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SUMMARY

The genome-wide identification of gene functions in
malaria parasites is hampered by a lack of reverse
genetic screening methods. We present a large-
scale resource of barcoded vectors with long homol-
ogy arms for effective modification of the Plas-
modium berghei genome. Cotransfecting dozens of
vectors into the haploid blood stages creates com-
plex pools of barcoded mutants, whose competitive
fitness can be measured during infection of a single
mouse using barcode sequencing (barseq). To vali-
date the utility of this resource, we rescreen the
P. berghei kinome, using published kinome screens
for comparison. We find that several protein kinases
function redundantly in asexual blood stages and
confirm the targetability of kinases cdpk1, gsk3,
tkl3, and PBANKA_082960 by genotyping clonedmu-
tants. Thus, parallel phenotyping of barcoded mu-
tants unlocks the power of reverse genetic screening
for a malaria parasite and will enable the systematic
identification of genes essential for in vivo parasite
growth and transmission.

INTRODUCTION

The rate at which the genomes of intracellular malaria parasites

can bemodified has remained largely unchanged sincemethods

for gene targeting by homologous recombination were devel-

oped in Plasmodium (Crabb and Cowman, 1996; van Dijk

et al., 1996; Wu et al., 1995). Some notable advances have

recently improved transfection efficiency in P. falciparum

through the application of zinc finger nucleases (Straimer et al.,

2012) and CRISPR-Cas9 (Ghorbal et al., 2014; Wagner et al.,

2014). However, no currently available method is efficient

enough to enable reverse genetic screens, and transposon

mutagenesis in P. falciparum is at present well short of genome

saturation (Balu and Adams, 2006). As a result, more than half of

the protein coding genes in Plasmodium genomes still lack func-

tional annotation.
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Genome-wide collections of mutants or genetic modification

vectors have greatly facilitated the discovery of gene functions

in model organisms (Ni et al., 2011; Sarov et al., 2006; Skarnes

et al., 2011;Winzeler et al., 1999). Inmalaria parasites, in contrast,

efforts to scale up reverse genetics have suffered from a com-

bination of low rates of homologous recombination and a high

content of adenine and thymine (A+T) nucleotides that renders

PlasmodiumDNAdifficult to engineer in E. coli. A malaria parasite

of rodents, P. berghei, offers the most robust system for genetic

manipulation with relatively high transfection efficiency (Janse

et al., 2006a). In this species homologous integration can be

boosted further by transfecting linear vectors with long (4–8 kb)

homology arms (Pfander et al., 2011). Despite its high A+T con-

tent (>77%), P. berghei genomic DNA (gDNA) can be propagated

efficiently in E. coli as large genomic inserts of up to 20 kb using a

low-copy bacteriophage N15-derived linear plasmid with cova-

lently closed hairpin telomeres (Godiska et al., 2010). In contrast

to high-copy circular plasmids, an N15-based arrayed gDNA li-

brary achieved nearly complete genome coverage with sufficient

insert size to represent themajority ofP. berghei genes in their en-

tirety. Clones from this library can be converted into gene target-

ing and tagging vectors in 96 parallel liquid cultures using robust

protocols (Pfander et al., 2011), which exploit highly efficient ho-

mologous recombination mediated by the Red/ET recombinase

system of lambda phage in E. coli (Zhang et al., 2000).

To accelerate the functional analysis of all P. berghei genes we

here present a genome-scale community resource of long-ho-

mology genetic modification vectors that are individually quality

controlled by sequencing and carry gene-specific molecular

barcodes. The availability of more than 2,000 genome modifica-

tion vectors raises the possibility of generating a large library of

cloned and genotyped P. berghei mutants of the type that has

enabled global genetic screens in yeast (Giaever et al., 2002;

Winzeler et al., 1999). However, in P. berghei the lack of contin-

uous in vitro culture of blood stages would limit the utility of such

a clone collection. Signature-tagged mutagenesis, whereby

thousands of mutants are simultaneously screened in a pooled

approach (Hensel et al., 1995; Langridge et al., 2009; Mazurkie-

wicz et al., 2006), therefore offers a more attractive strategy for

scaling up reverse genetics in P. berghei.

We have used themodification vector resource to enable such

systematic screens for a Plasmodium parasite. We demonstrate

that cotransfecting multiple gene knockout vectors in the same
thors
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Figure 1. PlasmoGEM: A Genome Scale

Free Resource of Genetic Modification Vec-

tors for P. berghei Reverse Genetics

(A) A diagram of the modular vector production

process showing the efficiency at each step (red),

as well as resources (gray boxes) and data

(dashed lines) submitted to the database.

(B) Genome coverage achieved to date.

(C) Schematic showing knockout vector designs

and locations of the gene-specific molecular bar-

code included in each vector.

(D) Default C-terminal epitope-tagging vector and

a panel of alternative fusion tags.
electroporation reproducibly generates complex pools of bar-

coded P. berghei mutants, and develop a barcode sequencing

(barseq) approach (Smith et al., 2009) to phenotype the growth

rates of all mutants within the pool over the course of an infec-

tion. To validate the approach, we compared a barseq knockout

screen of protein kinases with the conventional kinome screen

by Tewari et al. (2010). This comparison showed high reproduc-

ibility with previous data, but the sensitivity and robustness of the

barseq approach also identified additional targetable genes. Our

analysis demonstrates the power of barseq screening to robustly

provide growth-rate phenotypes for dozens of mutants in single

mice, and opens up the possibility for large-scale reverse genetic

screens for multiple areas of Plasmodium biology.

RESULTS

A Resource of Efficient Gene Targeting Vectors
for P. berghei
To generate a genome-scale resource of gene knockout vectors,

we used a modular pipeline for recombinase mediated engineer-
Cell Host & Microbe 17, 404–41
ing in E. coli (Pfander et al., 2011). The

parasite gene of interestwas first replaced

in appropriately chosen gDNA clones with

a marker for positive and negative se-

lection in E. coli using Red/ET recombi-

nase-mediated engineering. The bacterial

markers were then exchanged under

negative selection for a drug resistance

cassette for P. berghei in a single in vitro

Gateway recombinase reaction. When

applied to the 2,781 P. berghei genes

that have any level of functional annota-

tion (57% of the genome), a first pass of

the production pipeline yielded gene dele-

tion vectors for 1,868 different protein

coding genes of the core nuclear genome

(Figures 1A–1C). These vectors form

the foundation of the Plasmodium gene-

tic modification resource, PlasmoGEM

(Figure 1A), which can be viewed and

requested through a searchable data-

base at http://plasmogem.sanger.ac.uk

(Schwach et al., 2015).

The vector production strategy can

also be adapted to generate other modifi-
cations, including C-terminal tagging vectors, of which there are

currently 278 in the resource. Tagging vectors are constructed

with a C-terminal triple HA epitope tag by default. For each final

vector we also make uncloned intermediate constructs avail-

able, which users can convert into targeting vectors with dif-

ferent functionality. A panel of Gateway entry clones are avail-

able which contain fusion tags for epitopes and different

fluorescent proteins (Figure 1D). Each PlasmoGEM vector

carries a gene-specific molecular barcode of 10–11 nucleotides

that uniquely identifies genetically modified parasites derived

from it (Figures 1C and 1D), and all final PlasmoGEM vectors

contain the hdhfr-yfcumarker that enables positive and negative

selection in vivo (Braks et al., 2006).

Manual construct design became rate limiting for vector pro-

duction, and we therefore created a suite of computational tools

to select gDNA library clones; to choose 50 bp homology regions

for recombination in E. coli; to design oligonucleotides, generate

sequencemaps, assign barcodes, and track vectors through the

production process; and to automate quality control (Schwach

et al., 2015). The long homology arms of PlasmoGEM vectors
3, March 11, 2015 ª2015 The Authors 405
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Figure 2. Schematic Representation of a

Typical Barcode Sequencing Experiment

For each experiment three inbred mice are in-

fected from a separate transfection of the same

vector pool.
(average sum of both arms 7.4 ± 2.9 kb SD) enhance recombina-

tion frequency in P. berghei compared to conventional designs

(Pfander et al., 2011), but they also pose a risk that unintended

mutations get inadvertently incorporated into the parasite

genome. Homology regions and barcode modules of all target-

ing vectors are therefore confirmed by next-generation se-

quencing and pass stringent QC standards before they are

used (for details, see https://plasmogem.sanger.ac.uk).

Parallel Phenotyping of Dozens of PlasmoGEM Mutants
by Barcode Counting
To examine whether the improved integration efficiency of Plas-

moGEM vectors would permit the reproducible generation and

phenotyping of mixed pools of barcoded mutants, we selected

from the resource 46 vectors targeting protein kinases that had

previously been part of a systematic deletion analysis using con-

ventional vectors (Tewari et al., 2010). Four sexual and mos-

quito-expressed genes known to be dispensable for asexual

growth were also included to serve as reference genes to which

growth rates of all other mutants could be compared. This refer-

ence set was comprised of knockout vectors for the major sur-

face proteins of the ookinetes, P25 and P28 (Tomas et al.,

2001); a secreted ookinete adhesive protein, SOAP (Dessens

et al., 2003); and a C-terminal tagging vector for the redundant

p230p gene (van Dijk et al., 2010). In addition, three further con-

trol vectors were included to assess our ability to detect reduced

growth rates in blood stages. One of these targeted plasmepsin

IV, an aspartic protease involved in hemoglobin degradation

whose deletion in P. berghei results in attenuated growth (Spac-

capelo et al., 2010). We predicted parasite growth would be

reduced by a deletion vector for PBANKA_110420, which en-

codes the E1b subunit of themitochondrial branched chain a-ke-

toacid dehydrogenase (BCKDH), given that deleting the E1a

subunit of the same complex has a clear growth phenotype

(Oppenheim et al., 2014). A third attenuating knockout vector

targeted PBANKA_140160, a putative methyl transferase of

unknown function, which emerged as a slow-growing mutant

from a preliminary screen of metabolic enzymes (data not

shown).

Schizonts cotransfected with a cocktail of 48 vectors and in-

jected into mice (Figure 2) gave rise to drug resistant parasites

4 days later. This was indicative of an overall transfection effi-

ciency of �10�4 and suggested that roughly 2,500 independent

recombination events occurred in a transfection, enough to

generate a complex mixture of mutants. Blood samples were

subsequently collected exactly every 24 hr from day 4, gDNA

was extracted, and vector-specific barcodes were amplified by
406 Cell Host & Microbe 17, 404–413, March 11, 2015 ª2015 The Authors
a polymerase chain reaction (PCR) with

a generic primer pair (see Figure S1A

available online) and counted on a bench-

top next-generation sequencer (Figure 2).

In each of two replicate experiments, the
same 22 barcodes from the vector pool were robustly detected

and yielded nearly identical growth curves (Figure 3A). Southern

hybridization of separated chromosomes showed evidence for

vector integration events throughout the genome (Figure S1B).

Long-range PCR products confirmed integration events for 17

of the 22 replicating barcodes (Figure S1C).

To assess the accuracy of barcode counting, we analyzed the

same infected blood samples using two different methods for

turning the initial PCR product after barcode amplification into

sequencing libraries. The staged PCR strategy shown in Fig-

ure S1A and a conventional adaptor ligation protocol performed

equally well, producing highly correlated barcode counts (Fig-

ure S1D). The PCR strategy proved faster and more economical

and was therefore used in subsequent experiments. Figure S2A

illustrates for a typical experiment the relative abundances of

barcodes in a pool of transfected vectors and in infected mice

7 days after transfection, as determined by the PCR method.

To analyze growth curves derived from barcode counting

we considered two parameters: (1) the relative abundance of

each barcode within the pool, and (2) the relative fitness of

each mutant, i.e., the rate at which its abundance changed

each day. As expected, the four barcodes corresponding to con-

trol genes redundant for asexual development replicated rapidly.

These were taken to represent wild-type growth (fitness w = 1).

Relative abundance and growth rates were both highly repro-

ducible for each barcode between technical and biological rep-

licates (Figures 3B and 3C). We propose that the shape of a

growth curve provides a quantitative measure for the fitness of

a mutant. In contrast, the relative abundance of a mutant within

a pool we consider less informative, since it may be influenced

by a number of additional factors, such as the abundance of a

vector in the transfection cocktail, the length of its homology

arms, or any local variation in recombination rates. Plotting day

7 fitness from a ranked list (Figure 4A) showed that while the rela-

tive abundance of vectors in the transfection cocktail varied by

up to one order of magnitude (Figure 4A, right axis), this was

not a predictor of fitness of the resulting mutants. Fitness is

therefore driven by growth rate, not by the amount of a given vec-

tor in the starting pool. The attenuating control vectors were

associated with ameasurable reduction in parasite fitness to be-

tween 0.60 and 0.73, as expected. The majority of protein kinase

mutants either hadwild-type fitness or were not detected (w = 0).

While all reference barcodes robustly replicated close to the

average fitness of 1.0 (Figure 4B), the attenuating vectors and

some kinase mutants showed statistically significant reductions

in fitness that were consistently measured across different days

of the infection (Figure 4C). Taken together, these data strongly

https://plasmogem.sanger.ac.uk
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Figure 3. Reproducibility of Independent Barcode Counting Experi-

ment with Respect to the Abundance and Relative Replication Rates

of All Barcodes

(A) Each experiment involved three replicate transfections of a different

schizont culture performed on a different day and using independently pre-

pared vector pools. Error bars show standard errors (n = 3 per experiment).

Green lines, four sexual stage genes (p25, p28, p230p 3xHA tag, and soap).

Orange lines, three attenuated mutants (plasmepsin IV, PBANKA_110420,

PBANKA_140160). Twenty-two mutants are shown in total. See Figure S1 for

genotyping data.

(B) Linear regression analysis of mean abundance values for the two experi-

ments shown in (B). All barcodes present until day 8 posttransfection were

included. Error bars show standard errors of the mean (n = 3).

(C) Regression analysis of average mean fitness for each barcode between

days 5–8 posttransfection for the two biological replicates in (B). Fitness is

calculated from the replication rate of the gene-specific barcode relative to the

mean of the four sexual stage reference genes. Error bars show standard er-

rors (n = 3). See Table S1 for fitness measurements for individual vectors, and

Table S4, illustrating data analysis.
suggest that barcode counting can be used to phenotype large

numbers of mutants in parallel.

We hypothesized that in pools some slow-growing mutants

may be outcompeted by faster-growing mutants before their

barcodes can be detected. To eliminate this potential source

of error, we performed a second-pass screening strategy by

pooling only the slow or nonreplicating vectors from the previ-

ous experiments and transfecting them together with the refer-

ence set. This allowed us to measure the fitness of four addi-

tional mutants, one whose vector had a very low integration

efficiency (PBANKA_040940), and three that were characterized

by low growth rates during part or all of the infection (Fig-

ure S2B). These data suggest that the size and complexity of

a vector pool can be increased only at the expense of losing

more slow growing mutants. However, this loss can be compen-

sated in a second-pass screen of vectors that are not detected

in the first experiment.
Cell Hos
Barcode Counting Reveals Protein Kinase Mutants
To assess the accuracy of barseq screening, we compared the

combined results from five barseq experiments with the data

from our previous knockout screen, which used conventional

vectors in a gene-by-gene approach with careful genotyping of

cloned mutants (Tewari et al., 2010). For the majority of genes

(76.1%) covered by both studies, the replication of barcodes in

the mixed pool of mutants was predicted by previous data for

their targetability (Table S1; Figure 5A). Two genes shown previ-

ously to be dispensable in blood stages (Tewari et al., 2010)

could not be targeted in barseq screens. Failure of these vectors

to integrate was not due to low amounts of vector DNA in the

transfection cocktail and in the case of pk7 was reproduced

when vectors were transfected individually. Absence of inte-

gration may be the result of low recombinogenicity at the target

locus, or individual vector designs may interfere with the expres-

sion of essential neighboring genes. Although the fraction of

technical failures was small, these observations reaffirm the

need to confirm genetic essentiality by conditional methods,

just as in conventional gene-by-gene studies.

Although some false negatives can be tolerated, genetic

screens rely critically on the rate of false positives being very

low. In barcode sequencing experiments false positives may

result from episomal replication of vector DNA or from nonho-

mologous integration of targeting vectors. Although the former

is commonly observed in P. berghei after transfecting vectors

that originate from circular plasmids, we have not yet encoun-

tered spontaneous circularization of PlasmoGEM vectors, which

rely on the expression of a phage telomerase to replicate in a

linear form in E. coli (data not shown). The strongest candidates

for false positives in our pilot screen were ten protein kinase

genes for which barcode counting revealed evidence for their

disruption by PlasmoGEM vectors, while previous studies had

failed to delete the same genes using conventional vectors (Se-

bastian et al., 2012; Tewari et al., 2010). We selected six of these

genes for validation by targeting them individually.

Two genes, cdpk1 and gsk3, have been considered potential

drug targets in P. falciparum (Droucheau et al., 2004; Kato

et al., 2008), but are shown here to be targetable in P. berghei

(Figures S3A and S3B). In the case of cdpk1 our data confirm

another recent study (Jebiwott et al., 2013), which also showed

that the unconditional disruption of cdpk1 has no impact on

blood stage growth but reproduces the ookinete phenotype we

recently described for a stage-specific mutant in the same

gene (Sebastian et al., 2012). Generating and genotyping individ-

ual knockout clones for gsk3, tkl3, and PBANKA_082960, a pu-

tative protein kinase of unknown function, confirmed the barseq

phenotype and established that these genes are indeed dispens-

able for blood stage growth (Figure S4).

We next turned to the rio group of protein kinases. rio1 and rio2

encode ancient atypical protein kinases that are highly con-

served in most archaea and all eukaryotes, where they perform

essential functions in ribosome biogenesis (LaRonde, 2014). In

pooled transfections, barcodes for both genes were close to

the detection threshold, and only the rio1 barcode was detected

consistently at different time points. We therefore classed rio1 as

targetable and rio2 as likely essential, although the latter pro-

duced a small number of replicating barcodes in some transfec-

tions. Targeted disruption of each rio gene individually yielded
t & Microbe 17, 404–413, March 11, 2015 ª2015 The Authors 407
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Figure 4. Fitness Measurements Obtained with PlasmoGEM Vectors Targeting Protein Kinases

(A) Distribution plot generated from a ranked list of day 7 fitness values measured in triplicate for each of 42 genes in experiment 1 (left axis). The relative

abundance of a targeting vector in the electroporation cuvette at the moment of transfection (gray crosses, right axis) did not predict whether a mutant could be

obtained. See Figure S2 for relative abundance data of a representative replicate experiment.

(B) Fitness of reference mutants averages 1 by definition. Error bars show standard errors (n = 6).

(C) Fitness of selected mutants. Error bars as in (B). Asterisk, different from reference mutants as determined by a two-sided t test corrected for multiple testing

(p < 0.01; n = 6).
resistant parasites after a delayed prepatency period of 10–

14 days. Resistant parasites grew very slowly under drug pres-

sure and resisted dilution cloning.

Whole-genome sequencing of a putative rio1� population

confirmed the nearly complete absence of coverage of the target

gene, consistent with the uncloned population being strongly en-

riched in parasites carrying a correctly integrated rio1 deletion

vector (Figure 5B). Targeting of rio2, in contrast, selected for a

29.7 kb duplication on chromosome 5 that included the rio2 lo-

cus, together with three other genes (Figure 5B). Read coverage

suggested these parasites carried one disrupted and one in-

tact copy of the target gene, which was consistent with PCR

evidence showing the presence of both a disrupted and a wild-

type rio2 locus in the mutant population (Figure S5A) and South-

ern hybridization of separated chromosomes showing integra-

tion of the rio2 targeting vector into chromosome 5, as expected

(Figure S5B). These data fit a model in which a pre-existing par-

tial genome duplication can predispose a small proportion of the

parasite population to survive integration of a deletion vector for

an essential gene. Partial genome duplications of a similar size

exist transiently in P. falciparum, where they serve as starting

points for the evolution of drug resistance (Guler et al., 2013).

Of six kinase genes selected for follow-up as potential false

positives, only the least robustly detectable one proved to be a
408 Cell Host & Microbe 17, 404–413, March 11, 2015 ª2015 The Au
false hit, while the other five revealed targetable genes missed

by an earlier screen (Figure 5C). From these data it is highly plau-

sible that replicating barcodes represent correctly integrated

vectors in the vast majority of cases. False positives may be

due to pre-existing short genome duplications, but such events

are rare. In yeast rare events are filtered effectively by disregard-

ing data from the 10% of least abundant mutants in barseq

screens (Robinson et al., 2014). Such approaches can be

applied to future P. berghei screens to reduce the false-positive

rate even further.

Finally we asked whether the interpretation of barcode count-

ing data from parallel transfection experiments could be con-

founded by multiple vectors integrating into the same parasite

genome. First we transfected pools of barcoded vectors into

three parasite clones, each of which already carried a different

barcode from the insertion of a targeting vector and subsequent

recycling of the selection marker. We reasoned that if each

mutant integrated one new vector, the pre-existing barcode

should account for exactly half of all barcode counts after trans-

fection and drug selection. The data were entirely consistent with

this model (Figure 6A), suggesting that if multiple integration

events existed, they would be too rare to be isolated by limiting

dilution cloning. To detect rare double integration events, we

chose three genes that are readily disrupted using PlasmoGEM
thors
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Figure 5. Barcode Sequencing Is Validated by a Comparison with Published Data and Genotyping of Mutants

(A) Barseq screen of 46 PlasmoGEM vectors targeting protein kinases compared to the conventional kinome screen by Tewari et al. (2010).

(B) Read coverage from whole-genome sequencing of highly enriched mutant populations showing deletion of rio1 in a haploid genome (upper panel), and

insertion of a rio2 knockout vector associated with stabilization of a 29.7 kb duplication including rio2. See Figure S5 for additional genotyping data.

(C) Updated tree showing targetable and essential P. berghei protein kinases. Targetability of cdpk1was independently shown by Jebiwott et al. (2013). A role for

PK4 in blood stage growth was demonstrated by Zhang et al. (2012). See Figures S3 and S4 for genotype confirmation of cloned mutants for the knockouts.
vectors. For each we transfected the final knockout vector

together with a 20-fold excess of the selection marker-free inter-

mediate vectors for the other two genes. We expected to detect

replication of the marker-free vectors by PCR, but only if their

genomic integration coincided with integration of the selectable

construct into the same genome. These experiments failed to

generate evidence for multiple integration events into the same

genome (Figure 6B). The data indicate that different homologous

integration events in P. berghei are independent, and suggest

that DNA uptake after electroporation is not the factor limiting

transfection efficiency.

Taken together these data demonstrate that barcode counting

provides a powerful tool to identify targetable P. berghei genes

and to rapidly and reliably measure the competitive fitness of

dozens of mutants during asexual erythrocytic growth in a way

that is neither confounded by double integration events nor likely

to generate an excessive number of false-positive or false-nega-

tive results.

DISCUSSION

The PlasmoGEM resource has begun to facilitate conventional

gene knockout and tagging experiments in P. berghei by

providing robust reagents for use in biological studies (see for
Cell Hos
instance Frénal et al., 2013). While our current emphasis is on

generating and distributing the largest possible resource of

knockout vectors, the same pipeline can be used tomanufacture

barcoded constructs that modify the 50 or 30 end of a gene. Due

to themodular nature of the pipeline, the same intermediates can

already be used to generate vectors for fluorescence and

epitope tagging, and we anticipate that inducible systems that

rely on regulatable promoters, degrons or aptamers (Armstrong

and Goldberg, 2007; Goldfless et al., 2014; Pino et al., 2012) can

be scaled up using the same approach. Recombinase-mediated

engineering has already facilitated the generation of conditional

alleles for inducible knockout approaches that rely on Flp recom-

binase (Suarez et al., 2013), and a similar strategy may be used

for the insertion of loxP recognition sites for Cre-mediated

recombination, which is becoming an important tool for gener-

ating inducible alleles in Plasmodium (Collins et al., 2013).

As well as being highly versatile, we demonstrate here that

PlasmoGEM vectors can be used to perform functional screens.

Three lines of evidence support our conclusion that fitness mea-

surements based on barcode counting generally reflect homolo-

gous integration events at the target locus: (1) a barseq screen of

protein kinases generated data that were in good agreement

with the previous conventional knockout study by Tewari et al.

(2010); (2) barcodes of essential kinase genes did not replicate
t & Microbe 17, 404–413, March 11, 2015 ª2015 The Authors 409
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Figure 6. Absence of Evidence for Multiple

Integration Events

(A) Vector pools were transfected into marker-free

lines with pre-existing barcodes in cdpk1, cdpk3,

or cdpk4. New barcodes account for approxi-

mately half of the total, as would be expected if

each parasite genome carried exactly one new

barcode. The slight overrepresentation of back-

ground barcodes on day 4 probably comes from

parasites that failed to integrate a vector and which

were not yet completely eliminated after only

3 days of drug selection. All data points are sup-

ported by three experiments, and error bars show

standard deviations. See Figure S3 for genotyping

of marker-free lines.

(B) PCR genotyping was performed on parasite

gDNA from six infected mice, each transfected

with one of three final targeting vectors in the

presence of a 20-fold excess of intermediate vec-

tors (10 mg total DNA per transfection), which have

the same homology arms but a zeocin resistance

cassette that cannot be selected in P. berghei.

Presence of intermediate vectors in the input

cocktail but absence in the resistant parasite

populations suggests that multiple integration

events are rare or absent, since hitchhiking of

marker free insertions would otherwise be

observed.
in the parasite, showing that nonintegrated vectors are not main-

tained episomally but are effectively eliminated by day 4 of the

infection; (3) unexpected mutants were in genes that we later

verified as targetable by transfecting individual vectors and gen-

otyping the resulting mutants. In one instance the inconsistent

replication of a barcode raised the unexpected possibility of ge-

netic redundancy of rio2, until whole-genome sequencing re-

vealed a 29.7 kb duplication containing a second intact copy

of the target gene. Whole-genome sequences of many rodent

Plasmodium genomes are now available and contain no evi-

dence that genome duplications commonly become fixed (Otto

et al., 2014), possibly because of associated fitness costs. False

positives of the rio2 type will therefore always be rare events that

can be filtered out, for instance by eliminating the least abundant

10% of mutants from the analysis, as has been recommended

for barseq screens of yeast mutants (Robinson et al., 2014).

The use of vector pools to phenotype mixtures of mutants is

particularly suited toP. berghei, where a library of clonedmutants

would be of limited value, because the absence of an in vitro cul-

ture system for blood stages means that each clonedmutant has

to be generated and propagated in mice. In marked contrast, the

humanmalaria parasiteP. falciparum has an efficient culture sys-

tem for blood stages, but low recombination rates require trans-

fection with circular vectors, and our preliminary data suggest

that linear vectors of the type used here do not spontaneously
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integrate into the genome, evenwhen their

homology arms are each several kilo-

bases long. The CRISPR-Cas9 system

has recently been used successfully to

transfect linear DNA in P. falciparum

(Ghorbal et al., 2014). If this method in-

creases recombination rates significantly
it raises the exciting prospect of generating large numbers of

barcoded P. falciparum mutants that could then be pooled for

genetic screens using barseq screening.

The scale of barseq screens in P. berghei is currently con-

stricted by the complexity of the parasite pools that can be

generated, which in turn is limited both by transfection efficiency

and by the relatively large differences in recombination rates of

different PlasmoGEM vectors. We show that as a result of such

heterogeneity, screening pools of mutants poses the risk of

losing genotypes that are generated in small numbers due to

inefficient recombination rates at a target locus, or because

they have a reduced fitness. Such mutants get outcompeted

by the faster-growing genotypes in the pool, but our pilot screen

suggests that inmany cases their presence and growth rates can

be measured in a second-pass screen that excludes most of the

faster-growing mutants. Once the vector-specific integration

rates and fitness measurements are available for the entire vec-

tor resource, it will be possible to create more bespoke vector

pools that are better matched for integration rates and fitness

outcomes. This will enable the creation of larger pools of mu-

tants, which can then be combined into even more complex

superpools to empower truly genome-wide screens of parasite

growth and differentiation using only a fraction of the number

of rodents required today to study much smaller gene sets. We

anticipate that these global genetic barseq screens will make it



possible to identify systematically the parasite metabolic path-

ways required for replication of asexual blood stages. Dropout

screens that ask which barcodes are lost from the sexual para-

site stages may generate lists of candidate genes required for

parasite transmission to the mosquito, and similar screens can

be designed to get at genes required for virulence or for efficient

replication in normocytes versus reticulocytes. In each case,

vectors from the PlasmoGEM resource will be available for vali-

dation and follow-up investigations.
EXPERIMENTAL PROCEDURES

Recombinase-Mediated Engineering Pipeline

The PlasmoGEM vector resource was created by recombinase-mediated en-

gineering in continuous liquid culture on 96-well plates largely as described

(Pfander et al., 2013), but with the following modifications. To improve genome

coverage, the arrayed P. berghei genomic DNA library in the pJAZZ-OK linear

plasmid (Lucigen) that provides the starting point for vector production was

doubled in size to �10,000 clones. The PCR product consisting of a zeo-

pheSmarker and 50 bp primer extensions homologous to the gene of interest

was purified using the High Pure 96 UF Cleanup Kit (Roche) to improve lambda

Red recombination efficiency inE. coli. The resulting intermediate vectorswere

selected in liquid culture containing 30 mg/mL kanamycin and 50 mg/mL zeo-

cin. Kanamycin selection improved the proportion of intact intermediate vec-

tors by selecting for the short arm of the pJAZZ plasmid. After two rounds of

antibiotic selection, cultures were reinoculated into fresh selective medium

and incubated for no longer than 16 hr at 37�C to favor the correct recombina-

tion product. Intermediate vector DNA was obtained using a QIAGEN Plasmid

Plus 96 Miniprep kit and eluted into 65 ml Tris-EDTA buffer. DNA purity proved

critical for the Gateway reaction, which was set up in 20 ml using 2 ml LR

clonase (Invitrogen), 100 ng Gateway entry plasmid (e.g., pR6K-attL1-3xHA-

hdhfr-yfcu-attL2), LR clonase buffer, and 300 ng purified intermediate vector.

Gateway reactions were purified using the High Pure 96 UF Cleanup Kit. Elec-

trocompetent E. coli TSA were transformed and plated on YEG-Cl agar con-

taining kanamycin, and four colonies were picked to verify the sequence of

their homology arms.

Computational Vector Design

A suite of software tools for automated vector design was created to work with

the arrayed E. coli library of mapped P. berghei ANKA gDNA clones and has

been described elsewhere (Schwach et al., 2015). In brief, the PlasmoGEM

software tools select the most suitable library clone for each gene and type

of modification and picks two unique 50 bp regions for lambda Red recombi-

nation, designated recUp and recDown, respectively. Together, these sites

define the boundaries of the genomic region that is replaced by the selection

marker cassette. A set of three PCR primers for quality-control purposes is

also generated. For lambda Red recombination two highly unique 50 bp re-

gions (recUp and recDown) were chosen on each selected library clone. In

the case of knockout constructs these were designed to introduce the

maximal deletion of the target gene compatible with a homology arm length

of R1 kb, while leaving at least 1 kb upstream and 0.8 kb downstream of

neighboring genes intact. For C-terminal tagging vectors recUp and recDown

were chosen to delete only the stop codon from the gene of interest. recUp and

recDown sequenceswere included in oligonucleotides for lambda Red recom-

bination, one of which also carried a 10–11 bp gene-specific barcode assigned

automatically from a list of optimized sequences, and an 18 bp constant primer

annealing site to read out the barcode after integration into the P. berghei

genome. The software also automatically designed oligonucleotides for quality

control during vector production (QCR1 and QCR2) and a unique oligonucle-

otide annealing to the P. berghei genome at least 200 bp outside of the bound-

ary of the shorter homology arm (GT) for PCR genotyping transgenic parasites.

Vector designs, primer, and barcode sequences can be viewed in a searchable

database at http://plasmogem.sanger.ac.uk (Schwach et al., 2015). For quality

control, up to four colonies per final vector were batch sequenced on an Illu-

mina MiSeq instrument. Sequencing libraries were made essentially as

described (Quail et al., 2012).
Cell Hos
New Tagging and Selection Cassettes

Gateway entry sclones were created for C-terminal tagging with fluorescent

proteins by replacing the default 3xHA sequence in plasmid pR6K-attL1-

3xHA-hdhfr-yfcu-attL2 (Pfander et al., 2013) with GFP-mu3 (Addgene plasmid

20410) (Franke-Fayard et al., 2004), iLov (Addgene plasmid 26769) (Chapman

et al., 2008), mEmerald (a kind gift from J. Liu), mCherry (from RMgmDB

plasmid pL0046), and mVenus. Entry clones with R6K origins were maintained

in E. coli PIR2 (Invitrogen).

Parasites, Animals, Vector Preparation, and Transfection

TransgenicP. bergheiwere generated either in wild-type strain ANKA 2.34 or in

a selectable marker-free reporter strain of P. berghei ANKA cl15cy1 express-

ing themu3 variant of green fluorescent protein clone RMgm-7 (Franke-Fayard

et al., 2004). Parasites were routinely propagated in 6- to 8-week-old Theiler’s

original (TO) outbred mice. Schizonts for barcode counting experiments were

produced in femaleWistar rats (200–250 g) to achieve maximal transfection ef-

ficiency. To generate pools of mutants for phenotyping by barcode counting,

equal amounts of each vector were combined and the mixture digested with

NotI to release the targeting vectors from the bacterial vector arms. A total

of 5-8 ml of the digested vector mix, typically containing 100 ng of DNA for

each vector, was used per transfection. Experiments with single vectors

used 2 mg of NotI-restricted DNA per transfection. PlasmoGEM identification

numbers for vectors used in this study are listed in Table S2. Transfections

were done by electroporation of purified schizonts as described (Janse

et al., 2006b), with the following modifications. Parasites for the schizont cul-

ture were from female Wistar rats (200–250 g) to achieve maximal transfection

efficiency and were cultured for 21 hr before schizonts were isolated on a 55%

Nycodenz/PBS cushion. Isolated schizonts were washed in complete media

and electroporated using the 4D Nucleofector System (Lonza) in 16-well strips

according to the pulse program FI-115 (see Supplemental Information, Proto-

col 1, for more detail). Growth rate phenotyping of transfected parasites was

done in 6- to 8-week-old Balb/c inbred mice. Rodents were from Harlan,

UK. All animal research was conducted under licenses from the UK Home Of-

fice and used protocols approved by the ethics committee of the Wellcome

Trust Sanger Institute.

Growth Rate Phenotyping by Barcode Counting

Three batches of schizonts were transfected with the same vector pool and

each injected intravenously into a different Balb/c mouse. Resistant parasites

were selected by pyrimethamine (70 mg/L in the drinking water). Infections

were monitored daily using Giemsa-stained thin blood films. A total of 30 ml

of infected blood was collected from the tail at exactly the same time on

days 4–8 posttransfection and diluted in 200 ml of phosphate-buffered saline.

Total DNAwas extracted from each sample and resuspended inwater (50 ml on

days 4–6 posttransfection, 100 ml for later days) using Supplemental Protocol

2. To sequence the vector-specific barcodes, 1 ml of each DNA sample served

as template for a PCR reaction using Advantage 2 Taq polymerase (Clontech)

with primers arg444 and arg445 (13 95�C/5 min denaturation, 353 95�C/30 s,

55�C/20 s, 68�C/8 s, 1 3 10 min at 68�C), which bind to constant annealing

sites flanking each barcode. The 167 bp amplicon was further extended in a

second PCR reaction using oligonucleotides that in their 50 extensions intro-

duce Illumina adaptors and sample-specific barcodes (Table S3) for multiplex-

ing up to 32 samples in one run of a MiSeq instrument. For sample-specific

indexing, 5 ml of the first amplicon served as template for a further ten amplifi-

cation cycles (1 3 95�C/2 min, 10 3 95�C/30 s, 68�C/15 s, 1 3 5 min, 68�C)
using one generic oligonucleotide (PE1.0) and one of a set of 32 sample-spe-

cific indexing oligonucleotide. A total of 100 ng of each sequencing library was

pooled and quality controlled by quantitative PCR for the presence of

sequencing adaptors. Libraries were sequenced using MiSeq Reagent Kit v2

(300 cycle) from Illumina (MS-102-2002). In some experiments we compared

PCR-mediated indexing to adaptor ligation libraries.

Due to their low complexity, PCR amplicon libraries had to be diluted to 4 nM

before loading the flow cell of a MiSeq instrument (Illumina) at low cluster den-

sity (4 3 105 clusters/mm2) with 30%–50% of PhiX spike-in. Sequencing of

150 bp paired-ends yielded 1.0–1.5 3 105 reads on average for each of the

32 samples. Using a Perl script, barcode sequences were extracted from

sequencer output, counted, and the relative abundance of each barcode

within the pool determined. The quantitation was considered reliable for
t & Microbe 17, 404–413, March 11, 2015 ª2015 The Authors 411
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barcodes accounting for at least 0.1% of all counts. Parasitaemia curves for

these mutants were inferred from the relative abundance of each barcode

and from the observed total parasitaemia as determined using a Giemsa

stained thin blood film. The relative fitness (w) of a mutant represented by a

barcode on a given day (d) was calculated according to Mani et al. (2008) by

comparing the daily change in its relative abundance (A) to that of the reference

genes (ARi . ARn) with normal growth.

wgene d =
Ad

Ad�1

3

Pn
i =1

ARi d�1

ARi d

n

Statistical analyses compared each barcode against the normal-growth

reference vectors using a two-tailed t test (unequal variance, p values adjusted

according to the false discovery rate method). A given mutant was considered

viable when consistent growth of its barcode was observed for all time points

in at least two of three replicates.

Genotyping

To verify vector integration by diagnostic PCR on parasite genomic DNA, we

designed a target gene-specific oligonucleotide to anneals to the chromo-

some just outside of the vector’s homology arm (Table S2) and paired it with

a primer annealing to the hdhfr cassette within the targeting vector (either

arg216 or arg218, depending on the orientation of the selection cassette rela-

tive to the first oligonucleotide). Integration of the targeting construct into the

correct chromosome was further investigated by Southern hybridization of

chromosomes separated by pulsed-field gel electrophoresis (PFGE) as

described previously (Pfander et al., 2011).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four tables, five figures, and two Supple-
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