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One of the most important 
features of biology is the 
ability of organisms to persist 

in the face of changing conditions. 
Consider the remarkable fact that every 
organism alive today is the product 
of billions of generations in which its 
progenitors, without fail, managed 
to produce progeny that survived to 
reproduce. To achieve this consistency, 
organisms must have a balance 
between robustness and evolvability, 
that is, between resisting and allowing 
change in their own internal states 
[1–3]. Moreover, they must achieve 
this balance on multiple time scales, 
including physiological responses to 
changes over an individual life and 
evolutionary responses, in which a 
population of genomes continually 
updates its encoded information about 
past environments and how future 
generations should respond given that 
record. 

Examples of robust biological 
systems are found at many scales, 
from biochemical to ecological. At 
each scale, robustness may refl ect the 
properties of individual elements or, 
alternatively, the dynamic feedbacks 
between interacting elements. 
The expression of some metabolic 
function, for example, may be robust 
in the face of temperature change, 
because an enzyme maintains its 
shape and specifi city across a range 
of temperatures or because an 
interconnected network of reactions 
sustains the supply of product, even 
when some enzyme fails. A genome 
may be robust because it encodes 
proofreading and repair systems that 
reduce replication errors or because it 
is organized such that many mutations 
have little effect on its phenotype. An 

ecosystem might be robust if it resists 
the extinction of some keystone species 
or, if extinction does occur, because 
surviving species can compensate 
over physiological, demographic, or 
evolutionary time scales.

One important question is 
whether there exists a single unifying 
mathematical framework that can 
encompass such diverse examples 
of biological robustness. Might 
new insights come from such a 
conceptual unifi cation, or will future 
understanding require detailed 
analyses of specifi c cases? Across the 
different scales, recurring mechanisms 
for achieving robustness—including 
redundancy of component parts and 
negative feedbacks—might serve as 
organizing principles. Yet, similarities 
in mechanism could mask important 
differences in the evolutionary 
origins of those mechanisms. At 
the level of genes in genomes or of 
cells in multicellular organisms, it is 
reasonable to suggest that redundancy 
evolved by natural selection to 
maintain some functional capacity 
in the face of perturbation [4]. But 
whereas species redundancy could also 
be critical for robustness of ecosystem 
functions, differences in redundancy 
might be an emergent property rather 
than an ecosystem-level adaptation, 
because selection generally acts at 
lower levels (but see [5] for another 
view).

And if robustness has evolved to 
maintain performance, what prevents 
systems from becoming ever more 
robust? We will focus on genomic 
robustness to mutations, because it 
provides a concrete example, although 
many ideas are speculative and much 
work is needed to formalize and test 
them. Two mechanisms that could 
make a genome more robust are 
genetic redundancy, so that many 
otherwise deleterious mutations are 
masked, and proofreading during 
replication, so that fewer mutations 
occur. Redundancy imposes a cost of 
replicating the additional gene copies 
[6], whereas proofreading entails 
costs of encoding and expressing that 
function [7].

Mutational robustness can also 
arise in more subtle ways. Populations 
evolving at high mutation rates may 
settle in regions of genotypic space 
where mutations are less deleterious, 
on average, than those regions that 
attract populations that experience 
low mutation rates. The idea is that 
evolution at low mutation rates favors 
populations that achieve high fi tness 
peaks, even if they are surrounded by 
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Figure 1. A Neutral Network of Four RNA 
Secondary Structures, with One Member 
Connected to Two Sequences outside the 
Network, One with Lower, and One with 
Higher Fitness
Colored positions show mutations, whereas 
the scale to the left of each sequence shows its 
relative fi tness. 
(Figure credit: Jeffrey E. Barrick, Michigan State 
University, East Lansing, Michigan, United 
States)
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steep cliffs, because mutations that 
push progeny off those cliffs are rare. 
By contrast, at high mutation rates, 
most offspring carry mutations, and 
selection favors populations that fi nd 
lower fi tness peaks surrounded by 
less precipitous mutational chasms. 
Experiments with digital organisms 
(self-replicating computer programs) 
provide direct support for “survival 
of the fl attest” at high mutation 
rates [8]. RNA viruses also have very 
high mutation rates, and a recent 
experiment implicated the importance 
of mutational robustness for them, 
in this case, by showing the loss of 
robustness in viruses that evolved at 
high multiplicities of infection, where 
co-infecting particles guaranteed 
redundancy and allowed their native 
robustness to decay [9].

But generalizing to other organisms 
presents some diffi culties. The strength 
of selection for robustness should 
be weaker in larger genomes if the 
advantage to a mutation that increases 
robustness locally is correspondingly 
smaller. According to one alternate 
hypothesis, mutational robustness is 
not so much a directly evolved property 
as it is a correlated benefi t of selection 
for robustness in the face of variable 
environments [10]. The essential ideas 
here are that environmental change 
is a pervasive feature of nature, and 
those physiological mechanisms that 
allow organisms to adjust to changing 
environments, such as by regulating 
gene expression, will also compensate 
for the effects of many mutations 
[3]. Robustness might also evolve to 
minimize internal noise in biochemical 
systems. The genetic code itself, once 
viewed as a frozen accident from the 
early history of life, has been shown 
to be remarkably well designed for 
minimizing the production of proteins 
that, owing to translational errors, have 
the amino acids most likely to disrupt 
protein function [11]. Individual 
proteins, too, have been strongly 
selected for robustness to translational 
errors [12].

Two recent studies with evolving 
computational systems have 
shown, unexpectedly, that sexual 
reproduction promotes the evolution 
of mutational robustness [13,14]. 
The evolutionary value of sex is a 
fascinating old problem. According 
to one hypothesis, the advantage of 
sex depends on negative interactions 

between deleterious mutations, such 
that two mutations combined tend to 
be worse, on average, than expected 
from their individual effects [15]. In 
that case, sex helps to purge them 
and provides a kind of robustness to 
multiple mutations. But these new 
studies found that sexual populations 
became more robust, on average, to the 
effects of single mutations, even though 
they evolved at the same mutation 
rate as asexual controls. Sex bombards 
genomes with mutant alleles that arose 
in other genetic backgrounds, which 
evidently promotes a kind of “survival 
of the fl attest” similar to that seen at 
high mutation rates.

Another important issue revolves 
around the tension between robustness 
and evolvability. Are genomes that 
are more robust to mutations less 
evolvable in the face of changing 
environments? In other words, 
does canalizing the phenotype to 
minimize perturbations—including 
biochemical and environmental as well 
as mutational—lead to an evolutionary 
conservatism that inhibits the discovery 
of new adaptive solutions? Some 
mechanisms of robustness, such as 
proofreading and repair, must inhibit 
evolvability because they reduce 
the production of new benefi cial 
mutations. But are robustness and 
evolvability inversely correlated more 
generally? In the case of redundancy, 
the presence of multiple gene copies 
might mask the benefi cial effects of 
some new mutations, thus suppressing 
evolvability. But redundancy can 
also promote adaptation by allowing 
duplicated genes to evolve distinct 
functions [16,17]. 

Evolving populations can also 
become robust by fi nding regions of 
genotypic space that are fl at because 
they contain a high proportion of 
neutral mutations [18]. As shown 
schematically for RNA secondary 
structures in Figure 1, the resulting 
neutral network might provide 
evolutionary paths to new adaptations 
by random drift, in effect allowing 
populations to search wider regions 
of genotypic space for rare benefi cial 
mutations [19]. If so, robustness and 
evolvability might again be positively, 
rather than negatively, correlated. 
However, deleterious mutations 
can also serve as stepping stones to 
adaptations [20]. Although deleterious 
mutations tend to be removed by 

selection and have shorter half-lives 
than neutral mutations, they are 
not instantly eliminated. Moreover, 
deleterious mutations may lead to 
genetic neighborhoods that are more 
promising, from the perspective of 
adaptation, than neutral mutations. 
In other words, neutral mutations 
are neutral precisely because they are 
isolated from important phenotypes, 
whereas deleterious ones must be 
connected to phenotypes that matter 
for fi tness. It is unclear, therefore, 
whether neutral or deleterious 
mutations are more important for 
evolvability, and whether robustness 
associated with increased neutrality will 
promote or impede evolvability.

Theoretical population genetics 
has historically emphasized models 
with one or two loci, whereas 
quantitative genetics has relied on a 
sort of statistical mechanics that ignores 
underlying detail. Richer mathematical 
representations of genotypic spaces 
and fi tness landscapes may be required 
to understand the balance between 
robustness and evolvability. Meanwhile, 
empiricists must push ahead to 
obtain data about evolvability and 
robustness. Experimental evolution, 
in which populations are monitored 
while they evolve under defi ned 
conditions, offers the potential to 
observe changes in these properties 
as a function of environmental and 
genetic manipulations [21]. For 
example, one could ask how robustness 
and evolvability change depending on 
whether evolution occurs in constant 
or variable environments [22]. Or 
one might instead manipulate an 
organism’s regulatory networks to 
investigate how that affects these 
properties. As new insights are achieved 
into the tension between genomic 
robustness and evolvability, perhaps 
the fi ndings can inform investigations 
into robustness at other levels, from 
cells to ecosystems, as biologists seek to 
understand the constancy of change. �
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