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In  1922 Alexander Fleming described the remarkable bacteriolytic activity of 
an enzyme, lysozyme, which was widely distributed in tissues and secretions 
(1). Lysozyme (muramidase) is a cationic enzyme, tool wt 14,307, which hy- 
drolyses N-acetyl muramic /3-1, 4 N-acetyl glucosamine linkages in the bac- 
terial cell wall (2). Although a great deal is known about its structure and 
enzymology its function other than in host defence is still poorly understood. 

High concentrations of lysozyme are found in leukocytes, especially the poly- 
morphonuclear leukocyte (PMN) 1 and rabbit alveolar macrophage (3). Frac- 
tionation studies of the rabbit P M N  show that  70 % of its intracellular lysozyme 
is sedimentable and, unlike other hydrolases, it is found in both the azurophil 
and specific granules of the cell (4). The BCG-induced rabbit alveolar macro- 
phage is able to release a large fraction of its intracellular lysozyme into the 
medium during phagocytosis (5) and may  secrete lysozyme during cultivation 
in vitro (6). Large amounts of lysozyme accumulate in the serum and urine of 
patients (7) and animals (8) bearing monocytic leukemia. 

In  this paper we report that  mouse peritoneal macrophages and human 
monocytes synthesize and secrete substantial amounts of lysozyme in culture. 
We also study factors which influence the rate of lysozyme production and ex- 
amine the effect of phagocytosis on its secretion. 

Materials and Methods 

Cell C u l t u r e s . -  
Mouse peritoneal macrophages: Female mice of the NCS (Rockefeller) strain, weighing 25- 

30 g were used. Peritoneal macrophages were harvested, without anticoagulants, by standard 
procedures (9); the cells were obtained either 4 days after stimulation by intraperitoneai 
injection of 0.75 ml thioglycollate medium (I0) or from control, unstimulated mice. The cell 
yield from unstimulated mice was 5-8 X 106 cells, of which 30-40% were macrophages and 
the remainder lymphocytes; thioglycollate-stimulated mice yielded 15-20 X 106 cells, con- 
sisting of 75-90% macrophages and 10-25% lymphocytes. 
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1 Abbreviations used in this paper: CM, conditioned medium; FCS, fetal calf serum; HBSS, 
Hanks' balanced salt solution; LH, lactalbumin hydrolysate; LZM, lysozyme; NBCS, new- 
born calf serum; PBS, phosphate-buffered saline; PMN, polymorphonuclear leukocyte. 
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Cells were routinely cultured in MEM or Dulbecco's medium supplemented with 5% fetal 
calf serum (FCS) that  had been heated at 56°C for 30 rain. Horse and newborn calf serum 
(NBCS) were also used, as specified. Peritoneal cell suspensions were plated in Falcon plastic 
tissue culture dishes (Falcon Plastics, Div. of BioQuest, Oxnard, Calif.) at a density of 2 X 
105 thioglycollate stimulated cells per square centimeter or 1 X 10 s unstimulated cells per 
square centimeter. The cultures were incubated at 37°C in the presence of 5% carbon dioxide. 
The monolayers were washed vigorously with Hanks' balanced salt solution (HBSS) to remove 
nonadherent cells within 2-24 h. 

Human monocytes: Monocytes were obtained from 20-50 ml blood using either heparin 
(20 U/ml) or EDTA, final concentration 1.5 raM, as anticoagulant. The blood was layered 
on a mixture of Ficoll-Hypaque (24 vol 90/0 Ficoll:10 vol 34% Hypaque; 5 vol blood:4 vol 
Ficoll-Hypaque) and centrifuged at 300 g for 45 min at room temperature (11). The mono- 
nuclear band was resuspended in PBS containing 0.3 mM EDTA and centrifuged at 1,250 g 
for 10 min. The platelet-rich supernatent was then discarded and the ceils were washed and 
centrifuged three times in PBS-EDTA (100 g for 10 min). The cells were resuspended in 
MEM containing 5% FCS, and plated in tissue culture plastic or glass dishes at a density of 
2-4 X 106 mononuclear cells per square centimeter. Differential cell counts were obtained 
from cytocentrifuge preparations which had been air dried and stained by a Wright-Giemsa 
procedure. The yield of mononuclear cells averaged 0.5-2.5 X 106 cells/ml blood and con- 
sisted of 30-50% monocytes, 50-700/o lymphocytes, and fewer than 2% PMN. Variable 
numbers of platelets and erythrocytes were present. The mononuclear cell cultures were in- 
cubated in 5% COs at 37 ° and were washed vigorously within 24 h to remove nonadherent 
lymphocytes. Monocyte cultures were re-fed every 2-3 days. In some experiments lactaibumin 
hydrolysate (LH 0.02% wt/vol) was added to the above medium. 

Human PMN's: Human PMN's  were purified according to Edelson et al. (12). This 
method includes dextran sedimentation, Ficoll-Hypaque centrifugation and lysis of erythro- 
cytes by ammonium chloride. Final preparations contained more than 98% PMN. The PMN 
were resuspended and plated in the same way as mononuclear cell preparations. 

Mouse peritoneal lymphocytes: Lymphocytes were purified by passing cell suspensions over 
Sephadex G-10, according to the method described by Chert (13). 

Cell morphology: Cell morphology was studied by phase contrast microscopy of living or 
glutaraldehyde-fixed material, and cell viability was measured by trypan blue exclusion. 

Cell lysates and conditioned medium, (CM): Lysates and CM were prepared as follows. 
Conditioned medium was collected from monolayer cultures and centrifuged at 1,000 g for 10 
rain to remove cellular debris. Triton X-100 was added to the supernate, final concentration 
of 0.2% wt/vol, as required. The cell monolayer was washed twice with normal saline and 
scraped in 0.2% Triton X-100 with the aid of a plastic policeman. Cell lysates were also pre- 
pared in normal saline, as required. Harvested materials were kept on ice or stored at -- 20°C. 

Serum-free CM was prepared in the same way by incubating 1-day old macrophage cul- 
tures in MEM or Dulbecco's medium supplemented with 0.02--0.05% lactalbumin hydroly- 
sate. Macrophages were viable in this medium for at least 3 days. 

To prepare 14C-labeled CM 2-day old macrophage cultures were first washed three times in 
HBSS and then incubated in medium consisting of HBSS, 5 #Ci/ml reconstituted [14C]algal 
hydrolysate, ~00  MEM, and 5% FCS previously dialyzed against 0.01 M sodium bicarbonate 
0.15 M sodium chloride, pH 7.4. After 4 h of incubation the medium was discarded, and the 
cultures were washed three times with HBSS and then incubated for 2 days in Dulbecco's 
medium containing 0.05% (wt/vol) of lactalbumin hydrolysate. This serum-free CM was 
centrifuged at 1,000 g for 15 min and stored at --20°C. i4C-labeled CiV[ was prepared for 
polyacrylamide gel eleetrophoresis (cationic proteins) by dialysis against 0.1 M sodium car- 
bonate, pH 8.0, and was lyophllized. Other samples were prepared for SDS-polyacrylamide 
gel electrophoresis, as described elsewhere (14). 

Lysozyme: Lysozyme was assayed by measuring the initial rate of lysis of a suspension of 
Micrococcus lysodeikticus (15), with the aid of a Gilford 240 spectrophotometer (Gilford In- 
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strument Laboratories, Inc., Oberlin, Ohio) fitted with an automatic recorder. Standards or 
lysozyme-rich materials were diluted in MEM containing 5% FCS. Reaction conditions were 
as follows: 1 ml of sample was mixed at room temperature with 2 ml of a suspension of M. 
Lysodeikticus, 0.25 mg/ml 1/15 M phosphate buffer, pH 6.3. The rate of decrease in turbidity 
was measured at 540 nm, using a ratio switch position of 0.5 and with full recording scale equal 
to 0 .30D units. The initial reaction rate was linear for at least 1 rain and was directly propor- 
tional to egg lysozyme concentration in the range 0.2-2 gg/ml. Rat  and human lysozyme 
standards showed 2.0- and 3.3-fold higher initial rates of lysis, respectively, than a hen lyso- 
zyme standard. In  this paper we report mouse macrophage lysozyme activity in terms of the 
rat standard and human monocyte lysozyme in terms of the human standard. Appropriate 
reagent controls were included as required. Triton X-100, 0.2% wt/vol, had no significant 
effect on lysozyme activity. 

The inhibition of lysozyme by antisera was measured as follows. Lysozyme was adsorbed 
from control and specific rabbit  antisera with activated charcoal, which was in turn removed 
by centrifugation. Macrophage conditioned medium, containing 1.0 /~g lysozyme/ml, was 
incubated for 30 rain at  37 ° with an equal volume of a serial dilution of the rabbit serum. The 
mixture was then centrifuged and the supernatant fraction assayed for residual lysozyme 
activity. 

Other enzymes were measured as follows: acid phosphatase, substrate o~-naphthyl acid 
phosphate, according to Allen and Gockerman (16). N-acetyl ~-glucosaminidase, substrate 
p-nitrophenyl-N-acetyl ~-giucosaminide, ~-glucuronidase, substrate phenolphthalein ~- 
glucuronide, ~-galactosidase, substrate p-nitrophenyl-~-galactoside and cathepsin D, sub- 
strate denatured hemoglobin, all according to Bowers et ah (17). Suitable controls for 
CM, cell lysates, and all reagents were included. 

Protein: Protein was assayed using egg lysozyme as standard (18). 
Polyacrylamide gel electrophoresis: Electrophoresis for cationic proteins was performed in 

10% polyacrylarnide gels (19). SDS-polyacrylamide gel electrophoresis and autoradiography 
were carried out as described elsewhere (14). 

Phagocytosis: The effect of phagocytosis on the production and secretion of lysozyme was 
studied in unstimniated mouse peritoneal macrophages which had been previously cultivated 
for 48 h in MEM with 10% horse serum. Latex particles, 1.1/~m in diameter, were washed 
seven times by centrifugation and sterifized with ultraviolet light. Stock suspensions, about 
1 X 109 parficles/ml, were stored at  40 C in MEM. Macrophage cultures were washed twice 
with HBSS and placed in fresh MEM with 10% horse serum, 2.5 ml per 60 mm dish. The 
latex was resuspended vigorously and 0.1 ml added per dish. The cultures were then incubated 
at 37°C and the course of phagocytosis followed by phase contrast microscopy. Mter  more than 
95% of macrophages had taken up at least 20 latex particles per cell, usually within 2 h, 
excess latex was removed, and the cells were washed twice and incubated in MEM with 10% 
horse serum. Control cultures, not given latex, were handled in parallel. 

The medium was removed at intervals, the cells washed twice in PBS and then scraped 
from the dish with a policeman in 0.2% Triton. Cell lysates and medium were centrifuged at 
1,000 g for 15 min and the supernate was assayed for lysozyme. 

Reagents.-- 
Media: MEM, FCS, horse serum, and NBCS were obtained from Grand Island Biological 

Co., Grand Island, N. Y.; thioglycollate medium from BBL, Division of BioQuest, Cockeys- 
ville, Md.; lactalbumin hydrolysate from ICN Nutritional Biochemicals Div., Cleveland, 
Ohio; and polystyrene latex particles, 1.1/zm, from Dow Diagnostics, Indianapolis, Ind. 

Chemicals: Ficoll was obtained from Pharmacia Fine Chemicals, Inc., Piscataway, N. J.; 
Hypaque (sodium diatrizoate) from Winthrop Laboratories, Sterling Drug Co., N. Y.; and 
Colchicine from Sigma Chemical Co., St. Louis, Mo. Cycloheximide was a gift from Dr. S. 
Silverstein, The Rockefeller University. Cytochalasin B was obtained from Aldrich Chemical 
Co., Inc., Milwaukee, Wis. 
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Biological reagents: Microco¢cus lysodeikticus, spray dried, was obtained from Miles Labora- 
tories, Inc., Kankakee, Ill.; and egg white lysozyme, 2 X crystalline, from Worthington 
Biochemical Corp., Freehold, N. J.; rat lysozyme and rabbit anfirat lysozyme antiserum were 
provided by Dr. E. Osserman, College of Physicians and Surgeons of Columbia University, 
New York. Rabbit anfimouse lysozyme was a gift from Dr. R. Riblet, Salk Institute, La 
JoUa, Calif. 

Isotope: Reconstituted algal hydrolysate, [14C]amino acids was obtained from Schwarz/ 
Mann Div., Becton, Dickinson & Co., 0raugeburg, N. Y. 

All other reagents were purest grade available from standard commercial suppliers. 

RESULTS 

General Considerations.--Homogeneous, nondividing cultures of murine and 
human mononuclear phagocytes were routinely produced by the methods de- 
scribed. The morphologic appearance of unsfimulated (9) and thioglycollate- 
stimulated (20) mouse peritoneal macrophages in culture has been described 
previously. The human monocytes differentiated into macrophages after 3 days 
in culture, after which they remained stable for at least 2 wk, commonly giving 
rise to mulfinucleated giant cells. Monocytes displayed active membrane 
ruffling and were rich in homogeneous, peroxidase-positive granules, which dis- 
appeared during the first 2 days in culture. The human macrophages contained 
a more heterogeneous population of cytoplasmic organelles, including peroxi- 
dase-negative granules and lipid droplets. 

The use of lactalbumin hydrolysate to replace or supplement serum resulted 
in well-spread, more spindly macrophages and was especially useful in main- 
taining human monocyte cultures. 

Lysozyme production in vitro: The production of lysozyme by mononuclear 
phagocytes in culture was first demonstrated by assaying cell lyates and condi- 
tioned medium at daily intervals Fig. 1 and Table I illustrate such an experi- 
ment using unstimulated and thioglycollate stimulated mouse macrophages as 
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Fro. 1. Lysozyme production by mononuclear phagocytes in culture. (.4) Unstimulated 
mouse peritoneal macrophages. (B) Thioglycollate stimulated mouse peritoneal macrophages. 
(C) Human blood monocytes. C, cell lysate; T, total cell lysate and cumulative medium con- 
tent. Each point is the average of replicates which differed by less than 10%. 
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well as human monocytes. Mononuclear phagocytes containing 0.12-0.35/~g 
lysozyme, depending on cell type, produced a 4- to 11-fold increase in total 
lysozyme during 3 days. The intracellular content remained relatively constant 
whereas extracellular lysozyme increased daily, representing 87-90% of total 
production after 3 days. All three types of cell showed a similar pattern of 
lysozyme accumulation. 

Similar results were obtained in repeated experiments in which total lysozyme 
increased up to 25-fold in 3 days. Thioglycollate-stimulated macrophages con- 
sistently produced 140-250% more lysozyme per cell than unstimulated macro- 
phages in which lysozyme specific activity based on cell protein was, however, 
twofold higher. Lysozyme production per day represented 0.5-2.5 % of total cell 
protein per day. Because of the net increase in total lysozyme and its continued 

TABLE I 
Lysozyme Production by Mononuclear Phagocytes in Culture 

Before After 3 days' cultivation 
culture 

LZM content /~g* LZM/I X 10 6 mononuclear LZM 
(/zg*/1 X 10 6 phagocytes production Percent 
mononuclear (/zg*/mg cell LZM 
phagocytes) Intra- Extracellular Total protein) secreted 

cellular 

Unstimulated mouse peri- 0.35 0.2 1.8 2.0 35 90 
toneal macrophages 

Thioglycollate-stimulated 0.25 .35 2.45 2.8 18 87 
mouse peritoneal macro- 
phages 

Human blood monocytes 0.12 0.05 0.43 0.48 14 90 

* A rat LZM standard was used for mouse cells, a human LZM standard for human cells. 

extracellular accumulation we concluded that mononuclear phagocytes se- 
creted lysozyme into the medium. 

Human polymorphonuclear leukocytes, which contained 0.6/zg lysozyme per 
million cells, were next cultivated under similar conditions. Lysozyme was re- 
leased into the medium, but these cells died after several hours in culture with- 
out further production of lysozyme. Cell lysates and conditioned medium ob- 
tained from several other cell types were tested and found to be uniformly lack- 
ing in lysozyme. Cells examined include: rat  thoracic duct lymphocytes, human 
lymphoid cell lines 8866 and WIL-2, human D98 and VA2 epithelioid cell lines, 
mouse L cell fibroblasts, primary chick embryo fibroblasts, Rous sarcoma virus- 
transformed fibroblasts from chick embryos, primary mouse embryo fibroblasts, 
routine sarcoma virus mouse embryo fibroblasts, mouse neuroblastoma, and 
Chinese hamster ovary cells. 

Characterization of mouse macrophage lysozyme: The nature of the lysozyme 
secreted by mouse macrophages was next studied. The enzyme was stable to 
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boiling for 1 rain at pH 3.5. Specific rabbit anfisera against purified rat or mouse 
lysozyme inhibited mouse macrophage lysozyme whereas control rabbit sera 
had no effect (Fig. 2). 

The biosynthesis and secretion of lyzozyme during in vitro culture were con- 
firmed by identifying 14C-labeled lysozyme in culture media obtained from both 
unstimulated and thioglycollate-sfimulated macrophages which had been pre- 
viously incubated in radioactive amino acids. SDS-polyacrylamide gel electro- 
phoresis revealed a large radioactive peak, 14,000 tool wt, which coelectro- 
phoresed with a lysozyme standard (14). The macrophage medium also con- 
tained a radiolabeled cationic molecular species which coelectrophoresed with a 

- -  .'~ . . . . .  ~ .,~ . . . .  Normal rabbit  o I00-~. ~%, sera 
- 
¢.- 

0 

fRabbi't anti mouse 
~>" ~ lysozyme 
::> 

u 
o 

oJ ,,~k/Rabbit anti rat 
E >, ~ ~ y m e  

_J 

1/270 1/90 1/30 0 
Dilution of s e r u m  

FIG. 2. Inhibition of mouse macrophage lysozyme by specific rabbit antisera. 

lysozyme standard (Fig. 3). The mouse macrophage enzyme thus resembled lyso- 
zyme in antigenicity, size, and charge and was clearly synthesized and secreted 
in vitro. 

Quantitation of lysozyme secretion: The above experiments provided strong 
evidence that lysozyme is a cell-specific macrophage secretory product and since 
lysozyme itself is stable and well-characterized, further experiments were de- 
signed to explore the usefulness of this culture system as a model for macro- 
phage secretion. 

In order to measure lysozyme secretion accurately the following criteria were met. 
More than 95% of cells were viable; intraceUular lyoszyme was fully released by both 
treatment with 0.1-0.2% Triton X-100 and by five cycles of freezing and thawing in 
the absence of detergent; CM-containing lysozyme, removed from cells and incubated 
further at 37 °, showed no loss of activity, and lysozyme was also stable after pro- 
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longed storage at -20°C and upon repeated freezing and thawing; mixing experi- 
ments, using cell lysates and conditioned media, showed no evidence for inhibitors or 
activators of lysozyme activity. 

Fetal calf serum contained no endogenous lysozyme and background ac- 
t ivity in horse or NBCS was subtracted when necessary. Replicate or triplicate 
cultures were analyzed in all experiments and showed less than 20 % variation. 
Only the average values are therefore given for most experiments. 

FIG. 3. Electrophoresis of labeled products obtained from the culture medium of unstimu- 
lated (U) and thioglycollate stimulated (S) macrophages. 3 ml of culture medium from U and 
2 ml from S cells (see text for details of culture) were dialyzed against 0.1 2¢i ammonium car- 
bonate buffer and lyophilized. 30 #1 of the solubilized residue was applied to 10% cationic 
polyacrylamide slab gels. The pattern on the left was stained with Coomassie blue and that 
on the right developed with X-ray film for 4 days. 

Control of Lysozyme Production and Secretion.--Various aspects of macro- 
phage cultivation were examined to identify those factors which influence lyso- 
zyme synthesis and secretion in vitro. 

Cell density: Different numbers of mononnclear phagocytes were plated and 
lysozyme secretion measured under standard conditions. Fig. 4 shows that  there 
was a linear relationship between lysozyme secretion and the number of (A) 
thioglycollate-stimulated macrophages, or (B) human monocytes cultured per 
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dish. Lysozyme content is therefore a useful measure of macrophage number 
and cell density has no effect on lysozyme production. 

The kinetics of lysozyme secretion: The rate of lysozyme production and secre- 
tion was examined in mononuclear phagocyte cultures of variable duration. Fig. 
5 shows that  (A) unstimulated mouse macrophages and (B) human monocytes 
continued to secrete lysozyme over a period of at  least 11 and 17 days, respec- 
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FIG. 4. Lysozyme production in relation to the number of mononuclear phagocytes. (.4) 
Thioglycollate-stimulated mouse macrophages (60 mm dish). (B) Human monocytes (35 
mm dish). 
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tively. Unstimulated mouse macrophages showed a low initial rate of secretion 
followed bv a threefold rise on the 2nd day in culture and a relatively stable 
rate of subsequent secretion, 0.75 gg lysozyme/1 X 10 ~ cells per day. The rate of 
secretion by human monocytes (0.3 #g/day) changed little throughout this 
period, in spite of a dramatic morphologic change to mature macrophages after 
the 3rd day in culture. An increased rate of secretion after continued cultiva- 
tion could also be seen in short-term experiments with thioglycollate-stimulated 
macrophages (Fig. 6). Freshly explanted, stimulated macrophages only started 
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FIG. 6. Lysozyme production by thioglycollate-stimulated macrophages 0.5 h (,4) and 48 h 

(B) after start of cultivation. C, cell lysate, T, total medium and cell lysate. Average of tripli- 
cate assays. 

to produce lysozyme after a lag period of about 7 h (6 A). After 48 h in culture, 
a higher secretion rate had become established and total lysozyme production 
proceeded linearly with time. (Fig. 6 B). 

The increased secretion by mouse macrophages on their 2nd day in culture was 
investigated further. No inhibitor of lysozyme production was detected in 
mouse peritoneal fluid, which did contain free lysozyme (0.12 #g/1 X 106 
macrophages). The harvest medium and plating procedure did not influence the 
initial lag period. Increased lysozyme secretion in vitro could also have been due 
to the removal of a lymphoid cell inhibitor. A cocultivation experiment with 
purified populations of well-washed, adherent macrophages and peritoneal 
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lymphocytes which had been freed of all adherent cells by passage over a 
Sephadex G-10 column, is illustrated in Table II .  

Lymphocyte recovery after fractionation was 27%, all of which were viable, and 
41-50% of these lymphocytes remained viable after 3 days cultivation. 5 X 10 -~ M 
mercaptoethanol was added to some cultures to improve the survival of lymphocytes. 
Medium, adherent, and nonadherent cell fractions were collected, the adherent cells 
consisting entirely of macrophages, the nonadherent cell fraction containing lympho- 
cytes and fewer than 10% macrophages. 

Lysozyme was detected in all of the media which had been exposed to macro- 
phages (A, B, C), bu tno t in  lymphocyte-conditionedmedium (D). The lysates 
of adherent cells (A, B, C) contained lysozyme, whereas nonadherent lysates 

TABLE II 
Peritoneal Lymphocytes and Maxrophage Lysozyme Production 

A B C D 

Culture system 
Macrophages* + + + -- 
Lymphocytes:~. -- -- + + 
Mercaptoethanol, 5 X 10 -5 M -- + + + 

Lysozyme§ 
Medium 1.51 1.57 1.69 0 
Adherent cells 0.16 0.20 0.18 0 
Nonadherent cells 0 0 0 0 

Total 1.67 1.77 1.87 0 

* 1.5 X 10 6 per dish. 
2 X 10 6 per dish. 

§ Micrograms per dish. 

showed no detectable activity. Total lysozyme production was comparable in all 
cultures which contained macrophages. This experiment therefore showed that 
only the macrophages secreted lysozyme, and the lymphocytes, under these 
conditions, had no significant effect on macrophage production and secretion. 

The influence of serum: Since the production of acid hydrolases can be stimu- 
lated by cultivating macrophages in the presence of high concentrations of new- 
born calf serum (21), the influence of serum on lysozyme production and secre- 
tion was examined in unstimulated mouse macrophage cultures. Fig. 7 shows 
that lysozyme production rose with increased NBCS, reaching a maximum at 
5 %, without increase at higher serum concentrations. 82-88 % of the total lyso- 
zyme was recovered in the medium at all times and lysozyme specific activity 
was also constant, 58 #g/mg cell protein except at the lowest serum concentra- 
tion when it fell to 42/zg/mg. Other sera were tested in the same way and the 
results are listed in Table I I I .  The optimal concentration of FCS was also 5 % and 
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lysozyme production was actually inhibited at higher concentrations. The fall 
in specific activity fore 40 to 14/~g lysozyme/mg protein at higher serum con- 
centrations (Table I l l  A) excludes a nonspecific toxic effect. Dialysis reversed 
the inhibition of lysozyme production by 50 % FCS (Table I I I  B). In the case of 
horse serum, Table I I I  C, a relatively small further increase in lysozyme pro- 
duction was seen at serum concentrations above 10 %, without change in spe- 
cific activity. 

Although the effects of different sera were complex, it is clear that high rates 
of lysozyme production could be achieved at a serum concentration of 5-10 %. 
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FIG. 7. Lysozyme production and secretion by uns t imula ted  mouse  macrophages  culti- 
va ted  in newborn calf serum. 

The influence of serum-free media: Lysozyme production was also studied in 
the absence of serum to evaluate the importance of serum constituents. Lactal- 
bumin hydrolysate served as a useful serum substitute in which macrophages 
remained healthy and maintained a high rate of lysozyme production and secre- 
tion (Table IV). Optimal lysozyme production and secretion were observed at 
an LH concentration of 0.05 % wt/vol. The combined use of 10% horse serum 
and 0.05 % LH resulted in only marginal superiority over either alone. The re- 
placement of serum lactalbumin hydrolysate did not alter the increased rate of 
lysozyme secretion observed on the 2nd day in culture (not shown). 

Short-term experiments with 2-day old thioglycollate-stimulated macrophages 
were used to explore the ability of defined basal media to support lysozyme se- 
cretion (Table V). These studies were terminated at 8 h since cell viability was 
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TABLE I I I  

The Effect of Serum on Lysozyme Production and Secretion by Unstimulated Macrophages 

Total LZM* Medium/ Total/zg 
Serum Conc. vol/vol in/~g/1 X 10 6 medium LZM*/n~ Collection 

macrophages + cell cell protein period 

(A) FCS 
% h 

1 1.21 84 31 2-46 
5 1.81 78 40 " 

10 1.68 80 37 " 
20 1.32 88 29 " 
50 0.98 83 14 " 

(B) FCS 5 1.80 80 35 2-72 
50 1.05 88 18 " 

Dialyzed~: FCS 50 2.15 83 40 " 

(C) Horse 0.2 1.20 85 57 2-72 
1 1.30 96 53 " 
5 1.98 90 69 " 

10 2.38 90 76 " 
20 2.48 89 70 " 
40 3.38 87 70 " 

FCS 5 1.70 85 70 " 

* Serum control subtracted. 
~; Dialysis for 2 days against 0.01 M bicarbonate, 0.15 M sodium chloride, pH 7.4. 

TABLE IV 

Lysozyme Production by Unstimulated Macrophages Cultured in  Lactalbumin Hydrolysate* 

Percent Percent control$ Medium Total LZM in medium 

~g/dish 

Dulbecco's + 10% horse serum 10.42 92 
" + 0.2% LH 9.62 90 92 
" + 0.05% LH 11.18 92 106 
" + 0.02% LH 10.17 91 97 
" + 0.01% LH 10.29 92 99 
" + 0.005% LH 9.43 93 90 
" + 10% horse serum 

and 0.05% LH 12.18 91 116 

* 4 X 106 macrophages plated in Dulbecco's + 10% horse serum for 4 h, washed three 
times and incubated in LH medium for 72 h. 

:~ Dulbecco's + 10% horse serum. 

af fec ted  b y  m o r e  p r o l o n g e d  i n c u b a t i o n  in  basa l  m e d i a .  C u l t u r e s  in  M E M  w i t h  

5 % horse  s e r u m  se rved  as cont ro l .  A n e t  inc rease  of 30 % lysozyme,  c o m p a r e d  

w i t h  cont ro l ,  occu r red  a f t e r  i n c u b a t i o n  in  P B S .  T h e  a d d i t i o n  of g lucose  or  di-  

v a l e n t  ca t ions  to  P B S  h a d  l i t t l e  effect  on  t o t a l  ly sozyme,  b u t  t h e  m e d i u m  con-  
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tent rose from 30% to about 40%. The use of HBSS and MEM brought about 
a further increase in lysozyme production, 40% and 57% of control, respec- 
tively. These experiments showed that macrophages continued to produce and 
secrete lysozyme, at a reduced rate, in the absence of serum. 

The release of macrophage acid hydrolases into the medium: We next examined 
mouse macrophage cell lysates and conditioned medium to compare secretion 
of lysozyme with that of acid hydrolases. An experiment with thioglycollate- 
stimulated macrophages is shown in Table VI. The enzymes chosen for this 
comparison all showed an acid pH optimum, and were readily measurable in 
macrophage-conditioned media without interference from medium constituents. 

TABLE V 
The Effect of Basal Culture Media on Zysozyme Production and Secretion by Thioglycollale. 

Stimulated Macrophages 

Medium* Total medium Medium/medium Net increase* Net increase/net 
+ cell L Z M  + cell lysate of LZM increase of 

control 

#g/dlsk % m/dlsh 
MEM + 5% horse serum 2.24 50 1.26 100 

(= control) 
MEM 1.69 41 0.71 57 
HBSS 1.48 45 0.50 40 
PBS + Ca, Mg, and glucose 1.40 43 0.42 34 
PBS + Ca, Mg 1.35 40 0.36 29 
PBS + glucose 1.37 44 0.39 31 
PBS t.36 30 0.38 30 

* PBS contains 8 g/liter NaC1, 0.2 g/liter KC1, 1.15 g/liter Na2HPO4, and 0.2 g/liter 
KH2PO4" CaC12, 100 nag/liter, MgC12.6H~O, 100 mg/liter and glucose, 1 g/liter, added as 
indicated. 

48-h macrophages containing 0.98 #g LZM per dish were washed three times in isotonic 
saline and incubated for 8 h in appropriate medium. Cell viability, in all cases, >95%. 

Lysozyme production and secretion exceeded that of all other hydrolases 
tested. After 24 h in culture, lysozyme secretion represented 76 % of total en- 
zyme whereas 25 % or less of all other enzymes was found in the medium, After 
72 h in culture, the percentage of extracellular lysozyme, cathepsin D, and 8- 
glucuronidase was 79, 42, and 35 %, respectively. B-galactosidase and N-acetyl 
~-glucosaminidase release was less than 15 % of total activity. Only lysozyme 
production increased significantly (+211%) during cultivation in 5% FCS, 
whereas the other enzymes showed either a net loss (--  24 to -- 33 %) or only a 
small increase, in the case of cathepsin D (+21%) .  The production and secre- 
tion of lysozyme clearly differed from that of macrophage acid hydrolases under 
these culture conditions. 

The influence of phagocytosis: During phagocytosis the macrophage inter- 
nalizes a substantial portion of its plasma membrane and delivers a large frac- 
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tion of its lysosomal enzymes into phagocytic vacuoles. I t  was therefore of 
interest to determine whether a defined, massive pulse of latex particles, for ex- 
ample, would cause any alteration in lysozyme production or secretion. Fig. 8 
shows an experiment in which more than 95 % of the macrophages in culture 
had ingested more than 20 latex particles per cell. No measurable lysozyme was 
detected in the medium during the 2 h period of phagocytosis. Latex-laden 
macrophages contained more than 90 % of the lysozyme of control cells at all 
times tested. The distribution of extra- and intracellular lysozyme did not differ 
significantly from control at 8 or 22 h after phagocytosis, 71 vs. 71% and 78 vs. 
84 %, respectively. Similar results were obtained over longer periods of observa- 

TABLE VI 
Enzyme Distribution after Cultivation of Thioglycollate-Stimulated Macrophages* 

fl-glucuroni- fl-galactosi- N-acetyl fl-glucosamini- CathepsinD§ Lysozyme dase~ dase~ dase~ 

#g/dish 
T2 cell lysate 3.4 2.08 182 0.22 4.5 
T24 cell lysate 2.1 1.30 112 0.20 2.1 

Medium 0.68 0.23 15 0.066 4.9 
Total 2.8 1.53 127 0.27 7.0 

Medium, % total 25 16 13 25 76 
TT~ cell lysate 1.8 1.15 106 0.17 3.0 

Medium 0.91 0.27 19 0.12 11 
Total 2.7 1.42 125 0.29 14 

Medium, % total 35 15 13 42 79 
% Net change total 

(T~2 -- T2)/T2 --24 --33 --31 +21 +211 

* 8 X 10 6 macrophages per dish in MEM + 5% FCS. 
Micromoles per minute per dish X 10 -8. 

§ Chromogenic equivalents 1 mg/ml albumin per rain per dish. 

tion and after use of different particles like formalin-treated sheep or rabbit 
erythrocytes. A pulse of M. lysocleikticus, a source of lysozyme substrate, had 
no significant effect on lysozyme production and secretion. 

The effect of inhibitors: The effect of inhibitors on lysozyme production and 
secretion was next investigated. Cycloheximide, an effective inhibitor of protein 
synthesis, prevented the synthesis of new lysozyme in the concentration range, 
0.1-2.0 pg/ml. Fig. 9 illustrates an experiment in which lysozyme production 
by thioglycollate-stimulated macrophages was completely blocked by 0.4 #g/ml 
cycloheximide. Some release into the medium continued as the cell content fell. 
Cycloheximide treatment longer than 8 h brought about a loss in cell viability. 

The effect of treatment with colchicine was also examined since secretion by 
other cells can be affected by this reagent. Fig. 10 shows that 10 -8 M colchicine 
abolished lysozyme production after a lag period of at least 8 h. Under these 



1242 SYNTHESIS AND SECRETION OF LYSOZYME BY PHAGOCYTES 

31 r 
Medium 

t CONTROL 
B Celllysote 

~ Medium 
I LATEX 

]~ Cell lysate 

2 e -  

" o  

Q.) 

E 

~t I 

0 2 4 6 8 I0 12 14 16 18 20 22 
Hours after phogocytosis 

Fio. 8. Latex phagocytosis and ]ysozyme production and secretion by unstimulated mouse 
macrophages (13 X 106 per dish). 
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FIG. 9. The effect of cycloheximide (CH) treatment (0.4/zg/ml) on lysozyme production 
and secretion by thioglycollate-stimulated macrophages. 

conditions the macrophages became drast ical ly  al tered in morphology, wi thout  
loss in cell v iabi l i ty  or in total  cell protein. Other  experiments,  using both st imu- 
la ted and uns t imula ted  mouse macrophages,  showed tha t  10-7-10 -6 2V~ colchi- 
cine reproducibly diminished intracellular  lysozyme and then reduced its secre- 
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FIo. 10. The effect of 10 -6 M colchicine on lysozyme production and secretion. 10 X 10 6 
unsfimulated mouse macrophages were exposed to colchicine after 2 days in culture. ( ), 
control; (---), colchicine, C, cell lysate, T, total medium and cell lysate. 

tion into the medium. The effect of colchicine on lysozyme production was al- 
ways secondary to a lag period during which normal production rates were 
maintained. 

Cytochalasin B, another inhibitor implicated in secretion, had no effect on 
lysozyme production or secretion. 

DISCUSSION 

These studies establish that mononuclear phagocytes are active secretory 
cells with lysozyme as a major secretory product. The macrophage lysozyme is 
indistinguishable from lysozyme standards by several criteria, rapid lysis of 
M. lysodeikticus, heat stability at pH 3.5, inhibition by specific antisera, a size 
of 14,000, and cationic charge. Lysozyme secretion is associated with substantial 
net synthesis, a relatively constant intracellular concentration and continued 
accumulation in the medium. 14C-labeled lysozyme is the most prominent 
product secreted by both unstimulated and thioglycollate-stimulated macro- 
phages in culture (14). Although human monocytes and mouse macrophages 
differ in maturity these mononuclear phagocytes show a similar pattern of lyso- 
zyme secretion. BCG-stimulated rabbit alveolar macrophages, in contrast, 
containa high level of intracellular lysozyme (6.7 #g/1 X l0 s cells), and net syn- 
thesis in culture is relatively low so that most of the lysozyme which is released 
into the medium by these cells represents preformed enzyme (unpublished ob- 
servations). The human PMN, another rich source of lysozyme, releases only 
preformed lysozyrne into the medium during cultivation, unlike the continued 
production and secretion by mononuclear phagocytes. 

Lysozyme production by mononuclear phagocytes remained remarkably 
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constant under a wide variety of culture conditions. No specific inducer mole- 
cules could be identified in these experiments since lysozyme production re- 
mained relatively high in basal media and could only be blocked by inhibiting 
the synthesis of all proteins. The apparent stability of lysozyme production and 
secretion can be contrasted with the inducibility of other macrophage enzymes 
like acid phosphatase (22) and heme oxygenase (23). 

Several observations make it likely that lysozyme secretion is independent 
of endocytosis and the production of acid hydrolases. Lysozyme production was 
close to maximum when the concentration of serum in the culture medium did 
not favor the accumulation of acid hydrolases in the cell (21) and no comparable 
net increase or release of other enzymes was observed. A heavy phagocytic load 
of latex particles had no effect on overall lysozyme production and secretion. A 
minor increase in lysozyme release into the medium during active phagocytosis 
cannot be excluded, however, since the intracellular pool in the mouse macro- 
phage is small relative to the high rate of continuous secretion. 

Macrophages secrete the equivalent of its intracellular lysozyme pool in 5-8 
h, but further pulse-chase labeling studies are required to establish how soon 
newly synthesized molecules reach the medium. The factors which control the 
release of lysozyme from the cell are also not known, although a temperature- 
dependent step may be involved (unpublished observations). In all other situa- 
tions diminished secretion of lysozyme was associated with a reduced level 
within the cell. Treatment with colchicine, for example, inhibited lysozyme pro- 
duction, rather than its release, and the lag in its effect suggested an indirect 
mechanism of action. Release of lysozyme into the medium could continue, to a 
limited extent, when new production was inhibited by cycloheximide, but the 
macrophages could not be totally depleted in this way. A genetic block in lyso- 
zyme secretion could also not be demonstrated in macrophages from beige mice 
(24), which may accumulate other intracellu!ar hydrolases (unpublished ob- 
servations). 

This study raises several unanswered questions concerning the intracellular 
pathway of lysozyme secretion. Pacreatic zymogens are packaged in vesicles de- 
rived from the Golgi apparatus and are stored in condensing vacuoles until 
secretagogues stimulate their discharge (25). The Golgi system also plays a role 
in the secretion of proteins by the hepatocyte (26-28) although the mechanism 
of their release from the cell is not established. At present there is no information 
whether lysozyme secretion proceeds by vesicular transport or by a different 
mechanism. The relationship between the intracellular lysozyme compartment 
and the lysosomal system of the macrophage (29) is also obscure. Separate popu- 
lations of lysosome-like granules could be designed for export from the cell, as in 
Tetrahymena (30). During the early stages of human monocyte differentiation 
the promonocytes contain granules, corresponding to primary lysosomes, which 
contain peroxidase, arylsulfatase, and acid phosphatase (31). A second peroxi- 
dase-negative population of granules appears during maturation. Further ex- 
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periments should establish whether the peroxidase-negative granules are in- 
volved in the packaging of secretory products, like lysozyme. 

Plasma and urinary lysozyme levels are elevated in a variety of clinical con- 
ditions (32). Secretion by increased numbers of mononuclear phagocytes could 
contribute substantially to the high extracellular levels seen in monocytic leu- 
kemia andin chronic inflammation. Calculations on granulocyte turnover should 
therefore be reevaluated in the context of secretion by viable mononuclear 
phagocytes (33). Since lymphocytes lack lysozyme it serves as a useful marker 
of the phagocytic leukocytes. Other cells, e.g. chick oviduct and the lachrymal 
gland, may also secrete lysozyme, but its absence from fibroblasts and lymphoid 
and epithelial cell lines makes lysozyme a suitable marker of macrophage-spe- 
cific function in cell hybrids (34) and other continuous cell lines derived from 
mononuclear phagocytes (35). 

No evidence is, at present, available which suggests that lysozyme acts as an 
enzyme on any nonbacterial substrate, although interactions with cartilage 
(36) and cell membranes (37, 38) may be due to its unique polyelectrolyte 
properties. Even its role in extracellular killing of microorganisms is not fully 
understood, although the range of susceptible organisms could be expanded by 
synergistic action between lysozyme, antibody, and complement (39, 40). In 
addition to lysozyme the mononuclear phagocyte contributes other secretory 
products which allows it to exert a potent effect on its extracellular environ- 
ment. Further studies on such secretory products will be reported elsewhere. 

SUMMARY 

Pure cultures of three types of mononuclear phagocytes--mouse peritoneal 
macrophages, unstimulated or after thioglycollate stimulation, and human 
monocytes--synthesize and secrete large amounts of lysozyme in vitro The 
macrophage lysozyme is indistinguishable from authentic lysozyme in its ability 
to lyse M. lysodeikticus, inhibition by specific antisera, a similar size of 14,000 
and cationic charge. Lysozyme secretion in culture is characterized by a large 
net increase in total lysozyme, 4-20-fold in 3 h, 75-95 % of which is in the me- 
dium, and its continued extracellular accumulation over at least 2 wk in culture. 
Lysozyme is the major 14C-labeled protein secreted into the medium by both un- 
stimulated and thioglycollate-stimulated macrophages and the 0.75-1 #g pro- 
duced per 1 X 106 cells/day represents 0.5-2.5 % of the total cell protein. 

Lysozyme is a cell-specific marker for mononuclear phagocytes and the PMN, 
which contains preformed enzyme, since it is absent in lymphoid cells and a 
variety of fibroblast and epithelioid cell lines. Lysozyme production is also a 
useful measure of mononuclear phagocyte cell number. 

The rate of lysozyme production and secretion is remarkably constant for all 
cell types under a variety of culture conditions. Production by the mouse 
macrophage increases threefold on the 2nd day in culture and then remains 
linear with time. Production is optimal at a relatively low serum concentration, 
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but can be maintained, in the absence of serum, in lactalbumin hydrolysate or, 
at a reduced level in basal media. 

The production and secretion of lysozyme are independent of the production 
of macrophage acid hydrolases. Net increase and secretion of lysozyme occur 
under conditions where acid hydrolases like N-acetyl/~-glucosaminidase, 0-glu- 
curonidase, B-galactosidase, and cathepsin D are neither accumulated nor se- 
creted. Massive phagocytosis of latex particles has no effect on lysozyme pro- 
duction and secretion. 

Lysozyme production can be rapidly inhibited by treatment with cyclohexi- 
mide (0.4 t~g/ml) whereas inhibition of its production by colchicine (10 -8 M) 
occurs only after a lag period of more than 8 h, and is probably due to a sec- 
ondary effect. 

These results show that  mouse macrophages provide a simple in vitro system 
to measure lysozyme secretion and its control. These studies also indicate the 
possible importance of mononuclear phagocytes in the secretion of a variety of 
biologically active products and in the modification of their environment. 

We thank Georgiana Guzman for excellent technical assistance and Professor E. Osserman, 
Dr. W. Bowers, and J. Unkeless for their help. 
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