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Abstract
Objectives Triage of patients with basilar artery occlusion for additional imaging diagnostics, therapy planning, and initial 
outcome prediction requires assessment of early ischemic changes in early hyperacute non-contrast computed tomography 
(NCCT) scans. However, accuracy of visual evaluation is impaired by inter- and intra-reader variability, artifacts in the 
posterior fossa and limited sensitivity for subtle density shifts. We propose a machine learning approach for detecting early 
ischemic changes in pc-ASPECTS regions (Posterior circulation Alberta Stroke Program Early CT Score) based on admis-
sion NCCTs.
Methods The retrospective study includes 552 pc-ASPECTS regions (144 with infarctions in follow-up NCCTs) extracted 
from pre-therapeutic early hyperacute scans of 69 patients with basilar artery occlusion that later underwent successful reca-
nalization. We evaluated 1218 quantitative image features utilizing random forest algorithms with fivefold cross-validation 
for the ability to detect early ischemic changes in hyperacute images that lead to definitive infarctions in follow-up imaging. 
Classifier performance was compared to conventional readings of two neuroradiologists.
Results Receiver operating characteristic area under the curves for detection of early ischemic changes were 0.70 (95% CI 
[0.64; 0.75]) for cerebellum to 0.82 (95% CI [0.77; 0.86]) for thalamus. Predictive performance of the classifier was signifi-
cantly higher compared to visual reading for thalamus, midbrain, and pons (P value < 0.05).
Conclusions Quantitative features of early hyperacute NCCTs can be used to detect early ischemic changes in pc-ASPECTS 
regions. The classifier performance was higher or equal to results of human raters. The proposed approach could facilitate 
reproducible analysis in research and may allow standardized assessments for outcome prediction and therapy planning in 
clinical routine.

Keywords Stroke · Basilar artery occlusion · CT imaging · Early infarct signs · Machine learning · Computer-assisted 
radiographic image interpretation

Introduction

Ischemic stroke in the posterior circulation (pc) due to 
basilar artery occlusion is frequently associated with poor 
outcome. Efficient triage of patients for additional imaging 
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diagnostics, adequate therapy regimes, and initial outcome 
prediction requires detection of early ischemic changes 
in early hyperacute non-contrast computed tomography 
(NCCT) scans [24]. However, accuracy of visual assess-
ments of admission NCCT images is impaired by inter- and 
intra-reader variability, artifacts, and reduced imaging qual-
ity in the posterior fossa. Furthermore, subtle early ischemic 
changes might not be detectable by human eyes.

A promising approach to overcome these limitations is an 
automated machine learning-based interpretation of quanti-
tative radiomic image features extracted from pre-therapeu-
tic NCCT scans at admission. NCCT scans at admission are 
fast and the required equipment is broadly available. Further-
more, NCCT imaging is a fundamental part of most stand-
ard-of-care stroke protocols. Such diagnostic tool could (a) 
facilitate standardized evaluation of early ischemic changes 
at improved sensitivity in clinical routine and large-scale 
clinical studies, (b) increase precision of triage for additional 
MR imaging diagnostics, therapy planning and outcome pre-
diction, and hence (c) improve patient care at low risk and 
cost using readily available admission NCCT scans.

We hypothesized that quantitative radiomic image fea-
tures extracted from early hyperacute NCCT brain scans can 
be used to detect early ischemic changes in posterior circula-
tion Alberta Stroke Program Early CT Score (pc-ASPECTS) 
regions. pc-ASPECTS encompasses clinically relevant areas 
of the posterior circulation and has been demonstrated to 
allow for an objective prediction of the patient’s prognosis 
[13, 21, 24, 28].

We employed a previously published and established 
radiomics machine learning pipeline on NCCT brain scans 
of patients with basilar artery occlusion [6, 26] undergoing 
successful recanalization. Furthermore, we evaluated perfor-
mance of the proposed algorithm in comparison to conven-
tional visual assessments of two neuroradiologist readers.

Materials and methods

This single center retrospective study was approved by the 
Ethics Committee of the University of Muenster, and the 
requirement for informed consent was waived (2017-233-
f-S). All study protocols and procedures were conducted in 
accordance with the Declaration of Helsinki. The data used 
for training and validation of algorithms in this study are 
available from the corresponding author upon reasonable 
request.

An overview of the proposed approach is given in Fig. 1; 
its modules are detailed below.

Patients

The study cohort includes consecutive patients with basi-
lar artery occlusion admitted between January 1, 2011, and 
March 31, 2017 at a tertiary care stroke center. The inclusion 
criteria for this study were (a) acute basilar artery occlusion; 
(b) successful recanalization (mTICI ≥ 2b); (c) NCCT per-
formed on admission; and (d) NCCT performed < 6 h after 

Fig. 1  Conceptual overview of the proposed machine learning 
approach showing the major processing steps: CT-based image acqui-
sition and segmentation, feature extraction (n = 1218), and statistical 
learning (random forest algorithm). NCCT  non-contrast computed 

tomography, pc-ASPECTS Posterior circulation Acute Stroke Prog-
nosis Early CT Score, FUCT  follow-up computed tomography, PCA 
posterior cerebral artery
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symptom onset (early hyperacute). Exclusion criteria were 
(a) poor imaging quality; (b) not all regions of the posterior 
circulation included in the NCCT images and (c) missing 
follow-up imaging.

Image acquisition

NCCT imaging at admission was performed within a time 
window of up to 6 h after symptom onset (hyperacute). Fol-
low-up imaging consisted of NCCT 24–48 h after admission 
or earlier if clinically relevant. NCCT scans were acquired 
on a 128-slice dual-source CT scanner (Somatom Defini-
tion Flash; Siemens Healthcare GmbH). NCCT head images 
were obtained from the vertex to the skull base (120 kV, 
340 mAs, 5.0 mm slice reconstruction, < 0.5 mm in-plane 
resolution, 1.0 mm increment, 0.6 mm collimation, 0.8 pitch 
and H30s soft kernel).

Registration to standard space

To extract information from standardized pc-ASPECTS 
maps and to reduce potential bias in quantitative texture 
analysis, all NCCT images were registered to a custom MNI-
152 CT reference image [5] using two-step affine algorithms 
[14]. Registration success was visually verified by two MDs 
(UH and PS: 8 years of clinical experience in diagnostic 
neuroradiology in acute care full-service hospitals).

pc‑ASPECTS maps

Standardized pc-ASPECTS area maps [thalamus left/right 
(l/r), pons, midbrain, territory of the posterior cerebral artery 
(PCA) l/r, cerebellum l/r] were derived as follows: First, an 
experienced neuroradiologist (UH) performed manual seg-
mentations of the respective regions on the original NCCT 
images of the 63 healthy subjects using Analyze 11.0 
Software (Biomedical Imaging Resource, Mayo Clinic, 
Rochester, MN) [2]. Second, manual segmentations were 
transformed into standard space by employing transforma-
tion matrices and control point grids obtained from image 
registration to the custom MNI-152 CT reference image [5]. 
Third, all segmentations were added and final standard maps 
were defined using median cut-off points.

Ground truth

Infarct lesion assessment in follow-up NCCT images is used 
as widely accepted imaging endpoint in major clinical tri-
als. Accordingly, for all pc-ASPECTS regions that showed 
clear signs of final infarction in follow-up NCCT imag-
ing, the occurrence of early ischemic changes on admis-
sion NCCT images was assumed. Two senior MDs (UH, 
PS) rated infarction (early ischemic changes expected in 

early hyperacute NCCT images) or no infarction (no early 
ischemic changes expected in early hyperacute NCCT 
images) for each pc-ASPECTS region through conventional 
reading of the follow-up NCCT images. Both readers were 
blinded to any further clinical information or imaging data. 
Conflicts in classification were solved in a consensus read-
ing process.

Feature extraction

Quantitative image features were extracted using the PyRadi-
omics Python package v2.1.0 [26], proposed default settings 
were used for the analysis. Extracted features comprised 
252 first-order features (18 based on unfiltered images, 144 
wavelet decompositions, 90 log-sigma Laplacian of Gauss-
ian filtered images) and 966 texture features (82 based on 
unfiltered images, 544 wavelet decompositions, 340 log-
sigma Laplacian of gaussian filtered images). In total, 1218 
quantitative image features were extracted from each of the 
552 included pc-ACPECTS areas.

Machine learning

Machine learning-based detection of early ischemic changes 
was performed using random forest algorithms (Python 
scikit-learn environment v0.20.3 [17]). Random forest 
classifiers have a comparably low tendency to overfit [3] 
and support classification tasks also for data sets compris-
ing numerous and heterogeneous predictors. It was dem-
onstrated that random forest algorithms can achieve stable 
results based on standard hyperparameter settings and are 
comparably insensitive to further parameter tuning [19]. 
Recent analyses report a maximum gain in areas under the 
curve (AUCs) of 0.007 after hyperparameter tuning vs. com-
mon standard settings for 39 different test data sets [20]. To 
ensure maximum generalizability of the proposed algorithm 
and to avoid overfitting with respect to parameter tuning, ran-
dom forest classifier settings were defined a priori according 
to established standard parameter values for classification 
tasks [3, 19]. The number of trees was set to a comparably 
high value of 1000 to allow for sufficient precision in vari-
able importance estimation. Following established recom-
mendations for classification tasks, the maximum number of 
split variables per node (mtry) was limited to the square root 
of the total number of features. Tuning of tree complexity, 
sampling scheme and splitting rules were shown to have only 
marginal impact on classification performance [20] and were 
kept at the scikit-learn default settings. To account for differ-
ences of quantitative image features caused by the different 
anatomical locations, separate classifiers were trained for 
each considered region. However, bilaterally equal regions 
(e.g., thalamus l/r) were analyzed with the same classifiers. 
To prevent overestimation of classification performance due 
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to effects from cluster correlation, bilateral regions of the 
same patient were either assigned to the training or the vali-
dation set. Due to the relatively balanced dataset with c. 30% 
event rate (144/512), no additional data augmentation for 
reducing bias from class imbalance was performed.

Model performance assessment

Conformable to established evaluation procedures, model 
performance was tested using fivefold cross-validation 
with independent training and validation sets in a model-
external approach [8]. Stability of predictive performance 
was assessed through comparative analysis of ten randomly 
permuted fivefold cross-validation sets.

Feature selection

Image features were sorted according to predictive value 
based on Gini impurity measures [9] for each training data 
set. To improve generalizability and to reduce bias from 
potentially unimportant features in final model training and 
performance testing, the number of employed predictors was 
limited to the 20 most important features of each respective 
training data set.

Neuroradiologist reading

Two experienced neuroradiologists visually detected early 
ischemic changes on the hyperacute NCCT images. For each 
pc-ASCPECTS region, the readers rated “early ischemic 
changes” or “no early ischemic changes”. Both readers were 
blinded to the ground truth, the classifier prediction and the 
other reader’s prediction.

Statistical analysis

Receiver operating characteristic (ROC) curves for per-
region detection of early ischemic changes were derived 
based on predictions performed on the validation sets. Sta-
tistical significance of AUCs was assumed if P value < 0.05 
with H0: AUC = 0.50 (random guess) for all validation 
sets. Model prediction instability (i.e. standard deviation of 
AUCs) was evaluated using ten randomly drawn fivefold 
cross-validation sets. P values were calculated according to 
Mann–Whitney/Wilcoxon U statistics using the verification 
v1.42 R-package [11]. Confidence intervals for sensitivi-
ties and specificities were derived using pROC v1.10 [22] 
and DTComPair v1.0.3 R-packages. Generalized classifica-
tion performance for per-region detection of early ischemic 
changes of neuroradiologist readers and the machine learn-
ing classifier was compared using Matthews correlation 
coefficient (MCC) [12]. MCC evaluates all fields of the 
confusion matrix and is considered as a favorable metric for 

unbiased comparisons of binary classifiers [18]. With TP: 
true positives, TN: true negatives, FP: false positives, and 
FN: false negatives MCC is defined as:

MCC confidence intervals were computed with the psy-
chometric v2.2 R-package. Statistical significances of dif-
ferences in MCC were calculated using the psych v1.8.12 
R-package.

Results

The analysis is based on NCCT images of 552 pc-ASPECTS 
regions extracted from 69 patients (37 females, median 
age 74 year, IQR 60–80 years) with acute basilar artery 
occlusion, thereof 144 regions with definite infarction in 
the follow-up imaging and 408 regions without infarc-
tion (Table 1). Median NIHSS score was 11 (interquartile 
range 4–17), all patients underwent successful recanaliza-
tion (mTICI ≥ 2b), 42 patients (60.9%) were treated with IV 
thrombolysis (Table 1).

Classifier performance

ROC AUCs in the validation sets for per-region detection 
of early ischemic changes were 0.70 for cerebellum to 0.82 
for thalamus (Fig. 2). At maximum MCC cut-off values, the 
classifiers yielded specificities of 64–79% at sensitivities of 
60–82% (Fig. 2, Table 2).

Feature importance

Feature importance analysis was conducted using mean 
importance values calculated across all training sets. For all 
pc-ASPECTS regions, top-20 features with highest impor-
tance for prediction were derived from first order and texture 
features at equal proportions (49% vs 51% contribution). 
However, per-region analysis shows significant differences 
with shares of texture features reaching from 35% for cer-
ebellar infarctions to 85% for pontine infarctions (Fig. 3b). 
Differentiation by applied filter (Fig. 3a) indicates that unfil-
tered original images contribute the lowest share (9%) and 
log-sigma filtered images the highest share (62%) of total 
predictive power. Also for applied filters, results vary per 
region: whereas detection of ischemic changes in the cere-
bellar region depends on original (27%), wavelet (49%), and 
log-sigma (24%) filtered images, changes in the midbrain 
are mainly determined by log-sigma filtered images (90%). 
For 52 out of the 100 most important features (top-20 for 
5 pc-ASPECTS regions), normalized feature values were 

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.
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significantly different for ischemic changes vs. no changes 
(P values < 0.5; Supplemental Table 1).

Neuroradiologist reading

Both readers detected early ischemic changes at high speci-
ficity and low sensitivity for all analysed pc-ASPECTS 
regions (Fig. 2, Table 2). The combined human rating perfor-
mance (reader 1 + reader 2) was highest for cerebellar infarc-
tions (sensitivity = 39%, specificity = 89%, MCC = 0.32) 
and lowest for pontine (sensitivity = 8%, specificity = 91%, 
MCC = 0.0) and midbrain infarction (sensitivity = 19%, 
specificity = 82%, MCC = 0.0). MCC metrics and ROC-plot 
operating points indicate that human readers did not exceed 
the level of random prediction for pons and midbrain.

Comparison of classifier and neuroradiologist 
reader detection sensitivity

Analysis at the reader’s specificity set points suggests that 
classification performance of the machine learning algo-
rithms was equal or superior for all evaluated metrics in 
thalamic, midbrain, PCA, and pontine detection of ischemic 
changes (Table 2). Statistical significance of differences in 
MCCs was observed for thalamic (P value = 0.04), midbrain 

(P value = 0.01), and pontine (P value = 0.03) regions. For 
cerebellar infarctions, the classifier’s results were inferior to 
human readers (MCC = 0.23 vs. 0.32); however, the differ-
ence was not significant (P value = 0.16). At the classifier’s 
maximum MCC operating point, prediction performance 
was significantly superior (P value < 0.05) compared to 
human reader predictions in all pc-ASPECTS regions 
except for cerebellar infarctions (MCC of 0.29 vs. 0.32, P 
value = 0.56).

Discussion

Machine learning-based detection of early ischemic changes 
was significantly superior (three out of five regions) or sta-
tistically equal (two out of five regions) compared to con-
ventional readings of two neuroradiologists.

The proposed classifier yielded AUCs from 0.70 (cer-
ebellum) to 0.82 (thalamus). Observed narrow confidence 
intervals and low standard deviations of AUCs across all 
validation sets indicate high stability of the predictive 
performance. Compared to visual ratings of the two neu-
roradiologist readers, the classifier’s per-region predic-
tive performance (MCC metrics) was significantly higher 
(P value < 0.05) in thalamus, midbrain, and pons. For 

Table 1  Baseline characteristics of the study patients

NIHSS National Institutes of Health Stroke Scale, FUCT  follow-up non-contrast computed tomography, pc-ASPECTS Posterior circulation 
Alberta Stroke Program Early CT Score, FU follow-up, PCA posterior cerebral artery

Patient characteristics n = 69

Age at admission (year) [median (IQR)] 74 (60; 80)
Female n (%) 37 (52.1)
Baseline NIHSS [median (IQR)] 11 (4; 17)
Intravenous thrombolysis [n (%)] 42 (60.9)
Diabetes mellitus [n (%)] 22 (31.9)
Hypercholesterolemia [n (%)] 18 (26.1)
Arterial hypertension [n (%)] 50 (72.5)
Arterial fibrillation [n (%)] 30 (43.5)
Smoking [n (%)] 8 (11.6)
Etiology atherosclerosis [n (%)] 32 (46.6)
Etiology cardioembolism [n (%)] 7 (10.1)
Etiology other [n (%)] 1 (1.4)
Etiology unknown [n (%)] 29 (42)

pc-ASPECTS regions n = 552

Cerebellum [n (n with infarction in FUCT)] 138 (41)
Midbrain [n (n with infarction in FUCT)] 69 (21)
PCA [n (n with infarction in FUCT)] 138 (33)
Pons [n (n with infarction in FUCT)] 69 (24)
Thalamus [n (n with infarction in FUCT)] 138 (25)
Total [n (n with infarction in FUCT)] 552 (144)
Number of regions with infarction in FUCT per patient [median (IQR)] 1 (0; 3)
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Fig. 2  Receiver operating 
characteristic curves and 
neuroradiologist readings 
operating points for detect-
ing early ischemic changes in 
pc-ASPECTS regions based on 
acute NCCT scans. Left graphs: 
machine learning classifier 
receiver operating characteristic 
(ROC) curves with optimal 
operating point at maximum 
MCC (sensitivity; specificity), 
grey rectangles define cut-out 
areas shown in graphs on the 
right; right graphs: cut-outs of 
left figures showing neurora-
diologist reader rating results 
(sensitivity; specificity). Blue 
lines depict ROC curves, grey 
areas shows 95% confidence 
intervals (CI). Red crosses 
show cut-off points/predic-
tion performance. AUC  area 
under the curve, CI confidence 
interval, ROC receiver operating 
characteristics, NCCT  non-
contrast computed tomography, 
pc-ASPECTS Posterior circula-
tion Acute Stroke Prognosis 
Early CT Score, MCC Matthews 
correlation coefficient, PCA 
posterior cerebral artery
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PCA territory, MCC metric of the classifier was higher 
(0.38 vs. 0.24) but did not reach statistical significance (P 
value = 0.06). Likewise, there was no significant difference 
between human and classifier predictions for the cerebellar 
region.

Although numerous interrelations between quantitative 
image features and clinical diagnoses have been demon-
strated [29], radiomics-based machine learning approaches 
are still considered as black boxes with potentially 

irreproducible and unintelligible decision paths. The miss-
ing clear link between quantitative image features, tradi-
tional image findings, and the underlying pathology is a 
major point of criticism [29]. To address these concerns, 
we analyzed the employed image features regarding possible 
interpretations for visual assessment and established ties to 
conventional image readings: In clinical practice, ratings rely 
on visual detection of hypodensities as imaging marker of 
early ischemic changes. In thalamic infarctions, normalized 

Table 2  Per-region classification performance for detection of early ischemic changes

Classifier metrics are shown at cut-off points according to neuroradiologist readers’ specificities and at the classifiers optimal operating point
MCC Matthews correlation coefficient, CI confidence interval, PCA posterior cerebral artery
*P value < 0.05; **P value < 0.01. P values refer to significance of difference between classifier and human readers MCC values

Region Prediction Cut-off point Sensitivity (95% 
CI)

Specificity (95% 
CI)

Accuracy (%) Youden index MCC (95% CI)

Thalamus Reader 1 + 2 – 24% (12%; 36%) 91% (87%; 94%) 79 0.15 0.17 (0.00; 0.32)
Classifier Specificity R1 + R2 39% (33%; 45%) 91% (89%; 92%) 80 0.30 0.33* (0.17; 0.47)
Classifier Maximum MCC 82% (78%; 87%) 71% (68%; 73%) 73 0.53 0.44** (0.29; 0.57)

Midbrain Reader 1 + 2 – 19% (7%; 31%) 82% (75%; 90%) 63 0.01 0.02 (− 0.22; 0.25)
Classifier Specificity R1 + R2 48% (41%; 54%) 82% (78%; 85%) 71 0.29 0.30* (0.07; 0.50)
Classifier Maximum MCC 66% (60%; 73%) 75% (71%; 78%) 72 0.41 0.39** (0.17; 0.57)

PCA Reader 1 + 2 – 33% (22%; 45%) 88% (84%; 92%) 75 0.21 0.24 (0.08; 0.39)
Classifier Specificity R1 + R2 47% (41%; 52%) 88% (87%; 91%) 79 0.35 0.38 (0.23; 0.51)
Classifier Maximum MCC 80% (76%; 85%) 64% (61%; 67%) 68 0.44 0.38* (0.23; 0.51)

Pons Reader 1 + 2 – 8% (1%; 16%) 91% (85%; 97%) 62 − 0.01 − 0.01 (− 0.23; 
0.25)

Classifier Specificity R1 + R2 26% (21%; 32%) 91% (87%; 92%) 68 0.16 0.21* (0.00; 0.43)
Classifier Maximum MCC 68% (62%; 74%) 79% (75%; 83%) 75 0.47 0.46** (0.25; 0.63)

Cerebellum Reader 1 + 2 – 39% (30%; 51%) 89% (84%; 93%) 74 0.28 0.32 (0.16; 0.46)
Classifier Specificity R1 + R2 30% (26%; 35%) 89% (87%; 91%) 71 0.19 0.23 (0.07; 0.38)
Classifier Maximum MCC 60% (56%; 65%) 70% (67%; 73%) 67 0.31 0.29 (0.12; 0.44)

Fig. 3  Feature importance contribution of employed 20 most impor-
tant features in %. a By applied filter and pc-ASPECTS region; b by 
feature class and pc-ASPECTS region. Texture feature class includes 

gray level size zone matrix, gray level dependence matrix, gray level 
run length matrix and gray level co-occurrence matrix. ROI region of 
interest, PCA posterior cerebral artery
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feature values suggest hypodensity as predictive marker 
in the original as well as in the wavelet low-pass filtered 
images. This corresponds to typical thalamic hypodensity 
as early ischemic change. For other regions, classification 
depends more on intra-image distributions of intensities. 
High feature values in histogram metrics of log-sigma fil-
tered images for pontine infarctions indicate pronounced 
intensity edges as predictive markers. Similar characteristics 
of features can be observed for PCA and cerebellar regions: 
measures of intensity histogram width derived from origi-
nal and low-pass filtered images are important predictors of 
early ischemic changes. However, predictive performance of 
all regions also depends on texture and histogram metrics 
that cannot be interpreted in a visual context. This presents a 
clear advantage of the machine learning classifier compared 
to conventional visual assessments.

Performance of the classifiers was in similar ranges for all 
regions except for cerebellum. Also with respect to employed 
predictors, the cerebellar region deviates from general obser-
vations: classifiers for cerebellar ischemic changes utilize 
the highest share of histogram-based predictors and the 
lowest share of texture markers. Furthermore, the lowest 
importance of log-sigma-based features was observed. The 
findings indicate that cerebellar image textures are difficult 
to interpret for radiomics-based classifiers. Potential factors 
that might distract the algorithm are (a) texture findings in 
the cerebellar region that are typically dominated by folia 
arranged in finely spaced parallel grooves and (b) adverse 
imaging conditions in the posterior cranial fossa. In contrast 
to the proposed machine learning algorithm, human readers 
yielded highest prediction performance metrics for cerebel-
lar infarctions. Hence, especially for cerebellar lesions, opti-
mized diagnosis requires collaborative decision processes 
and may suggest symbiotic working models integrating both 
human and artificial intelligence.

Previous studies have demonstrated feasibility and reli-
ability of automated detection of anterior circulation strokes 
and machine learning-based anterior circulation ASPECT 
scores [10, 15], leading to various commercially available 
tool that aid decision-making of stroke physicians. In the 
posterior circulation, beam-hardening artifacts significantly 
complicate the detection of early ischemic changes for the 
human visual system. However, to our knowledge, there are 
no other studies investigating the impact of machine learning 
on diagnostic performance in the posterior fossa yet.

Our study had general limitations, typically associated 
with quantitative radiomics-based image analysis and clas-
sification [1, 4, 7]: Differences in image acquisition set-
tings (e.g. size of the field of view, gantry tilt), under- or 
overfitting of machine learning algorithms and ground truth 
misclassifications. These limitations could distort classifica-
tion and may reduce generalizability results. Bias of these 
factors was minimized through (a) employment of NCCT 

scans acquired by the same scanner, (b) the application of 
random forest algorithms that are comparably stable with 
regards to overfitting and (c) usage of consensus ratings of 
two experienced neuroradiologists for ground truth defini-
tion. The risk of overfitting was further reduced by employ-
ing previously described standard hyperparameter settings 
[3, 19] and by evaluating multiple different models in an 
iterative fivefold cross-validation approach. Study-specific 
limitations were as follows: first, we only included a limited 
number of patients in a retrospective analysis; test sets did 
not include any independent samples from other centers. An 
expansion of sample size in a prospective study design and 
the utilization of samples acquired at other centers would 
certainly contribute to further improving generalizability of 
results. However, low variability of results across different 
validation sets suggests sufficient robustness for assessing 
general feasibility and limitations of machine learning-based 
detection of early ischemic changes. Furthermore, the con-
ducted permuted cross-validation allows valid performance 
assessments for the underlying dataset and its scanner-, pro-
tocol-, and hospital-specific image characteristics without 
overfitting effects. Statistically significant results with nar-
row confidence intervals hence indicate that the proposed 
algorithm could achieve similar metrics on NCCT images 
acquired within the same setup. In practice, hospital-specific 
customization and performance optimization of algorithms 
must be weighed against generalizability of classification 
results across different protocols, scanners, hospitals, or even 
modalities. In line with that, many of today’s FDA-certified 
artificial intelligence-based algorithms require a training 
period at the site to learn and integrate the respective site-
specific characteristics. Second, the algorithm was trained 
to detect early signs of ischemia based on the presence of 
final infarction in 24–48 h FU NCCT images. Respective 
ground truth definition might suffer from limited sensitiv-
ity for small lesions and bias due to potential new hypoxic 
areas that form after admission imaging. However, assess-
ments of infarction in 24–48 h follow-up NCCT imaging 
have been used as established imaging endpoints in numer-
ous large clinical trials and hence are generally accepted as 
valid ground truth definition.

Third, the algorithm was trained to detect early ischemic 
changes in NCCT images at admission that offer limited 
sensitivity for detecting ischemia compared to DWI or PWI 
imaging. However, both scores—conventional ASPECTS 
and pc-ASPECTS—are originally based on evaluations of 
acute NCCT scans. NCCT scans at admission are fast and 
the technique is available in most hospitals. Furthermore, 
NCCT imaging is a fundamental part of most standard-
of-care stroke protocols. Hence, a more sensitive machine 
learning-based detection of ischemic lesions in NCCT scans 
could allow for improved decision-making and prioritization 
concerning additional imaging diagnostics (e.g. MRI DWI/
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ADC) or therapeutic interventions. Fourth, the study cohort 
did not include any patients with old ischemic lesions in the 
posterior circulation. This could result in misclassifications 
of old lesions. However, if also trained on patients with old 
lesions, we would assume adequate class differentiation as 
early ischemia and old lesions express visually distinguish-
able imaging patterns. Fifth, the acquisition resolution of 
NCCT scans was limited to < 5 mm in slice thickness. The 
utilization of higher resolution images could improve clas-
sification performance. Sixth, only patients that underwent 
successful recanalization were included in the analysis. This 
might reduce generalizability of results as specific therapy 
effects modulate the development of infarct growth and 
imaging characteristics between admission and FU imag-
ing. Seventh, the study cohort comprises patients with pos-
terior circulation ischemia due to basilar artery occlusion 
only. This might cause potential model bias due to basilar 
occlusion-specific imaging characteristics within the ana-
lyzed pc-ASPECTS regions. However, pc-ASPECTS is not 
tied to any specific etiology; the score defines ROIs whose 
imaging-based assessment of early signs of ischemia has 
been shown to have high predictive power in forecasting 
patient outcome. The proposed algorithm evaluates quantita-
tive image features of these regions without any utilization 
of etiology-related information. Hence, it can be assumed 
that the proposed algorithm may achieve similar results in 
patients with posterior circulation ischemia due to other eti-
ologies. Eighth, the manual definition of pc-ASPECTS areas 
still implies a certain degree of observer dependence within 
the machine learning process. To minimize its influence, 
we derived standard maps from delineations obtained from 
63 healthy subjects. Further, it was shown that radiomic 
features are comparably stable with regards to variations 
in segmentations [16, 27]. Ninth, only NCCT images were 
used for infarct prediction. Although computed tomographic 
perfusion imaging (CTP) may improve detection rates of 
posterior circulation ischemia [23], CTP images are difficult 
to interpret and can lead to false positive results [25]. Fur-
thermore, the limitation to NCCT scans improves general 
applicability of the algorithm in clinical routine and retro-
spective studies, as not all hospitals perform CTP imaging 
in respective acute situations.

The proposed artificial intelligence-based algorithm con-
firms feasibility of automated, reproducible, and reader-inde-
pendent detection of ischemic lesions in posterior circulation 
stroke patients. The predictive performance was superior or 
at least equal to visual assessments of two neuroradiologists. 
The proposed approach augments conventional readings by 
(a) integrating texture- and filter-based image features not 
assessable by human eyes and (b) employing artificial intel-
ligence algorithms for automated and standardized data 
interpretation. The system may thereby facilitate reproduc-
ible analysis in future research and present an assisting tool 

for clinical decision-making, therapy planning and outcome 
prediction.
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