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ABSTRACT

Forkhead box O1 (FoxO1) is involved in lipid metabolisms. However, its role in
chronic stress-related nonalcoholic fatty liver disease (NAFLD) is unclear. The
scientific premise of our study was based on the finding that FoxO1 expression is
increased in the liver of mice after chronic stress. It is important to understand the
mechanisms involved in the activation of FoxO1 and how its function affects the liver
lipid deposition. We employed a murine chronic stress model, in which mice were
treated by plantar electrical stimulation and restraint for 6 weeks, and a cellular
model, in which Hepal-6 cells were treated with corticosterone. We also used a
pharmacologic approach as1842856, a highly specific FoxO1 inhibitor. Lipid
metabolism related genes levels were measured by qRT-PCR and the lipid levels by
biochemical detection. We show that the level of FoxOl is significantly elevated in
the liver of chronic stress mice. Transcription factor FoxO1 regulates a lipid synthesis
phenotype of hepatocyte that is involved in the development and progression of
NAFLD. We have shown that inhibition of FoxO1 induced phenotypic conversion of
hepatocytes and down-regulates lipid synthesis genes expression by hepatocytes,
which contribute to lipid deposition in NAFLD. At the cellular level, the inhibitor of
FoxO1 as1842856 can also attenuate the lipid deposition of Hepal-6 cells induced by
corticosterone. Targeting FoxO1 is a novel therapeutic target for chronic
stress-related NAFLD.

Subjects Diabetes and Endocrinology, Neurology, Pharmacology
Keywords Chronic stress, FoxO1, NAFLD, Lipid synthesis, Lipid deposition

INTRODUCTION

The incidence of nonalcoholic fatty liver disease (NAFLD) is 20-30% globally
(Henao-Mejia et al., 2012). The lipid deposition of the liver, especially the abnormal
deposition of triglycerides (TG), is the basis of the pathogenesis of NAFLD (Piccinin,
Villani e~ Moschetta, 2018). The correlation between the occurrence of NAFLD and
chronic stress has received increasing attention in recent years (Ashtari, Pourhoseingholi ¢
Zali, 2015). Our previous result and others’ studies have confirmed that chronic stress
could lead to liver lipid deposition and inflammation, which lead to the development of

How to cite this article Liu Y-z, Peng W, Chen J-k, Su W-j, Yan W-j, Wang Y-x, Jiang C-1. 2019. FoxOl is a critical regulator of hepatocyte
lipid deposition in chronic stress mice. Peer] 7:¢7668 DOI 10.7717/peerj.7668


http://dx.doi.org/10.7717/peerj.7668
mailto:cljiang@�vip.�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7668
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Peer/

NAFLD (Fu et al., 2010; Liu et al., 2014). However, the specific mechanism of chronic
stress-induced liver lipid deposition is not clear.

Forkhead box O1 (FoxO1) is a member of the forkhead O family and plays a key role in
lipid metabolism (Li et al., 2017). Activation of FoxO1 was detected during lipid deposition
in the liver (Kim et al., 2016); activated FoxO1 was also found to lead to an increase in
the output of very low-density lipoprotein (triglyceride-rich particles) in the liver,
resulting in hypertriglyceridemia (Kim et al., 2011); the expression and activity of FoxO1
were increased in patients with NAFLD and correlated positively with the severity of
the disease (Valenti et al., 2008). Matsumoto et al. (2006) found that the transfection of
FoxOl in the liver increased the TG content of the liver. Thus, we hypothesized that
chronic stress leads to liver lipid deposition by activation of FoxO1. Our previous study
demonstrated that chronic stress induces liver lipid deposition and FoxO1 activation in
mice (Liu et al., 2014). However, the causal relationship between FoxO1 and liver lipid
deposition during chronic stress is unclear. The molecular mechanisms of stress-induced
lipid metabolism disorders are also unclear.

In this study, 6 weeks of plantar electrical stimulation and restraint were used to induce
the mouse chronic stress. FoxO1 activity inhibitor as1842856 was used to verify the role of
FoxOl in this model. After 6-week stress exposure, we performed lipid deposition tests
and measured TG synthesis genes and cholesterol metabolism-related genes to explore if
and how FoxOl1 influences the lipid deposition in a chronic stress animal model. It may
provide new targets for drug prevention and treatment of stress-related lipid metabolic
disorders.

MATERIALS AND METHODS

Reagents and antibodies

Forkhead box O1 inhibitor (as1842856) and Cortisol were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Fetal calf serum was obtained from Hyclone (Logan, UT, USA).
Penicillin and streptomycin were obtained from Invitrogen (Carlsbad, CA, USA). FoxOl,
p-FoxO1, and B-Actin antibodies were obtained from Abcam (Cambridge, MA, USA).
IRDye 800CW donkey anti-goat and IRDye 800CW goat anti-rabbit secondary antibodies
were both purchased from LI-COR Biosciences (LI-COR, Inc., Lincoln, NE, USA).

The Real-time PCR reactions were performed using SYBR Premix Ex Taq'™ (Takara
Biotechnology, Tokyo, Japan). Hematoxylin-eosin (H&E) and oil red O were purchased
from Nanjing Jiancheng Science and Technology Company, Nanjing, China.

Animals and chronic stress protocols

C57BL/6] male mice, 5-7 weeks age, were purchased from Slaccas Laboratory Animal
Company (Shanghai, China). Mice were housed in plastic home-cages in a temperature
controlled room at 24 °C, under a 12:12 h illumination cycle (lights on at 8:00 AM).

To stress animals, we used a modified version of the protocol described previously

(Liu et al., 2014). For chronic stress, each mouse was administered electric foot shock
(10:00, 7.5 s/2 min, 15 min, 25V) and restraint stress (19:00-21:00) every day for

42 consecutive days before evaluations. Non-stress mice (control group) remained in the
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home cage and kept isolated from stressed animals. FoxO1 inhibitor group were
administered as1842856 at 30 mg/kg by gavage during the 42 days. The control group was
treated with equal volume solvent by gavage. Animal’s weight and food intake were
measured every week. All animal procedures used in this study were approved by the
Institutional Animal Care and Use Committee of the Second Military Medical University
(No. 20161027; Shanghai, China) and Shanghai Science and Technology Committee
(SYXK-HU-2012-0003).

Hematoxylin—eosin and oil red O staining

Following fixation of the livers or cells with 10% formalin, livers were sliced and stained
with H&E for histological examination. Hepatic lipid content was also determined by
staining with Oil Red O (Sigma, St. Louis, MO, USA). Pictures were imaged with a Zeiss
microscope (Carl Zeiss Microscopy, Thornwood, NY, USA).

Biochemical analysis

The serum TG, total cholesterol (TC), and free fatty acid (FFA) were measured by an
automatic biochemistry analyzer (7170; Hitachi, Chiyoda, Tokyo, Japan). Livers were
homogenized at 4 °C in lysis buffer containing 50 mmol/L Tris (pH 8.0), 150 mmol/L
NacCl, 1% Triton X-100, and 0.5% sodium deoxycholate. Lipids from the total liver
homogenate were extracted using the chloroform/methanol method (2:1), evaporated,
and dissolved in 2-propanol. Amounts of TC and TG were measured by an automatic
biochemistry analyzer (7170; Hitachi 7170, Chiyoda, Tokyo, Japan).

For glucose tolerance test, mice were fasted overnight and injected with two mg/g
glucose/body weight. For insulin tolerance test, mice were fasted for 4 h and injected with
one U/Kg insulin/body weight. The blood glucose levels were monitored at 30 min
intervals for 2 h with an ACCU-CHEK Active Blood Glucose System (Roche, Basel,
Switzerland) using tail tip blood samples. Serum insulin was determined by mouse insulin
ELISA kit which was purchased from R&D, Minneapolis, MN, USA.

Cell culture

Mouse liver cancer Hepal-6 cell lines (ATCC CRL-1830) were cultured in Dulbecco’s
modified eagle’s medium (DMEM) (Hyclone Laboratories, Logan, UT, USA). The medium
contained 10% fetal bovine serum and 100 unit/mL penicillin and 100 g/mL streptomycin
in a humidified atmosphere that contained 5% CO,. Cells were further administrated in
DMEM containing one pM cortisol or one uM as1842856 for 48 h.

gRT-PCR

Total RNA was isolated with Trizol reagent (Invitrogen, Carlsbad, CA, USA). cDNA was
synthesized using PrimeScript™ RT Master Mix (Takara, Tokyo, Japan). Quantitative
real-time PCR was carried out using the One Step TB Green™ PrimeScript™ RT-PCR Kit
(Takara, Tokyo, Japan) according to manufacturer’s instructions (Table 1). The pmAact
method was used to calculate the relative expression level by normalizing to B-Actin levels
(Zhao et al., 2019).
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Table 1 Sequences of primers used for qRT-PCR.

Gene name Sequence (5'-3')

FoxO1-F1 AGTGGATGGTGAAGAGCGTG
FoxO1-R1 GAAGGGACAGATTGTGGCGA
Fasn-F1 CAAGTGTCCACCAACAAGCG
Fasn-R1 GGAGCGCAGGATAGACTCAC
Pepck-F1 TGCGGATCATGACTCGGATG
Pepck-R1 AGGCCCAGTTGTTGACCAAA
Scd1-F1 GGCTAGCTATCTCTGCGCTC
Scd1-R1 GAACTGCGCTTGGAAACCTG
HMGCoAR-F1 ACGATCCTTCCTTATTGGCGG
HMGCoAR-R1 CTCCGGATCTCAATGGAGGC
Fatpl-F1 GGCAAGCTCCAGCACAGGAT
Fatpl-R1 ACCCACGTACACACAGAACG
G6Pase-F1 CGACTCGCTATCTCCAAGTGA
G6Pase-R1 GTTGAACCAGTCTCCGACCA
SREBP1c-F1 GATGTGCGAACTGGACACAG
SREBPIc-R1 CATAGGGGGCGTCAAACAG
Cyp7al-F1 GGGATTGCTGTGGTAGTGAGC
Cyp7al-R1 GGTATGGAATCAACCCGTTGTC
Abcgl-F1 CTTTCCTACTCTGTACCCGAGG
Abcgl-R1 CGGGGCATTCCATTGATAAGG
Fabpl-F1 ATGAACTTCTCCGGCAAGTACC
Fabpl-R1 CTGACACCCCCTTGATGTCC
Cd36-F1 ATGGGCTGTGATCGGAACTG
Cd36-R1 GTCTTCCCAATAAGCATGTCTCC
Accl-F1 ATGGGCGGAATGGTCTCTTTC
Accl-R1 TGGGGACCTTGTCTTCATCAT
PPARa-F1 AGAGCCCCATCTGTCCTCTC
PPARa-R1 ACTGGTAGTCTGCAAAACCAAA
PPARy-F1 TCGCTGATGCACTGCCTATG
PPARy-R1 GAGAGGTCCACAGAGCTGATT
Pdk4-F1 AGGGAGGTCGAGCTGTTCTC
Pdk4-R1 GGAGTGTTCACTAAGCGGTCA
Cptla-F1 CTCCGCCTGAGCCATGAAG
Cptla-R1 CACCAGTGATGATGCCATTCT
Acox1-F1 TAACTTCCTCACTCGAAGCCA
Acox1-R1 AGTTCCATGACCCATCTCTGTC
Lcad-F1 TCTTTTCCTCGGAGCATGACA
Lcad-R1 GACCTCTCTACTCACTTCTCCAG
Mcad-F1 AGGGTTTAGTTTTGAGTTGACGG
Mcad-R1 CCCCGCTTTTGTCATATTCCG
Ucp2-F1 TGCACTCCTGTGTTCTCCTG
Ucp2-R1 GGGACCTTCAATCGGCAAGA
B-actin-F1 TTCTTGGGTATGGAATCCTGT
B-actin-R1 AGCACTGTGTTGGCATAGAG
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Western blot analysis

Protein samples were prepared by lysing cells or tissues in modified RIPA buffer (1x PBS,
1% Nonidet P-40, 0.1% sodium dodecyl sulfate, and protease inhibitor cocktail (Sigma-
Aldrich, St. Louis, MO, USA)). Lysates (50-100 pg) were separated on a 10% SDS-PAGE
and transferred to a nitrocellulose membrane. The membrane was probed with the specific
primary antibody and secondary antibody and then quantified with Odyssey Infrared
Imaging System (LI-COR, Inc., Lincoln, NE, USA) and Image J Software (National
Institutes of Health, Bethesda, Maryland, USA).

Statistical analysis

The data were presented as mean * standard error and differences considered statistically
significant only when p-values < 0.05. Data was mainly analyzed using a two-way
ANOVA followed by uncorrected Fisher’s LSD post hoc test with GraphPad Prism 6
(GraphPad Software, Inc., La Jolla, CA, USA). Two-way ANOVA for repeated measures
was used to analyze the weight curves. Student’s t-test was applied to detect significant
difference between two groups.

RESULTS

As1842856 inhibited FoxO1 activation in the liver of chronic stress
mice

The levels of FoxO1 protein and mRNA were significantly increased in the liver of mice
after 6 weeks of stress, while the FoxO1 inhibitor as1842856 did not affect FoxO1
expression (Figs. 1A, 1B and 1E). The ratio of p-FoxO1 protein to FoxO1 was significantly
decreased in the stress group (Figs. 1A and 1D) but significantly increased in the
stress+as1842856 group. Phosphorylated FoxO1 protein is the inactive form of FoxO1
(Pan et al., 2017). The changes in the mRNA levels of PEPCK and G6Pase, the classical
FoxOl1 regulated target genes, were consistent with the changes in the activity of FoxO1
(Figs. 1F and 1G).

Effects of as1842856 on physiological index in mice after 6 weeks
chronic stress

To investigate the effects of as1842856 on indexes of glucose metabolism and food intake,
we compared these physiological indexes. During the stress period, the body weight and
food intake of the control group increased slowly and steadily, while the stress group
did not increase significantly. At the 6th week of stress, the body weight of the stress group
was significantly lower than that of the control group (Fig. 2A). The food intake at the
5th week of stress also decreased significantly (Fig. 2B). There was no significant difference
in body weight and food intake between the control group and the as1842856 group. We
also tested fasting blood glucose, postprandial blood glucose, insulin, glucose tolerance,
and insulin tolerance in four groups of mice after 6 weeks of stress. The results showed no
significant difference between the four groups (Figs. 2C-2G).
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Figure 1 FoxOl1 specific inhibitor as1842856 enhances FoxO1 phosphorylation in mice liver after
6 weeks. Chronic stress increased the protein (A and B) and mRNA lever (E) of FoxO1 expression
and its downstream genes, G6Pase (F) and PEPCK (G), and decreased the lever of p-FoxOl protein
(C) and p-FoxO1/FoxO1 (D), while as1842856 could reverse this effect except the protein and mRNA
lever of FoxO1 expression. *p < 0.05, ***p < 0.001. Date presented as mean + SEM, n = 6.

Full-size k&) DOT: 10.7717/peerj.7668/fig-1

As1842856 reduced adipogenesis in the liver of chronic stress mice
After 6 weeks of stress, H&E staining of livers in mice showed hepatocyte fatty
degeneration: enlarged hepatocytes, loose and reticular cytoplasm, individual cytoplasm
was transparent, and shaped like a balloon (Fig. 3A). Oil red O staining showed brownish
red lipid droplet formation (Fig. 3A). FoxO1 inhibitor as1842856 significantly reduced
the lipid deposition induced by chronic stress (Fig. 3A). Furthermore, the morphology of
hepatocytes in the livers of mice fed with as1842856 still displayed normal architecture
around the central veins (Fig. 3A). We further quantified the TG and cholesterol levels in
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Figure 2 As1842856 does not affect weight, food intake, and glucose metabolic parameters in mice
after 6 weeks. (A) Changes in food intake, (B) changes in body weight, (C and E) profiles of blood glucose
concentration as function of time upon intraperitoneal injection of glucose, (D and F) profiles of glucose
concentration (percentage of initial value) as a function of time upon intraperitoneal injection of insulin,
and (G-I) blood insulin, postprandial blood glucose (PBG), and fasting plasma glucose (FPG). *p < 0.05,
**p < 0.01, ***p < 0.001. Date presented as mean + SEM, n = 6

Full-size K&l DOT: 10.7717/peerj.7668/fig-2
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Figure 3 As1842856 protect mice against stress-induced liver lipid deposition. (A) Representative
slides showed hematoxylin and eosin (HE)-stain and Oil red O-stain liver sections from four groups,
(B and C) liver TG and T-CHO concentrations were detected by biochemical test in liver tissue
homogenate, (D, E, and F) TG, FFA, and T-CHO concentrations in serum. *p < 0.05, **p < 0.01,
***p < 0.001. Date presented as mean + SEM, n = 6. Full-size K&l DOT: 10.7717/peerj.7668/fig-3

the livers of mice. The results showed that FoxO1 inhibitors significantly reduced the liver
TG content induced by chronic stress, while cholesterol content had no significant change
(Figs. 3B and 3C).

The levels of serum TG (Fig. 3D) and FFA (Fig. 3E, p < 0.001) were significantly
increased in the chronic stress group. Both TG and FFA were significantly reduced in the
stress+as1842856 group compared with the stress group (Figs. 3D and 3E). There was no
statistical difference in serum cholesterol after chronic stress and as1842856 treatment
(Fig. 3F).
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Effects of as1842856 on the mRNA expression of lipoprotein metabo-
lism-related genes in mice after 6 weeks of chronic stress

The mRNA expression of fatty acid synthase (FASN) was significantly increased in the
chronic stress group compared with the control group (Fig. 4A). However, the mRNA
expression of FASN in the stress+as1842856 group was significantly decreased
compared with the stress group (Fig. 4A). There were no significant differences

between the four groups in ACC1 or SCD1 (Figs. 4B and 4C). The mRNA expression of
fatty acid transporter protein (FATP) and fatty acid binding protein (FABP) in the chronic
stress group was significantly increased compared with the control group (Figs. 4D

and 4E). As1842856 significantly decreased the mRNA expression of FATP and

FABP, which was elevated by the chronic stress (Figs. 4D and 4E). There were no
significant differences in the other synthetically-related gene, CD36 (Fig. 4F). We also
found no statistically significant differences in the mRNA expression of genes related

to fatty acid oxidation, such as PPARa, Acox1, Lcad, Mcad, Pdk4, Cptla, and Ucp2
(Figs. 4G-4N).

Effects of as1842856 on the mRNA expression of cholesterol
metabolism-related genes in mice after 6 weeks of chronic stress

We found that the mRNA expression of HMG-CoAR and CYP7A1 was significantly
increased in the stress group. The mRNA expression of HMG-CoAR and CYP7A1 in
the stress+as1842856 group was significantly lower than that in the stress group (Figs. 5A
and 5B). However, there was no statistical difference in the synthetic-related gene
cholesterol-regulating element binding transcription factor 1C (SREBP-1c¢) and the
cholesterol transport-related gene ABCG1 (Figs. 5C and 5D).

As1842856 inhibited FoxO1 activation in the Hepa1-6 cells after
corticosterone treatment

We also demonstrated the effect of as1842856 on FoxO1 activation and adipogenesis in the
Hepal-6 cells. The levels of FoxO1 protein and mRNA were significantly increased in the
corticosterone group, compared with the control group (Figs. 6A-6C). The p-FoxO1
protein and the p-FoxO1/FoxOl ratio were also significantly decreased after corticosterone
treatment (Figs. 6A-6D). The FoxO1 inhibitor as1842856 significantly increased the
p-FoxOl1 protein and p-FoxO1/FoxO1 value (Figs. 6A-6D). The change of the classical
target gene PEPCK regulated by FoxO1 was consistent with the change of FoxO1 activity
(Figs. 6E and 6F).

As1842856 reduced adipogenesis in the Hepa1-6 cells after
corticosterone treatment
After treatment with one uM of corticosterone for 48 h, oil red O staining indicated that
most Hepal-6 cells showed obvious brown-red lipid droplets. The corticosterone
+as1842856 group showed no obvious lipid droplets (Fig. 7A).

Fatty acid synthase mRNA expression was significantly increased in the corticosterone
group compared with the control group (Fig. 7B). The corticosterone+as1842856 group
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Figure 4 Effects of stress and as1842856 on liver lipid metabolism genes in mice after 6 weeks. (A-C)
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showed a significant decrease in FASN mRNA expression compared with the
corticosterone group (Fig. 7B). Other synthetically related genes, ACC1 and SCD1
showed no significant difference between the four groups (Figs. 7C and 7D).
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Figure 5 Effects of stress and as1842856 on cholesterol metabolism-related genes in mice after 6
weeks. (A-D) Liver was harvested and cholesterol metabolism-related genes were determined by real-
time PCR. *p < 0.05, **p < 0.01. Date presented as mean + SEM, n = 6.

Full-size K&l DOT: 10.7717/peerj.7668/fig-5

DISCUSSION

This study demonstrated that chronic stress induced lipid deposition in the livers of mice,
which were mainly TG. Liver TG synthesis genes and FFA uptake genes were significantly
upregulated in mRNA levels after chronic stress. These changes can be blocked by
as1842856, the inhibitor of FoxO1. Moreover, at the cellular level, the changes in lipid
metabolism of Hepal-6 cells induced by corticosterone are basically the same as those in
animal chronic stress experiments. The inhibitor of FoxO1 as1842856 also attenuated
the lipid deposition of Hepal-6 cells induced by corticosterone. Our study confirms the
important regulatory role of FoxO1 in stress-induced lipid metabolism disorders.
Chronic stress refers to continuous physical or psychological forms of tension and
pressure. Macedo et al. (2012) found that the chronic stress model mice, created by a
narrow living environment and high-calorie diets, gained less weight than normal-fed
mice. However, there was no difference between the two groups on the ratios of body
weight to body length. It is suggested that mice fed a high-calorie diet may have abdominal
obesity. Czech et al. (2013) found that chronic stress model mice caused by crowded
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Figure 6 As1842856 protect Hepal-6 cells against corticosterone-induced liver lipid deposition.
Effects of corticosterone and as1842856 on FoxOl in Hepal-6 cells after 48 h. Corticosterone
(one uM) increased the protein (A and B) and mRNA lever (E) of FoxO1 expression and its downstream
gene, PEPCK (F), and decreased the lever of p-FoxO1 protein (C) and p-FoxO1/FoxO1 (D), while
as1842856 (one uM) could reverse this effect except the protein and mRNA lever of FoxO1 expression.
*p < 0.05, **p < 0.01, ***p < 0.0001. Date presented as mean + SEM, n = 3.

Full-size k&) DOT: 10.7717/peerj.7668/fig-6

communities have significant oxidative stress and inflammatory response in the liver
under normal feeding conditions. Our previous study (Liu et al., 2014) found that liver
index (total liver/body weight x 100) and liver TG levels increased significantly in chronic
stress model (sustained foot stimulation and tethered for 12 weeks) mice. Hepatic cell
adipose degeneration was found by liver section staining. Although the stress patterns and
models described above are different, they all suggest that stress is associated with hepatic
steatosis and inflammatory response.
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Figure 7 Effects of corticosterone and as1842856 on lipid deposition and TG synthesis genes in
Hepal-6 cells after 48 h. (A) Representative images showed above from four groups. After treatment
with one pm Corticosterone or/and one pm as1842856 for 48 h, the cells were stained with Oil red O.
(B) Corticosterone increased the genes’ expression of Fasn, while as1842856 could reverse this effect.
(C and D) There was no significant difference among the four groups in the genes’ expression of ACCI and
SCDI. ***p < 0.001. Date presented as mean + SEM, n = 3. Full-size K&] DOL: 10.7717/peerj.7668/fig-7

According to our previous results and related literature reports (Kim et al., 2017; Shin
et al., 2015; Yamamoto et al., 2002), we used a combination of plantar electrical stimulation
and restraint stress to construct a stress model. After 6 weeks of continuous stress, model
mice liver TG levels were significantly elevated. Liver fatty degeneration was also
demonstrated by the liver section staining. It indicated that chronic stress causes lipid
deposition in the livers of mice, and the model was successfully constructed. It is consistent
with the results of our previous study (Liu et al., 2014).

The possible mechanism of stress-induced hepatic lipid deposition is considered to be
related to long-term activation of the hypothalamic-pituitary-adrenal cortex (HPA) axis
(Van Bodegom, Homberg ¢ Henckens, 2017). The activated HPA axis releases
glucocorticoids. On the one hand, glucocorticoids enhance the decomposition of lipolysis
hormones, promote the decomposition of adipose tissue, and release a large amount of
FFA into the blood. On the other hand, glucocorticoids promote lipid formation and
deposition of hepatocytes. At the same time, the hippocampus has an inhibitory effect on
HPA axis activation. Under long-term chronic stress, a large number of hippocampal
neurons undergo dysfunction or death by the chronically elevated glucocorticoids, losing
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their inhibitory effect on the HPA axis, and leading to the massive release of
glucocorticoids (Kim, Moon ¢ Park, 2013; Sakamoto et al., 2015; Zhu et al., 2014). In
our study, the FFA content in the blood increased significantly after chronic stress.
Corticosterone or cortisol is the main hormone of the pituitary adrenocortical axis secreted
by the adrenal cortex in response to environmental challenges (McEwen, 2007; Quijije,
2015; Kant et al., 1987). At the same time, we also investigated the effect of corticosterone
in hepatocyte lipid deposition. Lipid droplets were found in Hepal-6 cells, which were
treated with corticosterone for 48 h. This suggests that chronic stress may cause liver lipid
deposition by elevating the corticosterone level.

Our previous experiments found that FoxO1 may be involved in stress-induced
lipid metabolism disorders. FoxO1 is a member of the FOXO transcription factor.
FOXO is widely expressed in a variety of tissues, including the liver, and is a key effector
molecule in cell homeostasis, metabolism, and stress response (Ma et al., 2018). It acts as a
pre-transcriptional regulator that binds to chromatin (Riedel et al., 2013; Zaret & Carroll,
2011) and initiates or inhibits transcription (Furuyama et al., 2000; Ramaswamy et al.,
2002; Webb et al., 2013). FoxOl is a typical forkhead protein transcription factor, a key
signaling molecule downstream of the insulin/insulin-like growth factor-1 signal and has
been shown to be involved in the regulation of glucose metabolism (O’Neill et al., 2016).
FoxO1 binds to adjacent sites in the insulin response elements within the insulin-like
growth factor binding protein 1 and glucose-6-phosphatase (G6Pase) promoters to
initiate gene activation (Nakae et al., 2001a; Matsumoto et al., 2007; Yeagley et al., 2001).
Active nuclear FOXOL1 also binds the transcriptional coactivator peroxisome proliferative
activated receptor-y coactivator 1-a (PGCla) to coordinate a gluconeogenic
transcriptional program involving increased expression of G6Pase and cytosolic
phosphoenolpyruvate carboxykinase (Pckl) (Puigserver et al., 2003; Nakae et al., 2001b).
In addition, FOXOs mediate the effects of insulin on adipocyte differentiation,
neuropeptide transcription and processing, and p-cell health (Nakae et al., 2003; Ren et al.,
2012; Plum et al., 2009). In recent years, an increasing number studies have shown that
FoxOl is also involved in the regulation of lipid metabolism in the liver. These studies
have found that activation of FoxO1 was observed in lipid deposition in the liver
(Kim et al., 2016); activated FoxO1 induced an increase in liver output of very low-density
lipoprotein (rich in TG particles) and hypertriglyceridemia (Kim et al., 2011). This study
also indicated that FoxO1 does participate in liver lipid deposition caused by chronic
stress. On the one hand, we observed changes in FoxO1 protein, mRNA, and
phosphorylation levels in stressed mice; on the other hand, liver lipid deposition due to
chronic stress is alleviated after the treatment of the FoxO1 activity inhibitor.

To further clarify how FoxO1 regulates liver lipid deposition, this experiment examined
the expression levels of genes involved in liver and lipid metabolism. Previous experiments
have confirmed that the main component of lipid deposition caused by chronic stress
is TG, and the amount of TG in the liver is inseparable from the uptake and synthesis of
FFA (Liu et al., 2014). FASN is a key enzyme for the de novo synthesis of endogenous
fatty acids and is closely related to lipid metabolism (Jones & Infante, 2015). FASN mRNA
and protein levels were significantly upregulated in fatty liver (Huang, Gusdon ¢ Qu,
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2013). Upregulation of FASN in rat liver is involved in the formation of fatty liver.

The FATP family and the FABP family are important protein families that take up fatty
acids and are primarily responsible for the transport of extracellular FFA uptake. Studies
have confirmed that fatty acid uptake is significantly reduced in hepatocytes of FATP
knockout mice (Falcon et al., 2010). Purified FATP1 exhibits long-chain and ultra-long-
chain fatty acyl-CoA synthetase activity (Hall, Smith ¢ Bernlohr, 2003). FABP can be
activated by long-chain FA, PPARs, and toll-like receptor agonists, which are involved in
sugar, lipid metabolism, and inflammatory processes (Doege et al., 2006; Tan et al., 2002;
Wolfrum et al., 2001). This study found that FoxOl increases fatty acid synthesis and
intra-hepatic transport of FFA by increasing the expression of FASN, FATP, and FABP
and increasing liver TG deposition. ACC1 and SCD1 are two other key enzymes involved
in lipogenesis (29925265). ACC1 and SCD1 showed no significant difference between
the four groups. This suggested that the expression of FASN, FTAP, and FABP, but not
ACC1 or SCD1, are controlled by the transcription factor FoxO1. We also found that
FoxO1 did not affect the feeding of mice and fatty acid oxidation in the liver. FoxO1 is a
key molecule downstream of insulin, which regulates glucose metabolism. However,
chronic stress mice did not show significant glucose metabolism abnormalities in this
experiment. We speculate that mice may still be in a compensatory period due to the
relatively short stress time. This conclusion requires further experiments to prove by a
longer-term chronic stress test.

CONCLUSIONS

In summary, this study demonstrated that chronic stress induced FoxO1 activation and
lipid deposition in the livers of mice. Inhibition of FoxO1 attenuated the TG synthesis
and fatty acid oxidation induced by the chronic stress. Corticosterone may act as a
mediator between FoxO1 and chronic stress. The present study indicated that inhibition of
FoxO1 may have therapeutic benefits for chronic stress relative fatty liver disease.
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