K9 acetylation and reduction in H3K9me3 in IUGR pigs
that underwent feed restriction. These results imply that feed
restrictions or refeeding could alter histone modifications and
potentially birthweight. In fact, folic acid supplementation in
the diets of post weaning IUGR piglets has been shown to alter
methylation in promoter regions of peroxisome proliferator-
activated receptor alpha (PPARα) and glucocorticoid receptor
(GR). IUGR piglets who were fed a control diet showed
evidence of hypomethylation but IUGR piglets whose diet was
supplemented with folic acid showed the same methylation levels
as normal birthweight piglets (Jing-bo et al., 2013). More targeted
approaches of maternal protein insufficiency reveal that is liver
X receptorα is hypermethylated (van Straten et al., 2010), as is
hepatocyte nuclear factor 4 alpha (HNF4a) in pancreatic cells
(Sandovici et al., 2011). Though, hypomethylation is reported in
leptin in adipose (Jousse et al., 2011) and proopiomelanocortin
(POMC) and GR in the sheep brain (Begum et al., 2012).
The essential nature of food, especially in developing offspring
should prepare us for the fact that we have likely only scratched
the surface of genes that are imprinted in the face of varied

nutritional status and quality. This is even truer in regards to the
evaluation and understanding of these events and their effects in
livestock.

An interesting period for study is the association between
methylation at birth and frequency of developing later adiposity.
Godfrey et al. (2011) report that methylation of the retinoid X
receptor alpha (RXR-alpha) gene explains as much as 26% of
childhood obesity. Furthermore, there is limited evidence that
suggests that the maternal dietary lipid profile impacts RXR-
alpha gene and PPAR gene methylation (Waterland and Rached,
2006). This anecdotally implies that the maternal dietary lipid
composition may imprint genes that influence the probability of
adolescent obesity. Obesity related traits have been studied in pigs
where boars in the founding generation were either fed a control
diet or a diet supplemented with methylating micronutrients
(Braunschweig et al., 2012). Differentially expressed genes
associated with back fat percentage, adipose tissue and fat
thickness at the 10th rib, were detected in muscle and liver of
F2 generation pigs and pathway analysis indicated that lipid
metabolism and metabolic pathways were overrepresented. Of
the six differentially expressed genes that were investigated for
differential methylation, only the iodotyrosine deiodinase, IYD,
gene was found to be significantly differentially methylated
between groups of pigs. By far, the most ambitious obesity study
is a recent summary of 46 genome-wide association studies
of epigenetics in humans which has made some interesting
discoveries. For instance, in progeny of child bearing obese
women before and after bariatric surgery to dramatically reduce
intake, the methylation of the promoter of the PGC1-α gene
decreased after surgery and increased after surgery in the
PDK4 (van Dijk et al., 2015). Given that PGC1-α is a key
regulator of energy metabolism and mitochondrial biogenesis,
the decreased methylation of its promoter may reduce the
propensity of metabolism in these offspring due to their
higher metabolism. Pyruvate dehydrogenase lipoamide kinase
isozyme 4, the gene product of PDK4, is a mitochondrial enzyme
that regulates glucose and lipid homeostasis and therefore
with hypermethylation and concomitant decreased expression,
it is less clear how this may impact the energy balance and
obesity of these offspring. Until genome wide methylation
based approaches are undertaken in livestock species, our
understanding of methylation as a mechanistic link between
genotype and phenotype will remain insufficient.

Many studies have examined the variation in propensity
for obesity associated with intake of a high-fat diet (HFD).
A comparison of isocaloric high-fat and low fat rations
demonstrated that the expression of several genes associated with
lipid synthesis are altered in the HFD treated group, namely there
is an increase in methylation in the promoter domains of fatty
acid synthase (FASN), and a mitochondrial protein of the electron
transport chain (NDUFB6) (Lomba et al., 2009). In the brains
of rodent species, maternal HFD consistently triggers durable
epigenetic changes in genes that control regulation of intake,
such as; opioid receptors (Plagemann et al., 2010; Vucetic et al.,
2010a, 2011) and dopaminergic pathways (Vucetic et al., 2010b).
Peripheral tissues of metabolic importance are also imprinted
in rodent species by maternal HFD treatment, for instance
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pancreatic β-cell interleukin 13 receptor, alpha 3 (Il13ra3) and
hepatic cyclin-dependent kinase inhibitor 1A (cdkn1a) both are
decreased in methylation and are associated with elevated risks
for metabolic syndrome (Jiménez-Chillarón et al., 2012). There
is very limited evaluation of the effects of high caloric and/or
HFD rations in livestock species and this is especially true in
ruminants. This represents both a challenge and opportunity for
future research targeting optimal maternal nutrition for desired
progeny phenotypes.

Of practical importance for livestock production systems
would be an improved understanding of the relationship between
nutrient imprinting and growth attributes of progeny. A good
example of this is the methylation of insulin-like growth factor
2 (IGF2) that was initially linked to the Dutch famine (Barker
et al., 1993; Heijmans et al., 2008), and later in pigs and cattle
(Van Laere et al., 2003; Berkowicz et al., 2012). Van Laere
et al. (2003) demonstrated that a nucleotide substitution in
an evolutionarily conserved CpG Island within intron 3 of
the IGF2 gene was the causal mutation underlying a QTL for
muscle growth in the pig. This point mutation resulted in a
gel mobility shift within subsequent electrophoretic mobility
shift assays (EMSA) experiments, suggesting that a mutation
to this region recruits different transcription protein complexes
(Van Laere et al., 2003). Given that the product of this
gene plays a significant physiological role in reproduction,
milk production and growth it stands to reason that it is
important to consider this in any production system. Liu
et al. (2011) examined how dietary protein in the maternal
ration of Meishan pigs influenced the myostatin gene. They
determined that the myostatin gene expression in low protein
offspring was down-regulated at weaning but up-regulated
at finishing phase. What came to light is that the histone
acetylation of the myostatin gene promoter varied. Low protein
piglets showed decreased binding of the CCAAT/enhancer-
binding protein β (C/EBPβ) at three target locations in the
myostatin promoter. In contrast, at the finishing phase, histone
H3 acetylation and histone H3 lysine 27 trimethylation were
increased in low protein progeny pigs increasing C/EBPβ binding
(Liu et al., 2011). This is not the whole story though as
skeletal muscle growth is also affected by several microRNA
and maternal low protein diets resulted in decreased expression
of Sus scrofa microRNAs 136 and 500 (ssc-miR-136 and ssc-
miR-500) (Liu et al., 2011). Therefore, to no surprise, a
polygenic trait such as muscle growth needs to be evaluated
temporally but also across all levels of imprinting and expression
regulation, as well as indirect and epistatic events. What can be
concluded is that nutrition impacts epigenetic imprinting, and
imprinting affects important production traits such as growth,
thus improved research and understanding is both useful and
warranted.

EPIGENETIC EFFECT ON LIVESTOCK
PRODUCTION

In livestock genomics, nutritional phenotypes have been studied
primarily from the perspectives of growth, feed intake, and

efficiency. Associations between epigenetic modifications and
nutritional phenotypes have been characterized in livestock in
individual genes (Van Laere et al., 2003) and in genome-wide
nutritional epigenomic studies (Li et al., 2012; Shin et al.,
2014). While it has been discovered that DNA methylation is
associated with phenotypic variation of nutritionally related
phenotypes (Li et al., 2012; McKay, 2015), the extent of
phenotypic variation that can be accounted for by epigenetic
modification remains unknown. Associations between genetic
variation, epigenetic mechanisms and subsequently economically
important phenotypes have previously been identified in
livestock. The callipyge phenotype in sheep is only expressed
in heterozygotes that inherit the mutation from their paternal
parent. Vuocolo et al. (2007) found atypical expression of
several imprinted genes in a 1 Mb region containing the
callipyge mutation and implicated histone modifications as the
epigenetic factor responsible for the phenotype (Vuocolo et al.,
2007). In addition, it has also been shown that DNA variants,
frequently in the form of single nucleotide polymorphisms
(SNPs), influence the level of methylation (Gibbs et al.,
2010). When Gibbs et al. (2010) examined the extent of
genetic control of DNA methylation, a large number of cis-
methylation qualitative trait loci (cis-meQTL) were reported.
In this context, a cis-meQTL is defined as a genomic region
that includes SNPs within 1 Mb of the CpG site associated
with methylation state. It has been demonstrated that SNP
variation strongly influences the level of DNA methylation at
sites that contain intermediate levels of methylation. These
studies demonstrate that elements of DNA sequence can affect
methylation levels which in turn affect phenotypic variation.
Now, the question exists as to how the livestock community
can utilize epigenetic alterations for production of economically
important phenotypes. While this subject has been discussed,
there seems to be disparity regarding the matter (Goddard
and Whitelaw, 2014). Investigating environmental effects on
DNA methylation is essential to resolving the unknown extent
of epigenetic effects on phenotypic variation of economically
important traits.

One of the overarching goals of the livestock genomics
community is investigating economically important traits to
determine the extent to which phenotypic variation can be
accounted for by genetic variation. Technological advances in
recent years have facilitated the dissection of economically
important traits in order to uncover the underlying mechanisms
that are driving phenotypic variation. However, in order
to completely comprehend epigenetic modifications as a
mechanistic link between genotype and phenotype, we must
generate tools that allow us to interrogate livestock epigenomes
in a more cost effective manner. Epigenetic studies in livestock
animals have utilized DNA methylation based next generation
sequencing methodologies in order to explore the contribution
of methylation toward the phenotypic variation of their
respective economically important traits (Li et al., 2012; Doherty
and Couldrey, 2014; McKay, 2015; Boddicker et al., 2016).
Although the cost of genomic sequencing has declined since
2001 (Wetterstrand, 2015), the cost of methylation based next
generation sequencing methods has not. Subsequently, our ability
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to perform epigenome-wide association studies (EWAS) is
greatly inhibited. Epigenome-wide association studies are a vital
analysis necessary for determining the epigenetic contribution
toward phenotypic variation in economically important traits
and diseases. Utilizing high resolution DNA methylation arrays,
as has been done in humans (Bibikova et al., 2011), will enhance
the ability of the livestock industry to perform EWAS and permit
the resolution of mechanisms underlying epigenetic inheritance
and possibly enable the livestock industry to utilize epigenetic
modifications for livestock production and breeding (Rolf et al.,
2014).

CONCLUSION

The ability of nutrients to alter epigenetic modifications and
subsequently phenotypic variation has been well documented.
Ultimately, the livestock community would like to manipulate
environmental factors, such as nutrients, to consequently yield
the epigenetic mechanisms necessary to achieve phenotypes
of interest. Diet supplementation or restriction of choline,
betaine, folate, B2, B6, B12, and zinc have all been met with
some level of success in inducing epigenetic modifications,
likely by their respective roles in the folate cycle, methionine
cycle, or histone methylation process. Improved or increased
livestock productivity using nutritional epigenetics has been

observed through lower body fat (sheep) and higher protein
mass (chicken) gains as well as altered expression of key
gluconeogenic enzymes (pigs). In mammalian species, additional
research to discern the role of environmental factors such
as nutrients and genomic sequence effects on epigenetic
mechanism is essential, especially at critical developmental
time points. Generation of new tools and methodologies
for interrogating the livestock epigenome will assist in
disentangling genetic and epigenetic effects of complex traits.
Ultimately, utilizing nutritional epigenetics for increasing
and/or sustaining food production will require additional
research.
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