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Abstract
Propensity score–based analysis is increasingly being used in observational studies to estimate the
effects of treatments, interventions, and exposures.We introduce the concept of the propensity score
and how it can be used in observational research.Wedescribe 4 different ways of using the propensity
score: matching on the propensity score, inverse probability of treatment weighting using the
propensity score, stratification on the propensity score, and covariate adjustment on the propensity
score (with a focus on the first 2). We provide recommendations for the use and reporting of
propensity score methods for the conduct of observational studies in neurologic research.

Introduction
Observational studies are increasingly being used to estimate the effects of treatments and
exposures. Such studies can often be conducted rapidly and at less expense than randomized
controlled trials (RCTs) and can estimate the effects of treatments as they are used in real-world
clinical practice. Furthermore, they permit the study of exposures for which it would be
unethical to randomize patients (e.g., tobacco smoking), or, in some cases, not possible to
randomize (e.g., sex). However, in observational studies, unlike in RCTs, treated participants
(used hereafter for exposed participants) frequently differ at baseline from those receiving the
control intervention. Studies are said to be subject to confounding when the distribution of
variables that influence the outcome differs between treated and control participants. In the
presence of confounding, differences in outcomes between treatment groups may be due, at
least in part, to these systematic differences between treated and control participants.

In observational studies, statistical methods are required to reduce the effects of confounding when
estimating the effects of treatments. Methods based on the propensity score are increasingly being
used for this purpose. The objective of this article is to introduce the propensity score and its
application to neurologic research.We define the propensity score, describe how it can be estimated
in an observational cohort study, and review different methods for using the propensity score.

Two Types of Questions
There are 2 common questions that one can ask when estimating the effect of a treatment. First,
what is the effect of treatment in the entire population or sample of eligible patients? This is
equivalent to asking how outcomes would differ if everyone received the treatment of interest
compared to if everyone received the control treatment. Second, what is the effect of treatment in
those patients who ultimately received the treatment of interest? This is equivalent to asking how
outcomes would differ in the treated participants if, contrary to what occurred, they had not been
treated. The former question is about the average treatment effect (ATE), while the latter is about
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the average treatment effect in the treated (ATT). Un-
derstanding the type of question that one is asking will help
determine the most appropriate propensity score method
to use.

In many pharmacoepidemiologic studies, the ATE may be of
greater interest, as one can think of everyone in the eligible
population as being treated with either agent. However, the
ATTmay be of greater interest in settings in which, despite all
participants being eligible for either treatment, there are
barriers or burdens imposed by one of the treatments. For
example, if the cost of a drug is not routinely covered by
insurance, it may make more sense to estimate the effect of
this drug in those participants who ultimately decide to pay for
it out of pocket.

Defining and Estimating the
Propensity Score
We assume an observational cohort study design with a binary
treatment (treated vs control) that is assessed at baseline
(i.e., time of cohort entry). Treatment can either involve 2
active treatments (e.g., natalizumab vs another disease-
modifying therapy for patients with multiple sclerosis) or an
active treatment compared with a null control treatment (e.g.,
edavarone vs standard care in patients with amyotrophic lat-
eral sclerosis). Baseline characteristics are measured on each
participant. The outcome is measured after cohort entry (and
implicitly after the treatment has been applied). Outcomes
can be of types that are commonly seen in clinical research:
continuous (e.g., blood pressure), binary (e.g., disabled on
discharge vs not disabled on discharge), time-to-event (e.g.,
time to death), or a count (e.g., number of health care en-
counters). Any outcome that one can use in an RCT can be
used in a study that uses propensity score methods.

The propensity score is defined as the probability of receiving
the treatment of interest (vs the control treatment) conditional
on measured participant covariates.1,2 The primary property of
the propensity score is that it is a balancing score.1 This means
that in a subgroup of participants, all of whom have the same
value of the propensity score, the distribution of measured
baseline covariates will be the same in treated and control
participants in that subgroup. Thus, we can remove the effects
of confounding by comparing outcomes between treated and
control participants who share a similar value of the propensity
score. This balancing is analogous to that induced by ran-
domization in RCTs, with the key difference being that

conditioning on the propensity score balances measured
covariates, whereas randomization ideally balances both mea-
sured and unmeasured covariates. Note that balance is a large
sample property, and that a sufficiently large sample is neces-
sary in order to expect to observe balance in a given sample.

The validity of conclusions drawn from an analysis that uses
propensity score methods rests on 2 assumptions: (1) the
assumption that the investigators have measured all con-
founding variables and that there are no unmeasured con-
founders and (2) the positivity assumption that each
participant has a nonzero probability of receiving each treat-
ment.1 This implies that no participant has an absolute con-
traindication to either the active or control treatment.
Participants with an absolute (or relative) contraindication to
either treatment should be excluded at the design stage, as is
done in the design of RCTs.We refer the reader elsewhere for a
discussion of positivity and methods to identify its presence.3

As an example, in a study comparing outcomes between im-
migrants to Ontario and long-term residents, participants re-
siding in rural areas were excluded because, in Ontario,
immigrants reside almost exclusively in urban areas.4 These
assumptions are no different from those required by other
methods for estimating causal effects in observational studies.

The propensity score is frequently estimated using a logistic
regression model in which treatment status (treatment vs
control) is regressed on the measured baseline covariates.
While logistic regression is the most frequently used approach,
researchers can also use algorithmic approaches from the ma-
chine learning literature, such as random forests or generalized
boosting models. Strategies for variable selection for the pro-
pensity score model have been described elsewhere; see the
Table for a summary of 2 strategies that perform well.5

Once the propensity score has been estimated, there are 4
main ways of using it: matching on the propensity score,
inverse probability of treatment weighting (IPTW) using the
propensity score, stratification on the propensity score, and
covariate adjustment using the propensity score.

Matching on the Propensity Score
Matching on the propensity score entails forming matched sets
of treated and control participants who share a similar value of
the propensity score. The most common implementation is
pair-matching, in which pairs of treated and control participants
are formed. There are 2 common implementations of pair-
matching. The first is greedy nearest neighbor matching

Glossary
ATE = average treatment effect; ATT = average treatment effect in the treated; IPTW = inverse probability of treatment
weighting; NNM = nearest neighbor matching; NNT = number needed to treat; RCT = randomized controlled trial; tPA =
tissue-type plasminogen activator.
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(NNM), in which a treated participant is selected at random
and then matched to the control participant whose propensity
score is closest to that of the treated participant. The process is
described as greedy because at each stage the control is selected
who is closest to the currently considered treated participant,
even if that untreated participant would serve better as a control
for a subsequent treated participant. This process is then re-
peated until a matched control participant has been selected for
each treated participant. This process generally uses matching
without replacement, so that once a control participant is
matched to a treated participant, that control participant is no
longer available for matching to a subsequent treated partici-
pant. A refinement to NNM is NNMwith a caliper restriction.
Using this approach, a control participant is an acceptable
match for a treated participant only if the difference in their
propensity scores is less than a maximum amount (the caliper
width or distance). For technical reasons, one typically matches
on the logit of the propensity score and uses a caliper width that
is defined as a proportion of the SD of the logit of the pro-
pensity score.6 Prior research has shown that a caliper of width
equal to 0.2 of the SD of the logit of the propensity score works
well in a variety of settings.7 Readers are referred elsewhere for a
discussion and examination of different matching algorithms.8,9

An alternative to greedy matching is optimal matching, which
forms matched pairs to minimize the total within-pair differ-
ence in the propensity score. Alternative matching algorithms
to pair-matching have been described in the literature. These
include fixed ratio M:1 matching, variable ratio matching, and
full matching.10-15 While NNM with a caliper restriction is
often a preferred approach, an attraction of these alternative
matching algorithms is the ability to include a larger number of
control participants in the analytic sample.

Matching on the propensity score can be combined with exact
matching on a small number of baseline covariates. This will
ensure perfect balance on these variables between treated and
control participants in the matched sample. This approach is
important if one wants to conduct subsequent subgroup
analyses, so that matched pairs are included in the same sub-
group. If one wanted to conduct subsequent sex-specific anal-
yses, one could match on the propensity score and on sex, so
that matched participants were of the same sex. When
matching on a variable such as sex, it is not necessary that that
variable be excluded from the propensity score model.
Matching on the propensity score does not guarantee that
matched participants will be identical on all measured variables.
Rather, the distribution of the covariates will be similar between
treated and control participants in the matched sample.

A crucial step in any study that uses propensity score
matching is to assess the degree to which matching on the
propensity score resulted in the formation of a matched
sample in which the distribution of baseline characteristics is
similar between treated and control participants. This as-
sessment is critical as it allows both the researcher and readers
to assess whether matching on the estimated propensity score
has removed systematic baseline differences between treatment

groups. This assessment should always be conducted while
blinded to the outcomes (i.e., before any comparison of out-
comes between treated and control participants). The use of
statistical significance testing for assessing differences in base-
line characteristics has been criticized by different sets of
authors.16,17 Instead, we recommend the use of statistics that
are properties of samples and that, unlike statistical hypothesis
testing, do not refer to hypothetical superpopulations. The use
of the standardized difference, which is the difference in means
in units of SD, is often used for assessing the similarity of
matched treated and control participants. Some authors have
suggested that a threshold of 0.10 (or 10%) be used to denote
acceptable balance after matching.18 While most researchers
limit balance assessment to using standardized differences to
compare the means and prevalences of covariates between
treatment groups, a comprehensive suite of balance diagnostics
is described elsewhere for those wanting to conduct a more
extensive assessment.19 If inadequate balance is observed, the
researchers are encouraged to modify the specification of the
propensity score model. Possible modifications include allow-
ing for nonlinear relationships between continuous covariates
and the log-odds of treatment (e.g., using restricted cubic
splines) or the inclusion of interaction terms.20 For example,
Rosenbaum and Rubin,20 in the first application of propensity
score methods, described an iterative process that required 4
iterations to achieve acceptable balance.

Once acceptable balance has been achieved, analysts can
unblind themselves to the outcome and compare outcomes
between treated and control participants in the matched
sample. The analyses conducted in the propensity score–
matched sample can be similar to those that would be done in
an RCT with a similar outcome. Thus, if the outcome is
continuous (e.g., the Unified Parkinson’s Disease Rating
Scale), one can compute the mean blood pressure in each
treatment group and then compute the difference in mean
blood pressure. Similarly, if the outcome is binary (e.g., res-
olution of symptoms), one can compute the proportion of
successes in each treatment group. One can then compute the
absolute risk reduction (difference in the estimated

Table Strategies for Selecting Variables to Include in a
Propensity Score Model

(A) Include all variables
prognostic for the outcome

(B) Include only
confounding variables

Definition All prognostically important
variables, regardless of
whether they are also
associated with treatment
assignment

Variables that are associated
with both the treatment
assignment and the outcome

Comments Easier to implement;
prognostically important
variables likely to be constant
across jurisdictions and can
be identified from the
literature

Represents a subset of all
prognostically important
variables identified in (A); may
be influenced by regulations,
insurance, local practice, etc,
and thus may vary across
jurisdictions
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proportions in each treatment group) and the relative risk
(ratio of the estimated proportions in each treatment group).
From the former, one can estimate the number needed to treat
(NNT), which some have described as a key statistic for
medical decision-making.21,22 Note that there is no need to
report an odds ratio. If the outcome is time-to-event in nature,
one can estimate Kaplan-Meier survival curves (or cumulative
incidence functions if there are competing risks) in treated and
control participants.23,24 These survival curves can be com-
plemented by estimating a univariate Cox model (or cause-
specific hazardmodel if there are competing risks) in which the
hazard of the outcome is regressed on treatment status.

While estimation of the effect of treatment (e.g., estimating
the hazard ratio or risk difference) can be done using analyses
that reflect those that would be conducted in a similar RCT,
the standard error of the estimated effect (used for con-
structing confidence intervals) should account for the
matched nature of the sample.25-28 Thus, for instance, with a
Cox model, a robust variance estimator can be used,26 while
one can use the McNemar test for comparing proportions
between groups.27

When using matching on the propensity score, one is esti-
mating the ATT. One cannot make inferences about the effect
of treatment in the entire population of treated and control
participants.

Propensity Score Matching in the
Neurology Literature
Yu and colleagues29 used matching on the propensity score to
estimate the efficacy of IV thrombolysis with recombinant
tissue-type plasminogen activator (tPA) for acute ischemic
stroke in routine clinical practice. In order to account for
baseline differences between groups, they used propensity
score matching using NNM caliper matching with a caliper of
0.2 times the SD of the logit of the propensity score. The
authors used standardized differences to confirm that there
were no meaningful differences in measured baseline cova-
riates between treated and control participants in the matched
sample. Having satisfied themselves that matching had sub-
stantially decreased differences between the 2 groups, the
authors compared mortality in those who did and did not
receive tPA using Kaplan-Meier survival curves (compared
using a stratified log-rank test to account for the matched
nature of the sample) and a Cox proportional hazards model
to compare the hazard of death between treated and control
participants.

An advantage to using propensity score matching in this
context is that it discards those untreated participants who are
dissimilar to any treated participant and retains only controls
who are similar to the treated participants. Yu and col-
leagues29 estimated the effect of tPA in those who received it.
Some applied researchers are wary of using propensity score

matching for fear of excluding participants from the matched
sample, but this concern is generally unwarranted. It is im-
portant to identify a matched control for each treated par-
ticipant, as failure to do so can result in bias due to incomplete
matching (because one is trying to estimate the effect of
treatment in only a subset of treated participants who may
differ systematically from the overall population of treated
participants). However, once a control participant has been
identified for each treated participant, the remaining unused
control participants are superfluous and their exclusion from
the analysis is unimportant. For this reason, matching works
best in those settings in which there are substantially more
controls than treated participants, as this increases the likeli-
hood of identifying a suitable control for each treated
participant.

IPTW Using the Propensity Score
IPTW using the propensity score creates weights based on the
propensity score.30 In the weighted sample, the distribution of
measured baseline covariates will be the same in treated
participants as in control participants. Thus, the presence of
confounding is removed by weighting and outcomes can be
compared directly between treated and control participants in
the weighted sample. IPTW can be understood through the
lens of complex surveys that incorporate sampling weights.
Just as survey weights allow one to standardize the survey
sample so that it is reflective of a given population, the use of
IPTW standardizes each of the treated and control samples to
a common reference sample.

Let Z be a binary variable denoting treatment status (Z = 1 for
treated vs Z = 0 for control) and e denote the propensity
score. Conventional inverse probability of treatment weights
are defined as w = Z

e +
1 −Z
1 − e . Thus, all participants are weighted

by the reciprocal of the probability of receiving the treatment
that they actually received. This set of weights uses the
combined sample of treated and control participants as the
target population to which each is standardized. A modifica-
tion of these weights is stabilized weights:
wstab = PrðZ = 1Þ Ze + PrðZ = 0Þ 1 −Z1 − e .

31 The use of stabilized
weights may reduce the effect of a small number of partici-
pants with very high weights, which can result in improved
variance estimation. The use of either conventional inverse
probability of treatment weights or stabilized weights allows
the investigator to estimate the ATE. An alternative set of
weights allows one to estimate the ATT: watt = Z + eð1 −ZÞ

1 − e .
32,33

Thus, treated participants have a weight of 1, while control
participants have a weight of e/(1–e). This implies that the
treated participants are the reference population to which
each of the treated and control samples are standardized. The
investigator must choose the set of weights (ATE vs ATT)
that is appropriate to address the specific study question.
While ATE and ATT weights are the most commonly used
propensity score–based weights, matching weights, overlap
weights, and entropy weights are alternatives.34
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Once the weights have been estimated, it is important to
examine the distribution of the weights, as very large weights
can affect variance estimation of the treatment effect and
participants with very large weights can exert undue influence
on the analyses and result in unstable estimates. There is no
definition as to what constitutes a large weight. Strategies to
address the presence of large weights include trimming large
weights, so that weights that exceed a given threshold are
truncated to equal this threshold (e.g., weights that exceed the
99th percentile of weights are set equal to the 99th percentile)
or excluding participants whose propensity score is less than
0.1 or greater than 0.9.35 Additional weight-based diagnostics
are described elsewhere.36

Once the propensity score has been estimated and the ap-
propriate set of weights has been constructed, an assessment
of the degree to which using the weights has allowed one to
balance measured baseline covariates between treatment
groups must be conducted prior to examining the effect of
treatment on outcomes. An extensive set of balance diag-
nostics for use with propensity score weighting has been de-
scribed elsewhere.36 As withmatching, the use of standardized
differences in the weighted sample is recommended and the
process of specifying the propensity score can proceed itera-
tively until acceptable balance is achieved.

Because weighting has removed the effects of confounding, one
can estimate the effect of treatment using methods similar to
those used in a comparable RCT. For continuous outcomes, one
can estimate the weighted mean outcome in treated and control
participants separately and then compute the difference in
means. For binary outcomes, one can estimate the weighted
proportion of successes in treated and control participants and
then compute an absolute risk reduction, a relative risk, and an
NNT. As with matching, there is no need to estimate an odds
ratio. With time-to-event outcomes, weighted Kaplan-Meier
survival curves (or cumulative incidence functions in the pres-
ence of competing risks) can be estimated, alongwith aweighted
Cox proportional hazards model. Lunceford and Davidian37

describe methods to estimate the variance of differences in
means (which can also be used with risk differences). Xie and
Liu38 describe a test for equality of weighted survival curves.
When using a regression model (e.g., a Cox model) in the
weighted sample, variance estimation must account for the
within-participant homogeneity induced by the weights.39,40

One option is to use a robust variance estimator.26 For all esti-
mated measures of effect (e.g., a relative risk or a hazard ratio),
one can use bootstrapping to construct confidence intervals.
When using the bootstrap, it would be important to estimate the
propensity score within each bootstrap sample in order to reflect
the variability in the estimated statistic.

IPTW in the Neurology Literature
Vyas and colleagues4 used IPTW to compare mortality after
ischemic stroke between immigrants and long-term residents.

They used standardized differences to compare baseline
covariates between immigrants and long-term residents in the
weighted sample and confirmed that these were <0.10. Both
Kaplan-Meier survival curves and a Cox regression model
were used to compare mortality between immigrants and
long-term residents in the weighted sample.

Hersh and colleagues41 used IPTW to compare relapse be-
tween switching from natalizumab to a moderate-efficacy
disease-modifying therapy vs high-efficacy therapy in patients
with multiple sclerosis. The authors used ATT weights with
those switching to a moderate-efficacy disease-modifying
therapy as the reference population. The authors used stan-
dardized differences to assess the balance in baseline cova-
riates induced by weighting; after weighting, all but 5 of the
standardized differences were less than 10%. The authors then
used a Poisson regression model to compare the relapse rate
between treatment groups.

Stratification and Covariate
Adjustment Using the
Propensity Score
Stratification on the propensity score involves ranking par-
ticipants on the estimated propensity score and then dividing
the sample into approximately equal size strata based on
specified percentiles of the propensity score. Using 5 strata
based on quintiles of the propensity score is the most com-
mon approach in practice. One then compares treated and
control participants in each stratum and computes stratum-
specific estimates of treatment effect, which are then pooled to
generate an overall estimate of treatment effect.

Covariate adjustment using the propensity score involves
regression of the outcome on an indicator variable denoting
treatment status and the propensity score. This method was
initially suggested for use with continuous outcomes and
when estimating a linear treatment effect (e.g., a difference in
means). However, it was subsequently frequently applied in
settings with binary or time-to-event outcomes.

Lunceford and Davidian37 suggest that stratification is affected
by “biased inference due to residual confounding, and the effect
of this bias becomes more serious with increasing sample size”.
Other research has shown that both stratification on the pro-
pensity score and covariate adjustment using the propensity
score can lead to biased estimation of odds ratios and hazard
ratios,26,42,43 and that covariate adjustment using the pro-
pensity score resulted in a greater magnitude of residual con-
founding than did matching on the propensity score or
IPTW.44 A further limitation of covariate adjustment using the
propensity score is that it relies on a regression model to relate
the outcome to treatment status and other variables (the pro-
pensity score). This approach requires the assumption that the
outcomes regression model has been correctly specified.
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For these reasons, while these 2 propensity score methods
may be preferable in specific settings, we generally encourage
researchers to consider either matching or weighting as the
first propensity score approach to be considered.

Using the Propensity Score to
Estimate Effects of
Nonbinary Treatments
In the preceding sections we have focused on methods to use
the propensity score to estimate the effects of binary treatment
(treated vs control), as this is the most common application of
propensity score methods. The generalized propensity score
is an extension of propensity score methods to continuous
or quantitative treatments (e.g., number of antiepileptic
medications).45-48 When considering a nonbinary categorical

treatment (e.g., glatiramer acetate vs interferon-β 1b vs in-
terferon-β 1a for treatment of multiple sclerosis), one possible
approach is to conduct a sequence of analyses, each consisting
of a comparison of 2 of the different levels of the treatment.
Alternatively, methods using a multinomial logistic regression
model to estimate the propensity score have been described.49

Further research is necessary to determine the relative perfor-
mance of these approaches.

Propensity Score vs Regression-
Based Methods
Many researchers are familiar with regression-based ap-
proaches to account for confounding and may wonder
whether it is worthwhile to learn a new technique. There are
several advantages to the use of propensity score matching

Figure 1 Author Checklist for the Design and Analysis of Studies Using Propensity Score Methods

Figure 2 Author Checklist for the Reporting of Studies Using Propensity Score Methods

Neurology.org/N Neurology | Volume 97, Number 18 | November 2, 2021 861

http://neurology.org/n


and weighting over conventional regression adjustment. First,
when outcomes are binary, one can report absolute risk
differences, relative risks, and NNTs. Similarly, with time-to-
event outcomes, one can report absolute differences in sur-
vival at specific time points (obtained from the estimated
survival curves) and hazard ratios. In contrast, with conven-
tional regression adjustment, one is generally limited to
reporting odds ratios and hazard ratios. Although the other
measures can be estimated with additional work, this is rarely
done in practice. Second, through describing the distribution
of baseline covariates in treated and control participants in the
matched or weighted sample, one can illustrate the degree to
which matching or weighting has removed systematic baseline
differences between treatment groups. It is much more diffi-
cult to determine the degree to which regression adjustment
has minimized differences between groups. Finally, in settings
in which outcomes are rare and the sample size is low to
moderate, regression-based approaches would be limited in
terms of the number of covariates that could be included in
the regression model. This limitation does not apply to pro-
pensity score methods.

Limitations of Propensity
Score Methods
Propensity score methods allow one to remove the effects
of confounding due to measured baseline covariates. They
make no claim to remove the effects of confounding due to
unmeasured covariates, and findings from observational
studies must be interpreted with care given this potential
for residual confounding (a limitation shared by regression
adjustment). Rosenbaum50 described sensitivity analyses
that can be used with propensity score matching to as-
sess the robustness of study conclusions to unmeasured
confounding.

Summary
Propensity score methods reduce the effects of confounding
due to measured baseline covariates by creating a matched or
weighted sample in which the distribution of measured
baseline covariates is similar in treated and control partici-
pants. This allows for a direct comparison of outcomes be-
tween treatment groups and the use of metrics of treatment
effect similar to what would be done in a comparable RCT.
We have provided a checklist of study design and analysis
considerations in Figure 1 and a reporting checklist for
manuscripts that use propensity score matching or weighting
in Figure 2.

We hope this brief introduction will be of use to neurologic
researchers and that the checklists and recommendations
provided will strengthen the quality of observational studies
that use propensity score methods.
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