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Abstract: Chronic cigarette smoking is associated with numerous abnormalities in brain 

neurobiology, but few studies specifically investigated the chronic effects of smoking 

(compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) 

on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of 

age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical 

perfusion measured by continuous arterial spin labeling magnetic resonance studies at  

4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral 

medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior 

temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal 

gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower 

perfusion in multiple brain regions. The results indicated smokers showed significant 

perfusion deficits in anterior cortical regions implicated in the development, progression, 

and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced 

blood flow in posterior brain regions that show morphological and metabolic aberrations as 

well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer 

disease. The findings provide additional novel evidence of the adverse effects of cigarette 

smoking on the human brain.  
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1. Introduction 

Chronic cigarette smoking in young to older adults, ostensibly free of psychiatric comorbidies and 

clinically significant smoking-related diseases, is associated with multiple neurobiological deficits [1–3] 

that include abnormalities in regional brain morphology [4–11], metabolite concentrations [12–15], 

white matter microstructural integrity [16], and functional connectivity [17,18]. These neurobiological 

abnormalities appear to be most prominent in the anterior cingulate cortex (ACC), dorsal prefrontal cortex 

(DPFC), orbitofrontal cortex (OFC), and insula, which are cortical components of the brain  

reward-executive oversight system (BREOS; [19,20]); the cortical and subcortical components of the 

BREOS are implicated in the development, progression, and maintenance of all addictive disorders [21,22]. 

Neurobiological abnormalities associated with chronic smoking are also apparent in posterior regions  

(e.g., posterior cingulate, inferior parietal lobule, precuneus) that show morphological and metabolic 

aberrations, and elevated beta amyloid deposition in those with mild cognitive impairment (MCI) and early 

stage Alzheimer’s disease (AD) [23] (These regions hereafter are referred to as AD regions). 

In addition to the neurobiological abnormalities noted above, chronic cigarette smoking is related to 

disturbances in brain perfusion (i.e., blood flow). Cigarette combustion products contain nicotine and 

multiple other compounds that acutely and chronically influence cerebral hemodynamics via their 

indirect and direct adverse effects on cerebral vasoreactivity, vascular structural integrity, as well as 

through alterations in cerebral cellular metabolism [1–3,23]. Few studies have specifically investigated 

the long-term chronic effects of smoking (as opposed to the acute effects of smoking, nicotine 

administration, or nicotine withdrawal) on cerebral perfusion in participants without a history of 

clinically significant psychiatric or biomedical conditions. Early investigations reported globally 

decreased cortical perfusion via CT 133Xe inhalation in elderly smokers [24–26], as well as by SPECT in 

middle-aged smoking adults [27]. A recent fluorodeoxyglucose (FDG) PET study found that elders with a 

history of chronic smoking demonstrated significantly decreased cerebral glucose metabolism over a large 

volume of the bilateral cerebral cortex [28]; FDG uptake, an established measure of glucose metabolism, 

is tightly coupled with cerebral blood flow [29,30]. A limitation of these previous studies is that blood 

flow or glucose metabolism measurements were obtained over the entire cortical gray matter or involved 

an average of multiple bilateral cortical regions. Consequently, it is unclear if there are specific regional 

differences between chronic smokers and non-smokers in cortical perfusion. This study investigated the 

effects of chronic smoking on regional cerebral perfusion in young to middle-aged adults (e.g., 25–60), 

who represent the greatest proportion of active smokers in the United States [31]. In this study, regional 

cortical brain perfusion levels in predominately male, middle-aged smokers and non-smokers were 

compared via 4 Tesla magnetic resonance continuous arterial spin labeling.  

We hypothesized that: 

(1) Smokers demonstrate significantly lower perfusion than non-smokers in components that 

comprise the bilateral BREOS and AD regions. 
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(2) In smokers, greater smoking severity (i.e., higher lifetime years of smoking and pack-years) is 

associated with lower regional cortical perfusion in components that comprise the bilateral BREOS 

and AD regions. 

2. Materials and Methods  

2.1. Participants 

Healthy, community-dwelling smokers (n = 34; four females) and non-smokers (n = 27; four 

females) were recruited via posters, electronic billboards, and word-of-mouth. Participants were 

between the ages of 24 and 69 and gainfully employed at the time of study (see Table 1). Prior to study 

participation, all participants provided written informed consent according to the Declaration of 

Helsinki, and the consent document and procedures were approved by the University of California San 

Francisco and the San Francisco VA Medical Center.  

Table 1. Demographic and clinical measures. 

Variable 
Non-Smokers 

(N = 27) 
Smokers 
(N = 34) 

Age (years)  47.3 ± 11.9 47.3 ± 10.5  
Education (years) 16.5 ± 2.1 14.9 ± 2.1 * 

Male (%) 85 87 
Caucasian (%) 63 71 

Body mass index 24.8 ± 3.0 27.1 ± 4.5 * 
Beck Depression Inventory 3 ± 3 5 ± 4 

STAI-trait 30 ± 10 34 ± 9 
1-yr average drinks/month 15 ± 14 23 ± 20 

Lifetime average drinks/month 18 ± 12 25 ± 14 * 
FTND NA 5 ± 2 

Cigarettes/day NA 18 ± 7 
Total lifetime years of smoking NA 30 ± 12 

Pack years NA 25 ± 14 
Interval from last cigarette to scan (min) NA 29 ± 18 

Note. Mean ± standard deviation; * p < 0.05; FTND: Fagerström Test for Nicotine Dependence; STAI:  

State-Trait Anxiety Inventory, trait-score. One standard alcoholic drink contained 13.6 grams of pure ethanol. 

Primary inclusion/exclusion criteria are fully presented elsewhere [32]. In summary, participants were 

screened and excluded for history of any neurologic (e.g., seizure disorder, neurodegenerative disorder, 

traumatic brain injury with loss of consciousness >5 min), general medical (e.g., endrocrine diseases, 

chronic obstructive pulmonary disease), vascular risk factors (Type 1 and 2 diabetes, hypertension, any 

cardiac function abnormalities, myocardial infarction, cerebrovascular accident, migraine headaches), 

and psychiatric (i.e., mood, thought, anxiety, substance/alcohol use disorders) conditions/disorders 

known or suspected to influence brain neurobiology. All females were pre-menopausal, by self-report. 

Twenty-three of the non-smokers never smoked; four smoked less than 40 cigarettes during their 

lifetime, but they reported no cigarette/tobacco use in the 10 years prior to study. All smoking 

participants were actively smoking at the time of assessment, smoked at least 10 cigarettes/day  
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for ≥5 years, with no periods of smoking cessation greater than 1 month in the 5 years prior to study.  

At the time of study, no smoker was involved in any pharmacological/behavioral smoking cessation 

program or used any other form of tobacco or electronic cigarettes. All smokers were allowed to smoke ad 

libitum prior to the magnetic resonance study. At the end of the study, smokers were offered smoking 

cessation resource literature. 

2.2. Psychiatric, Medical, and Substance/Alcohol Consumption Assessment 

Participants were administered the screening section of the Structured Clinical Interview for  

DSM-IV Axis I disorders, Patient Edition, Version 2.0, as well as an in-house questionnaire designed 

to screen for medical, psychiatric, neurological, and developmental conditions known or suspected to 

influence neurocognition or brain neurobiology. Participants also completed semi-structured 

interviews for lifetime alcohol consumption (Lifetime Drinking History, LDH) and substance use  

(in-house questionnaire assessing substance type, and quantity and frequency of use). From the LDH, 

the average number of drinks/month (one drink defined as containing 13.6 grams of pure ethanol) over 

1 year prior to enrollment and average number of drinks/month over lifetime were calculated. 

Participants also completed self-report measures of depressive (Beck Depression Inventory, BDI) and 

anxiety (State-Trait Anxiety Inventory, trait form Y-2, STAI) symptomatologies, and family history of 

problem drinking. Smokers completed a measure of nicotine dependence level [Fagerström Test for 

Nicotine Dependence (FTND)] and provided information on the total number of cigarettes currently 

smoked per day, as well as the total number of years of smoking over lifetime. From this information, 

pack-years [i.e., (typical number of cigarettes per day/20) x total number of years of smoking] were 

calculated for smokers. Prior to assessment, participants’ urine was tested for common illicit 

substances (e.g., tetrahydrocannabinol, opiates, cocaine, and amphetamines), and they were assessed 

for recent ethanol consumption via breathalyzer. No participant was positive for the above illicit 

substances or ethanol consumption at the time of assessment. See [33] for corresponding references for 

the above measures.  

2.3. Magnetic Resonance Data Acquisition and Processing 

Magnetic resonance (MR) studies were performed on a 4T Bruker MedSpec system with a Siemens 

Trio console (Siemens, Erlangen, Germany) and an 8-channel transmit-receive head coil; all scans 

were performed between 11 AM and 6 PM. Structural images were acquired with a 3D sagittal  

T1-weighted magnetization prepared rapid gradient echo acquisition sequence (1.0 × 1.0 × 1.0 mm3) and 

2D axial T2-weighted turbo-spin echo sequence (0.9 × 0.9 × 3.0 mm3). Perfusion-weighted images were 

obtained via a continuous arterial spin labeling (ASL) single-shot echo-planar imaging sequence [34] 

with sixteen oblique-axial 5-mm-thick slices oriented parallel to the orbitomeatal line (in-plane 

resolution = 5.0 × 3.8 mm2; 1.45 mm slice gap; TR/TE = 5200/9 ms repetition/echo time; 1590 ms 

post-labeling delay; 90° flip angle; acquisition time approximately 7 min). Prior to initiation of the 

ASL perfusion sequence, all participants were instructed to remain awake with eyes closed. Structural 

MRI data were aligned with perfusion data using a fluid-flow warping based distortion correction 

algorithm that corrected images for partial volume effects. See [35] for full description of ASL processing 

methods. Regional cerebral blood flow images were then corrected for partial volume effects and  
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co-aligned with FreeSurfer v5.1 segmented and parcellated volumes [36,37] to yield subject-specific 

perfusion averages (given in institutional units) for each FreeSurfer cortical and subcortical anatomical 

label. The ASL perfusion-weighted sequence was optimized for cortical gray matter, so group 

comparisons on perfusion of the lobar white matter and subcortical nuclei/structures are not provided 

in this report. The inferior 2–3 slices from all ASL datasets were removed from analyses due to 

generally poorer data quality in these regions. Therefore, only cortical regions in an axial plane (parallel 

to the orbitomeatal line), above the middle temporal gyrus, that contained at least 50% gray matter, were 

included in analyses. See Table 2 for BREOS, AD, and Non-BREOS/AD cortical regions included in 

this study. 

2.4. Statistical Analyses 

Multivariate analysis of covariance (MANCOVA) was used to compare smokers and non-smokers 

on regional cortical perfusion levels. Separate MANOVAs were conducted for the bilateral BREOS, 

AD, and Non-BREOS/AD regions. Average lifetime drinks per month, body mass index (BMI), and 

education were included as covariates because groups showed significant differences on these 

variables (see Table 1). Groups were not different on age, but given the large age range within the 

groups, and the association of age with perfusion in our previous studies [38], it was included as a 

covariate. MANCOVA omnibus and univariate main effects were considered statistically significant at 

p < 0.05. Significant main effects for smoking status (i.e., smoker vs. non-smoker) were followed-up 

with t-tests (two-tailed; included the same covariates as in the univariate models) comparing smokers 

and non-smokers. Despite our a priori predictions, we adopted the conservative approach of adjusting 

alpha levels for follow-up t-tests corresponding to each MANCOVA for multiplicity of t-tests.  

A modified Bonferroni approach was employed [39] that adjusted alpha levels for follow-up t-tests on 

the basis of the average intercorrelation of perfusion values across regions (in the combined group of 

smokers and non-smokers) included in the MANOVA and the number of t-tests performed. The 

average intercorrelation for BREOS regions across smokers and non-smokers was r = 0.76; based on 

this intercorrelation, and 16 t-tests, the adjusted alpha level for BREOS follow-up t-tests comparing 

smokers and non-smokers was p ≤ 0.024. The average intercorrelation for AD regions was r = 0.84; 

based on this intercorrelation, and 16 t-tests, the adjusted alpha level for AD regions follow-up t-tests 

comparing smokers and non-smokers was p ≤ 0.036. The average intercorrelation for  

Non-BREOS/AD regions was r = 0.74; based on this intercorrelation, and 16 t-tests, the adjusted alpha 

level for non-BREOS/AD follow-up t-tests comparing smokers and non-smokers was p ≤ 0.022.  

Effect sizes (ES) for mean differences between smokers and non-smokers on regional perfusion levels 

were calculated with Cohen’s d. Associations between measures of smoking severity (i.e., lifetime 

years of smoking and pack-years) and regional perfusion levels were evaluated with partial 

correlations, adjusting for age. Correlations between smoking severity measures and BREOS and AD 

perfusion were considered statistically significant at p < 0.05. Only associations of at least moderate 

magnitude (i.e., r ≥ |0.30|) were reported.  
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Table 2. Cortical regions of interest. 

Region Subregion (Bilateral) 

BREOS 

Caudal anterior cingulate cortex 
Rostral anterior cingulate cortex 

Insula 
Caudal middle frontal gyrus 
Rostral middle frontal gyrus 
Lateral orbitofrontal cortex 
Medial orbitofrontal cortex 

Superior frontal gyrus 

AD 

Isthmus of cingulate 
Posterior cingulate 

Inferior parietal lobule 
Superior parietal lobule 

Precuneus 
Supramarginal gyrus 

Non-BREOS/AD 

Cuneus 
Frontal pole 
Paracentral  

Pars opercularis 
Pars orbitalis 

Pars triangularis 
Post central gyrus 
Precentral gyrus 

Superior temporal gyrus 
BREOS: Brain reward/executive oversight system; AD: Alzheimer’s disease. 

3. Results 

3.1. Participant Characteristics 

No significant differences were observed between smokers and non-smokers on age, BDI,  

STAI-trait, one-year average drinks/month, and positive family history of problem drinking (all p > 0.10). 

Groups were equivalent on frequency of Caucasians and females. Smokers had fewer years of 

education, greater BMI, and more lifetime average drinks/month (all p < 0.05). See Table 1. 

3.2. Comparisons of Smokers and Non-Smokers on Regional Cortical Perfusion 

3.2.1. BREOS 

MANCOVA indicated smoking status was a significant omnibus predictor of BREOS perfusion 

levels [F (16, 42) = 2.75, p = 0.004]. Age, education, lifetime average drinks/month, and BMI were not 

significant omnibus predictors of BREOS perfusion (all p > 0.60). Main effects for smoking status 

were observed for the bilateral medial and lateral OFC (all p < 0.05), with trends for the right caudal 

middle frontal gyrus (p = 0.079) and right insula (p = 0.089). Follow-up t-tests (adjusted threshold for 

significance p ≤ 0.024) indicated smokers had significantly lower perfusion than non-smokers in the 
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left (p = 0.006; ES = 0.76) and right (p = 0.007; ES = 0.73) lateral OFC, and the left (p = 0.002;  

ES = 0.84) and right (p = .001; ES = 0.89) medial OFC (see Figure 1). There were no significant 

interactions among smoking status and age, education, lifetime average drinks/month, and BMI. In all 

regions contributing to the BREOS, smokers demonstrated numerically lower perfusion than  

non-smokers. Findings were essentially unchanged after excluding females from the above analyses. 

 

 

Figure 1. Comparisons of smokers and non-smokers on BREOS perfusion levels. 

3.2.2. AD Regions 

MANCOVA indicated that smoking status was a significant omnibus predictor of AD regions 

perfusion levels [F (12, 46) = 2.30, p = 0.022]. Age, education, lifetime average drinks/month, and 

BMI were not significant omnibus predictors of AD regions perfusion (all p > 0.18). Main effects for 

smoking status were observed for the bilateral inferior parietal lobule, bilateral posterior cingulate, 

right isthmus of the cingulated gyrus, and right supramarginal gyrus (all p < 0.05), with trends for the 

left isthmus of the cingulate (p = 0.051), left precuneus (p = 0.090), and right insula (p = 0.084). 
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Follow-up t-tests (adjusted threshold for significance p ≤ 0.036) indicated smokers showed 

significantly lower perfusion than non-smokers in the left posterior cingulate (p = 0.031; ES = 0.61), 

right isthmus of the cingulate (p = 0.019; ES = 0.66), and right supramarginal gyrus (p = 0.021;  

ES = 0.65), and left (p = 0.008; ES = 0.75) and right (p = 0.012; ES = 0.71) inferior parietal lobule  

(see Figure 2). No significant interactions were observed among smoking status and age, education, 

lifetime average drinks/month, and BMI. In all individual AD regions, smokers showed numerically 

lower perfusion than non-smokers. Findings were essentially unchanged after excluding females from 

the above analyses. 

 

 

  

 
 

Figure 2. Comparisons of smokers and non-smokers on AD region perfusion levels. 
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superior temporal gyrus, right pars orbitalis, and right frontal pole (all p < 0.05). Follow-up t-tests 

(adjusted threshold for significance p ≤ 0.022) indicated smokers showed significantly lower perfusion 

than non-smokers in the left (p = 0.008; ES = 0.72) and right (p < 0.001; ES = 1.02) superior temporal 

gyrus, and right frontal pole (p = 0.003; ES = 0.81). There were no significant interactions among 

smoking status and age, education, lifetime average drinks/month, and BMI. In all Non-BREOS/AD 

regions, smokers demonstrated numerically lower perfusion than non-smokers. 

3.2.4. Associations between Regional Perfusion and Smoking Severity Measures 

Greater lifetime years of smoking (adjusted for age) were associated with lower perfusion in the 

following regions: BREOS: left (r = −0.41; p = 0.010) and right (r = −0.37; p = 0.016) lateral OFC, left  

(r = −0.31; p = 0.040) and right (r = −0.32; p = 0.040) medial OFC, and left insula (r = −0.33; p = 0.029); 

Non-AD/BREOS: left (r = −0.35; p = 0.030) and right (r = −0.32; p = 0.035) bank of superior temporal 

gyrus, left cuneus (r = −0.30; p = 0.045), and left frontal pole (r = −0.33; p = 0.030). No significant 

relationships were observed between lifetime years of smoking and AD regions. Pack-years, FTND 

score, and the interval from last cigarette smoked to the MR scan were not significantly associated 

with perfusion in any region.  

 

Figure 3. Relationship between left lateral orbitofrontal cortex perfusion and lifetime years 

of smoking (age-adjusted). 
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cingulate, right isthmus of the cingulate, right supramarginal gyrus, and bilateral inferior parietal 

lobule of the AD regions; (3) significantly lower perfusion in smokers in Non-BREOS/AD cortical 

regions was observed in the bilateral superior temporal gyrus, right pars orbitalis, and right frontal 

pole; (4) in smokers, greater lifetime years of smoking was significantly associated with lower 

perfusion in multiple BREOS and Non-BREOS/AD regions.  

The overall pattern of findings suggests the perfusion deficits demonstrated by this group of 

smokers were largely confined to BREOS and AD regions and were not consistently lateralized to 

either hemisphere. Only two of the nine Non-BREOS/AD regions (bilateral superior temporal gyrus, 

right frontal pole) showed significantly lower perfusion in smokers, which suggests perfusion in 

primary sensory and motor regions was largely spared in this cohort of smokers. The differences 

observed between smokers and non-smokers were moderate to large in magnitude (see effect sizes in 

Results and percent differences in Figures 1 and 2), which emphasizes the substantial degree of 

regional perfusion deficits demonstrated by smokers. The significantly decreased perfusion observed 

in smokers in the bilateral medial and lateral OFC compliments previous MR studies showing thinner 

OFC cortex in actively-smoking young-to-middle aged adult smokers [7], smaller OFC volume in 

female elders (i.e., >65 years of age) [10], and significantly greater rate of OFC atrophy over two years in  

cognitively-normal elders with a history of smoking [40]. Similarly, the significantly lower perfusion 

observed in smokers in the inferior parietal lobule, posterior cingulate, isthmus of cingulate is 

complimentary to MR morphometric studies reporting smaller inferior parietal lobule volumes in  

actively-smoking middle-aged adult smokers [5], lower gray matter density in the posterior cingulate of 

elder smokers [9], and significantly greater atrophy rate over two years in the inferior parietal lobule, 

posterior cingulate, and isthmus of the cingulate in cognitively-normal elders with a history of  

smoking [40]. Decreased brain perfusion and atrophy in several of the above-listed regions were 

concurrently observed in patients with frontotemporal dementia [41], and AD [42]. These parallel 

findings suggest that reduced cerebral blood flow may be associated with the morphological 

abnormalities demonstrated by smokers.  

The medial and lateral divisions of the OFC are implicated in evaluation of stimulus saliency and 

representation of reward magnitude, self-monitoring, regulation of emotional and affective tone, impulse 

control, and aspects of decision-making and executive skills [43–45], which are reported to be abnormal in 

chronic smokers [2,3,15,46–50]. Collectively, the inferior parietal lobule, posterior cingulate, isthmus of 

cingulate, and supramarginal gyrus subserve regulation of visual attention, language comprehension, 

memory, and processing of complex visual social and emotional cues [51,52]. The smoking-related brain 

morphological, metabolite and white matter microstructural abnormalities found in previous MR studies, 

combined with the perfusion deficits observed in smokers in the present study, may at least partially 

explain the dysfunction in multiple neurocognitive abilities reported in smokers across adulthood [1,28,53], 

as well as the greater rate of neurocognitive decline in elders with a history of smoking [1,23].  

In smokers, greater lifetime years of smoking (age-adjusted) showed moderate-strength associations 

with decreased perfusion levels in multiple BREOS and Non-BREOS/AD regions. The pattern of 

findings suggests that greater smoking chronicity was related to diminished perfusion in temporal and 

anterior frontal lobe regions. In this study, smokers were allowed to smoke ad libitum prior to the MR 

study to mitigate against the potential effects of nicotine withdrawal on cerebral blood flow (see [53]). 

The plasma half-life of nicotine is approximately two hours [54], therefore, plasma nicotine levels 



Int. J. Environ. Res. Public Health 2015, 12 8208 

 

 

would have accrued (e.g., two or more half-lives) with regular smoking in the hours leading up to MR 

studies in the late morning or afternoon [55]. Additionally, in smokers, regional perfusion levels were 

not significantly related to FTND score (level of nicotine dependence) or the interval from last cigarette 

smoked. In our previous studies of smokers with alcohol and substance use disorders, regional perfusion 

levels were also unrelated to the interval from last cigarette smoked to scan [38,56,57]. Therefore, it is 

unlikely that nicotine withdrawal in smokers significantly influenced the observed relationships 

between lifetime years of smoking and regional perfusion, or the regional differences observed 

between smokers and non-smokers.  

The particulate and gas phases of cigarette smoke contain numerous compounds that may adversely 

affect the structural and/or functional integrity of cerebral neurons and glia, as well as that of 

endothelial cells forming the tunica intima and smooth muscle of the tunica media of the 

cerebrovasculature, and/or promote subclinical/clinically significant vascular disease that may 

influence cerebral hemodynamics [1,23]. We did not measure participant blood flow velocities of the 

cerebral distribution arteries, vasoreactivity, or capillary transit times, all of which are fundamentally 

related to regional brain tissue perfusion [58–61]. Consequently, it is not possible to determine if the 

regional cortical perfusion deficits demonstrated by the middle-aged smokers in this study are 

attributable to compromised neuronal and/or glial integrity, cerebrovascular dysfunction, or a 

combination of these factors. Additionally, while greater lifetime years of exposure to cigarettes was 

related to decreased perfusion in several regions, particularly in BREOS components, the magnitude of 

these relationships were only moderate, and no significant relationships observed between smoking 

severity measures and AD region perfusion. Taken together, it is possible that the perfusion deficits 

observed in AD regions in this sample of smokers may antedate the onset of chronic smoking and 

represent an endophenotype for increased risk of initiation of cigarette smoking and associated  

nicotine dependence. 

This study has limitations that may affect the generalizability of the findings. Data quality in several 

mesial and lateral temporal and mesial occipital regions was not sufficient for group comparisons; 

therefore, it is unclear if smokers and non-smokers showed perfusion differences in other functionally 

important AD regions (e.g., entorhinal and parahippocampal cortex). Unrecorded premorbid/comorbid 

group differences in lifestyle or biomedical conditions (e.g., diet/nutrition, exercise, subclinical 

pulmonary, cardiovascular or cerebrovascular dysfunction) and/or genetic polymorphisms [28] may 

have influenced the results. Perfusion measurements were obtained with only one post-labeling delay, 

which may not have fully captured maximal perfusion deficits in all participants due to individual 

differences in arterial transit time. The sample size was modest and, given the consistent pattern of 

lower perfusion in smokers across all regions, a larger sample size may have resulted in increased 

power to detect statistically significant group differences in more regions. The small number of 

females precluded assessment of sex effects. 

5. Conclusions  

The predominately middle-aged smokers in this study demonstrated substantially lower cortical 

perfusion than non-smokers in multiple regions, most notably in two spatially distinct areas: anterior 

frontal regions implicated in the development, progression, and maintenance of all addictive disorders 
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(i.e., BREOS regions), as well as in posterior cingulate and parietal regions that show morphological 

and metabolic abnormalities, and elevated beta amyloid deposition in those with MCI and early stage 

AD (i.e., AD regions). There is now considerable epidemiological evidence indicating that chronic 

smoking in adulthood is robustly associated with increased risk for AD (see [23]). AD is an insidious 

process, and is characterized by an extended preclinical period that may begin 20 years or more before 

clinically significant dementia symptomatology is exhibited [62]. It is increasingly apparent that 

chronic cigarette smoking in middle-aged and elder adults is associated with neurobiological 

abnormalities that are similar to those which emerge during the later preclinical and prodromal stages of 

AD (see [23]). Therefore, chronic smoking may be associated with the initiation and progression of 

cerebral neuropathology that places smokers at increased risk for AD. Extended smoking cessation in 

elders was associated with increasing global cortical perfusion in an early, small sample size, CT 133Xe 

inhalation study [26]. Thus, longitudinal investigations of the effects of smoking cessation on regional 

brain perfusion, with a greater number of females, are needed to assess if the pattern of regional 

perfusion deficits observed in smokers is persistent or improves with smoking cessation. 
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