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Abstract: The importance of monitoring key aroma compounds as food characteristics to solve
sample classification and authentication is increasing. The rhizome of Polygonatum sibiricum (PR,
Huangjing in Chinese) has great potential to serve as an ingredient of functional foods owing to its
tonic effect and flavor properties. In this study, we aimed to characterize and classify PR samples
obtained from different processing levels through their volatile profiles and flavor properties by
using electronic nose, electronic tongue, and headspace gas chromatography-mass spectrometry.
Nine flavor indicators (four odor indicators and five taste indicators) had a strong influence on
the classification ability, and a total of 54 volatile compounds were identified in all samples. The
traditional Chinese processing method significantly decreased the contents of aldehydes and alkanes,
while more ketones, nitrogen heterocycles, alcohols, terpenoids, sulfides, and furans/pyrans were
generated in the processing cycle. The results confirmed the potential applicability of volatile profiles
and flavor properties for classification of PR samples, and this study provided new insights for
determining the processing level in food and pharmaceutical industries based on samples with
specific flavor characteristics.

Keywords: Polygonatum sibiricum; electronic nose; electronic tongue; gas chromatography-mass
spectroscopy; chemometric analysis

1. Introduction

In recent years, there has been a growing interest in the medicinal and edible plants
as functional foods and health-promoting dietary supplements with remarkable market
value. Polygonatum sibiricum Red., a type of traditional medicinal herb and edible plant,
is mainly distributed in the northern parts of China (such as Liaoning, Hebei, and In-
ner Mongolia Provinces), North Korea, and Mongolia [1]. Historically, the rhizome of
Polygonatum sibiricum (PR, huangjing in Chinese) was documented as “got the essence of
soil, be the first in tonics” in the Compendium of Materia Medica (Ming Dynasty, 1590 A.D.).
Huangjing is one of the most popular traditional medicinal herbs with a wide range of
beneficial effects such as replenishing Qi, nourishing Yin, fortifying spleens, moistening
lungs, and tonifying kidneys [2]. Thus, it has been considered to have various pharmaco-
logical effects, including promoting physical energy, improving gastrointestinal function,
protecting respiratory system, improving sexual performance, and strengthening the im-
mune system. Furthermore, PR can also be used to treat some symptoms such as fatigue,
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weakness, indigestion, inappetence, diabetes, cough, sexual dysfunction, backache, knee
pain, and premature hair greying [3].Therefore, huangjing is frequently used in Chinese
people’s daily diets [4], and a variety of functional foods with huangjing as main raw
material are supplied on the market [5].

However, huangjing must be processed through traditional Chinese processing tech-
nology to be used in traditional medicine and the food industry in China. The steaming
technology, an effective method to change food from raw to mature, plays an important
role in the fields of food manufacturing and food processing worldwide. It is well known
that steaming is a traditional processing method for huangjing, especially the strategy of
nine cycles of steaming and drying, which accounts for 56.6% of all ancient literatures on
the processing methods of huangjing [6]. The steaming process can affect major quality pa-
rameters associated with food products, such as color, odor, taste, polysaccharides, volatile
compounds, and secondary metabolites [7–10].

As a sort of popular tonic food in China, PR is often processed by repeated steaming
and drying procedures until the rhizome turns black, soft, and sweet, which can signifi-
cantly enhance its nourishing function and avoid throat irritation. Over the years, methods
for determining the effective processing level of PR have been explored, while the steaming
time, processing degree, and objective judgment indexes (e.g., color, texture, taste, and
odor) of PR are still unclear. In addition, there are few reports on evaluations of the sensory
quality of PR processed under different numbers of processing cycles.

Over the past few years, gas chromatography-mass spectroscopy (GC-MS), electronic
nose (E–nose), and electronic tongue (E–tongue) have been increasingly applied in the
food industry for quality control [10–13]. E–nose and E–tongue have provided support
for the objective expression of the odor and taste of medicinal and edible homologous
medicines. Many volatile compounds have been found to have several therapeutic proper-
ties, including antioxidation, antitumor, anti-inflammation, and antimicrobial activities [14].
Three terpenoids, i.e., α-pinene, camphene, and β-caryophyllene, have been found to have
the potential to treat a variety of inflammatory diseases such as respiratory inflammation,
atopic dermatitis, arthritis, and neuroinflammation [15]. Geraniol has been found to possess
various pharmacological properties, including antitumor, antioxidant, anti-inflammatory,
antimicrobial, antidiabetic, cardioprotective, and neuroprotective activities [16,17]. Beta-
caryophyllene has been identified a CB2 receptor agonist with pharmacological activities
such as antidiabetic, anti-inflammatory, and anticancer [18]. Various techniques have been
used to extract volatile compounds in the field of herbal medicine, such as steam distil-
lation, simultaneous distillation–extraction, static headspace, and headspace solid-phase
microextraction (HS-SPME) [19–21]. In contrast to a liquid–liquid extraction method, static
headspace is a non-destructive and non-invasive method that avoids the contamination
of solvent impurities. As compared with HS-SPME, the static headspace is simple and
low cost [22]. Therefore, static headspace is suitable for routine analysis and meets the
criteria of green analytical chemistry principles. GC-MS can be used to reveal changes
in volatile components during processing. Chemometric analysis is a simple strategy to
identify traditional Chinese medicines, which has been widely used in quality control
and evaluation of Chinese materia medica [23,24]. The chemometric methods of principal
component analysis (PCA) and hierarchical cluster analysis (HCA) are commonly used
in the field of herbal medicines for identification investigations, including species, geo-
graphical location, processing production, and harvesting time, as well as other factors that
influence the quality of herbal materials [25]. GC-MS combined with chemometric analysis
was recently used to analyze ginseng [26], goji berry [27], rhizomes of Curcuma [28], and
Ephedrae herba [29]. Thus, modern analytical techniques integrated with chemometrics
are becoming useful analytical tools for quality control of herbal medicines.

The objective of this study was to understand the influence of traditional Chinese
processing on volatile profiles and flavor properties of PR samples. E–nose, E–tongue, and
headspace GC-MS were applied to characterize volatile constituents and flavor properties
in the nine processing cycles of PR. A chemometric analysis was conducted with the aim to
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accurately distinguish PR with different processing levels, and to screen out potential mark-
ers for the identification of processing production. The results are useful for monitoring the
changes in sensory quality and identifying the processing level of PR samples.

2. Results and Discussion
2.1. pH Measurement

The color of the samples gradually became darker after each processing cycle (Figure S1).
Figure 1 shows that the pH value for PR samples decreased progressively as the processing
level increased, undergoing dynamic changes from 5.50 (initial value) to 3.91. The decrease
in pH could be due to the progression of the Maillard reaction and the generation of organic
acids accompanied by a reduction in amino groups [30].
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Figure 1. Changes in pH values for PR samples with different processing levels.

2.2. Electronic Nose
2.2.1. Electronic Nose Response to Different Processing Levels of PR

The typical E–nose responses to different processing levels is shown in the Supple-
mentary Materials (Figure S2). A total of 10 PR samples with different processing levels
were detected by E–nose, and the response curve is shown in Figure S2. The horizontal
axis is the sampling time (s), and the vertical axis is the response signal value of the E–nose
sensor (G/G0 or G0/G). Each curve represents the change in response intensity of a sensor
during the sampling time. The response values conductivity ratio of seven sensors were
G/G0, and the response values of the other three sensors, i.e., W1C, W3C, and W5C were
G0/G, in which G is the conductivity of the sensor after contacting the sample gas, and G0
is the conductivity of sensor cleaned by standard activated carbon filtered gas. The curve
represents the response signal value of 10 metal oxide sensors to the odor of the sample
(different colors represent different metal oxide sensors).

The data show that the response values of the 10 sensors of the E–nose gradually
increased with an increase in acquisition time, and the curve gradually stabilized at 30 s.
When the change range of the curve was small, the sensitivity of the electronic nose to the
odor had reached a stable state. As shown in Figure S2, stabilization was reached within
50–60 s. The W1W sensor was the most sensitive variable, and the W1W response value of
the RPR sample was relatively low. With increased processing, the W1W response value
gradually increased, and the fifth steamed sample (PPR5) stabilized.

2.2.2. Data Analysis on Odor Characteristics of PR with Different Processing Levels

According to the odor response value of different samples, an odor characteristic map
of PR samples was established, which is shown in Figure 2. The circumference represents
the name of the sensor, and the response value of different samples is displayed in polar
coordinates by color patches. By using a one-way ANOVA test and Kruskal–Wallis test
(Table S2), there were differences in the 10 aroma indicators of PR with different processing
levels (p < 0.05). According to Figure 2 and sensor response values (Table S2), sensors
W1W, W5S, W2W, and W1S were more sensitive to the odor of samples, and their response
values varied significantly from the RPR sample to the PPR9 sample. The odor indicators
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of the 10 samples were different, which was further combined with the PCA unsupervised
analysis method to analyze the odor characteristics of samples collected by E–nose to obtain
the significant odor characteristics of PR samples with different processing levels.
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2.2.3. Differentiation of Processed PR Samples by PCA

To evaluate the influence of the steaming process on the grouping of PR, a PCA was
performed on the dataset of the response values of E–nose samples. The biplots of score
and loading of the processed samples are presented in Figure 3. The data showed that the
grouping of the samples was from left to right along the t1 axis with increased processing
levels. The RPR sample, first PR sample (PPR1), second PR sample (PPR2), and third PR
sample (PPR3) were located on the left side of the score plot, while the fourth PR sample
(PPR4), fifth PR sample (PPR5), sixth PR sample (PPR6), seventh PR sample (PPR7), eighth
PR sample (PPR8), and ninth PR sample (PPR9) were located on the right side of the score
plot, among which there was an overlap in the PPR5–PPR9 samples. It was preliminarily
considered that the smell of the fifth PR sample was similar to that of the ninth PR sample.

Figure 3. Principal component analysis PCA biplots for 10 different processed PR samples based on
E–nose response data: (A) Score plot; (B) loading plot.

The cumulative variance contribution R2X of the first three principal components
reached 0.997, and the predictive ability parameter Q2 was 0.984, which indicated that the
PCA model was a well-fitted and predictive model. Principal component factor loading
analysis showed the contribution rate of each factor variable to the principal component.
The greater the absolute value of the load eigenvector, the greater the contribution to
the principal component. The principal component factor loading matrix is presented in
Table 1. The first principal component (PC1) had the largest amount of information, and
the independent variance explanation contribution reached 0.984. The absolute values of
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the eigenvectors of sensors W1W (0.596), W1S (0.379), and W5S (0.375) were larger than the
remaining sensors. In the second principal component (PC2), the absolute values of the
eigenvectors of sensors W2W (0.610) and W1C (−0.307) were relatively large. In addition,
in the third principal component (PC3), the absolute values of the eigenvectors of sensors
W3S (0.882) and W6S (0.304) were relatively large. Therefore, the PC1 mainly depended on
sensors W1W, W1S, and W5S; the PC2 depended on sensors W2W and W1C; and the PC3
depended on sensors W3S and W6S.

Table 1. Principal component factor loading for E–nose data.

Sensor PC1 PC2 PC3

W1C 0.242 −0.307 −0.059
W5S 0.375 −0.002 0.166
W3C 0.224 −0.192 −0.025
W6S 0.035 0.028 0.304
W5C 0.212 −0.172 0.004
W1S 0.379 −0.511 −0.290
W1W 0.596 0.308 0.054
W2S 0.245 −0.279 0.103
W2W 0.381 0.610 −0.014
W3S 0.005 −0.179 0.882
R2X 0.984 0.0104 0.00277

R2X (cum) 0.984 0.995 0.997

Figure 3B shows that the factor loading corresponding to the characteristic values of
different sensors was mainly distributed along the p1 axis on the right side of the loading
plot, and some overlap was observed. Sensors W1W, W2W, W1S, and W5S significantly
contributed to the differentiation of PR samples. The characteristic values of sensors with
high overlap were highly similar. In combination with Table 1, the absolute values of
the eigenvectors of the three partially overlapped sensors W3C, W5C, and W2S were
small, causing little contribution to the grouping of the samples, and therefore redundant
information could be eliminated.

The results of the PCA analysis showed that the number of steaming and drying cycles
had a significant effect on the odor characteristics of PR samples. The significant odor
differences between the RPR sample and the PR samples were W1W, W2W, W1S, and W5S.
After the fifth processing cycle, the odor index basically did not change, and the samples
from PPR5 to PPR9 were pooled.

2.3. Electronic Tongue
2.3.1. Data Analysis on Taste Characteristics of Different Processed PR Samples

According to the taste response value of different samples, the taste characteristic
map of PR samples is presented in Figure 4. The characteristic map of E–tongue was
similar to that of E–nose, which presented the taste difference of the samples. Using the
one-way ANOVA test and Kruskal–Wallis test, it is shown in Table S3 that there were
differences in the nine taste indicators of PR with different processing levels (p < 0.05).
According to the data presented in Figure 4 and taste sensor response values (Table S3), the
taste differences of 10 different samples were mainly reflected in the indexes of sourness,
sweetness, astringency, aftertaste-astringency, umami, and richness. With an increased
degree of processing, the sourness index increased significantly. However, the sweetness
decreased, the astringency and aftertaste-astringency increased, the umami taste decreased,
and the richness increased.
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2.3.2. Differentiation in Processed PR Samples by PCA

To distinguish PR samples from different processing levels, a PCA was also performed
on the E–tongue dataset, taking the response values of taste sensors as input variables.
Figure 5A shows that the RPR, PPR1, PPR2, PPR3, and PPR4 samples were located on the
left side of the score plot, whereas the PPR5, PPR6, PPR7, PPR8, and PPR9 samples were
located on the right side of the score plot, in which there was an overlap in the PPR5–PPR8
samples. It was preliminarily considered that the taste from the fifth PR sample to the
eighth PR sample was similar.
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The cumulative variance contribution R2X of the first three principal components
reached 0.956, and the predictive ability parameter Q2 was 0.847, which indicated that the
PCA model had good fitting and prediction properties. The taste index corresponding to
each sensor of the E–tongue was regarded to be a factor variable, and the loading analysis
of principal component factor was performed. The principal component factor loading
matrix is shown in Table 2. The PC1 gave the most information; the independent variance
explanation contribution reached 0.682, and the absolute values of the eigenvectors of
the taste indexes for sourness (0.391), astringency (0.390), sweetness (−0.390), richness
(0.382), umami (−0.376) were large. The taste indexes for saltiness (−0.579) and aftertaste-A
(−0.438) in the second principal component had large eigenvector absolute values, and the
taste indexes for bitterness (0.772) and aftertaste-B (0.443) in the third principal component
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had high absolute values. The data showed that the PC1 mainly depended on the taste
indexes for sourness, astringency, sweetness, richness, and umami, the second principal
component depended on the taste indexes for saltiness and aftertaste-A, and the third
principal component depended on the taste indexes for bitterness and aftertaste-B.

Table 2. Principal component factor loading for E–tongue data.

Taste PC1 PC2 PC3

Sourness 0.391 0.146 −0.126
Bitterness −0.163 0.512 0.772

Astringency 0.390 −0.065 0.228
Aftertaste-B 0.319 −0.344 0.443
Aftertaste-A 0.282 −0.438 0.135

Umami −0.376 −0.209 0.197
Richness 0.382 0.131 0.169
Saltiness −0.219 −0.579 0.214

Sweetness −0.390 −0.077 0.093
R2X 0.682 0.216 0.058

R2X (cum) 0.682 0.899 0.956

Figure 5B shows that the taste indexes for sourness, richness, astringency, sweetness,
and umami had a greater contribution to the classification of PR samples with different
processing levels. Moreover, Table S3 shows that the taste characteristics of RPR were
mainly sweet and umami, and the taste characteristics of the samples from PPR5 to PPR9
were sourness, richness, and astringency.

The results of the PCA analysis showed that the number of steaming and drying cycles
had a significant effect on the taste characteristics of PR samples. Furthermore, the taste
index did not significantly change after the fifth processing cycle.

The minimum detectable value of the taste sensor of the SA402B electronic tongue
was a 20% change in concentration, and the response output value could be converted
into “taste information”, thereby, indicating that one unit of the response value of the taste
sensor represented the taste difference caused by a 20% concentration difference in the
sample, which was also the smallest unit of taste difference that people began to perceive.
The full range of taste perception is 25 units, and the range of taste response that was
experienced is acid (−13–12), bitter (0–25), astringency (0–25), salty (−6–19), and sweet
(0–25) [31]. Table 3 shows that among the nine taste indicators, the sweetness values of
the 10 samples of PR with different processing levels ranged from 8.62 to 15.15, which
accounted for a large portion of the sweetness range perceived by humans; only the sour
taste value of the ninth PR sample (PPR9) was in the range of human perception, which
was experienced. In addition, other taste indexes accounted for a small proportion of
human perception. Therefore, what people really experienced before and after the steaming
process was that there was always sweetness, and there was sourness only in the ninth
PR sample.

Through literature studies, we found that the sample solution of traditional Chinese
medicine measured by electronic tongue included water-extracted solutions [32,33]. In
Chinese clinical application, PR is mostly taken after water decoction. For the PR samples
measured by the E–tongue, to achieve taste that was closer to clinical application, the
experimental samples were prepared using a water extraction method.
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Table 3. Key flavor components in PR samples with different processing levels.

Component OT a Aroma Description b
Relative Odor Activity Values (ROAV, %)

Change c

RPR PPR1 PPR2 PPR3 PPR4 PPR5 PPR6 PPR7 PPR8 PPR9

Dimethyl disulfide 7.6 Cabbage, onion, putrid 0.1 0.4 2.6 12.2 9.0 38.9 15.5 14.2 19.1 11.6 +
Hexanal 4.5 Apple, fat, green, oil 100 35.8 29.6 52.5 55.2 83.5 81.8 43.3 53.4 62.5 −

2-Heptanone 680 Cheese, fruity, green banana 0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.00 −
Benzaldehyde 350 Almond, caramel 0.01 0.02 0.03 0.1 0.1 0.2 0.2 0.2 0.1 0.1 +
1-Octen-3-OL 1 Mushroom, earthy, fat, green 52.6 100 100 100 100 66.6 67.5 38.3 28.6 37.2 −

2-Pentylfuran 4.8 Butter, floral, fruit, green
Bean 66.1 36.1 39.6 72.5 77.3 100 100 60.7 52.0 54.9 −/+/−

Nonanal 3.5 Fat, citrus, green 1.9 2.1 6.6 15.9 20.8 38.1 49.5 60.4 35.9 37.0 +
Beta-cyclocitral 5 Minty 0.3 0.6 0.7 2.4 2.0 5.8 4.0 2.3 1.9 3.0 +

m-Cresol 2 Medicinal, woody, leather,
phenolic ND ND ND 6.7 13.3 55.5 52.1 49.9 43.0 37.2 +

Furfural 100 Almond, bread, spice ND ND ND 3.7 11.4 84.8 75.3 100 100 100 +
2-Furanmethanol 300 Burnt, caramel ND ND ND ND ND 0.5 0.5 0.6 0.5 0.4 +
5-Methylfurfural 50 Almond, caramel ND ND ND ND ND 2.0 2.0 5.1 8.0 7.8 +

Dimethyl trisulfide 3 Cabbage, fish, onion, sulfur ND 0.7 3.5 8.2 6.7 15.9 6.6 5.0 4.2 3.0 +

Geraniol 40 Floral, sweet, rose, fruity,
citrus ND 0.2 0.1 0.2 ND ND ND ND ND ND +

Beta-caryophyllene 64 Wood, spice ND 0.01 0.1 ND ND ND ND ND ND ND +
Alpha-pinene 120 Cedarwood, pine, sharp 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ND ND ND NC/-

a Odor threshold (OT) in ppb. b Aroma descriptors from online databases: FEMA (http://www.femaflavor.org, accessed on 10 July 2021) and Flavornet (http://www.flavornet.org,
accessed on 10 July 2021). c Direction of change in ROAV for RPR vs. other processed PR samples: decrease (−), increase (+), or no change (NC). Only flavor compounds with
ROAV ≥ 0.1 at least in PR samples are presented. ND, non-detectable.

http://www.femaflavor.org
http://www.flavornet.org
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2.4. Headspace GC-MS
2.4.1. Volatile Compounds in the Different Samples by Headspace GC-MS

To evaluate the effect of the traditional steaming process on the flavor of PR sam-
ples, HS-GC-MS was used to analyze the volatile compounds of each sample afforded
by different processing levels. The total ion chromatograms of all samples with different
processing levels are shown in Figure 6A. The main peak appeared at 5.3 min, and its ionic
strength decreased significantly with an increase in the number of processing cycles. Two
compounds, hexanal and octane, were identified from the main peak. Hexanal had a lower
odor threshold as compared with octane. It showed that n-hexanal could be used as a
component marker to distinguish samples with different processing levels. The individual
chromatograms of 10 samples are shown in Figure S3. The number and relative content of
volatile compounds from each sample are shown in Figure 6, and additional details are
presented in Tables S4 and S5 in the Supplementary Materials.
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A total number of 54 volatile compounds were detected in all PR samples, which were
classified as follows: 4 alcohols, 4 phenols, 7 aldehydes, 9 terpenoids, 4 ketones, 1 ester,
12 furans/pyrans, 1 carboxylic acid, 5 alkanes/alkenes, 4 nitrogen heterocycles, 1 amine,
and 2 sulfides. The most abundantly found flavor families were furans/pyrans, terpenoids,
and aldehydes (Figure 6B).

The relative contents of the main volatile compounds in RPR in decreasing order were as fol-
lows: aldehydes (35.56%) > furans/pyrans (22.60%) > alkanes/alkenes (22.16%) > ketones (6.45%).
After the steaming and drying cycle, the relative contents of volatile compounds in the
PPR9 sample were furans/pyrans (78.76%) > ketones (7.81%) > nitrogen heterocycles
(5.90%) > aldehydes (3.30%) > alkanes/alkenes (1.73%). These findings showed that as com-
pared with the RPR sample, the total relative content of furans/pyrans was significantly
increased, while aldehydes and alkanes/alkenes were decreased. The relative content of
furans/pyrans in the PPR9 sample reached 78.76%, which increased by 56.16% as com-
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pared with that of the RPR sample (22.60%). The total relative contents of aldehydes and
alkanes/alkenes in the PPR9 sample were 3.30% and 1.73%, respectively, which decreased
by 32.26% and 20.43% as compared with that in the RPR sample (35.56% and 22.16%). With
an increase in the number of cycles, alcohols, terpenoids, ketones, sulfides, and nitrogen
heterocycles first increased, then decreased, and then stabilized, but no significant changes
were observed for esters, carboxylic acids, and phenols (Figure 6C).

As shown in Table S6, there were 26 common compounds in all samples. With
an increase in processing cycles, common volatile compounds were significantly de-
creased. As compared with RPR, 15 compounds were newly produced in processed sam-
ples (shown in Table S7), including 6 furans (2,5-dimethylfuran, furfural, 2,5-furandione,
2-furanmethanol, 2-ethyl-5-methylfuran, and 5-methylfurfural), 3 terpenoids (geraniol,
(+)-alpha-muurolene, and beta-caryophyllene), 2 phenols (m-cresol and butylated hydroxy-
toluene), 1 ketone (cyclohexanone), 1 aldehyde (2-ethyl-2-hexenal), 1 nitrogen heterocycles
(1,4-dimethylpyrazole), and 1 sulfide (dimethyl trisulfide). These data were in accordance
with data presented in the literature [34–36]. As shown in Table S8, 13 volatile components
could not be gradually detected, of which 3 chemical components were unique to RPR,
namely 3-methyl-1-pentanol, undecane, and gamma-undecalactone. The difference be-
tween the contents and types of volatile compounds present determine the unique aroma
profile of each sample.

In previous studies, it has been shown that aldehydes were relatively abundant
headspace volatiles and had a very low odor threshold, therefore, they played a significant
role in the characteristic flavor of food [37]. Aldehydes were found to be the major class
of volatile compounds in all samples. Most aldehydes have been reported to be highly
associated with almond, green, and citrus aromas [8,38]. Hexanal made a significant
contribution to the aldehydes in RPR (29.88%). As a flavor active compound, hexanal
conferred a rancid smell at high amounts, while in low content it produced a pleasant green
aroma [39]. Hexanal decreased as the processing cycle increased, whereas nonanal (citrus,
green), benzaldehyde (almond aroma), and beta-cyclocitral (minty) increased.

The content of alkanes/alkenes significantly decreased with increased processing cy-
cles. The RPR sample had the highest ratio of alkanes/alkenes, with the most abundant oc-
tane, which accounted for 21.09% of the alkanes/alkenes class. Generally, alkanes/alkenes
did not significantly contribute to the aroma due to their high odor threshold and they had
an odor similar to gasoline [40].

The content trend of ketone showed that it increased greatly and rapidly in the early
stage, and then decreased and stabilized in the later stage. The occurrence of ketone
compounds usually endowed food with a cheese, fruit, and caramel flavor [41].

The alcohols detected in all samples were mainly 1-octen-3-ol, 2-ethylhexanol, and
2-methylcyclohexanol, which commonly produced mushroom, earthy, green, rose, and
citrus aromas. The PPR1 sample reached the highest alcohol content of 11.90%, with the
most abundant 1-octen-3-ol, which was responsible for the mushroom-like odor.

Furan/pyran is a class of oxygenated heterocyclic compounds for food flavors. Be-
cause the furan ring is more stable than the pyran ring, more furan is produced during
the pyrolysis process. Furans were detected in all samples, which were mainly produced
during Maillard reactions and thermal degradation of sugars [42]. The processed samples
contained abundant furans, which increased rapidly with increased processing cycles.
Among furans, furfural was the dominant compound in the post-processing stage, which
contributed to the flavors of almond, bread, burnt, and spicy in food.

RPR had the characteristics of a “long-time smell of raw flavor, and a dazzling feel-
ing” [34]. However, hexanal has been shown to be the main component of indoor environ-
mental irritants, and was irritating to eyes, the respiratory system, and the skin [43,44]. The
presence of undecane can also cause damage to the central nervous system, respiratory
irritation, and even chemical pneumonitis [45]. The content of hexanal was the highest in
RPR, and undecane was a unique component in RPR. Hexanal and undecane might be
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volatile components that can cause eye irritation, but further experiments are needed to
prove this.

According to the literature [46,47], key-aroma compounds have been identified through
calculation of their relative odor activity values (ROAV). Compounds with ROAV ≥ 1 were
considered to be key flavor components that significantly contributed to the final aroma
profile, and compounds with 0.1≤ ROAV < 1 had an important modifying effect on the
overall flavor of the sample. All the compounds with ROAV ≥ 0.1 are listed in Table 3. Thus,
a total of 16 compounds were found to effectively contribute to the final flavor profile of
the PR samples. Among them, four volatiles were observed to be key volatiles (ROAV ≥ 1)
in the RPR and PPR1 samples, six volatiles were key volatiles in the PPR2 sample, and nine
volatiles were key volatiles in the PPR3 and PPR4 samples. In the PPR5–PPR9 samples,
10 volatiles were key volatiles. The data showed that repeated steaming and drying was
conducive to the diversity of the flavor of PR samples. The types of key flavor compounds
did not significantly change after the fifth processing cycle.

The heatmap of key flavor components of PR samples with different processing
levels is shown in Figure 7. Analysis of the relative amounts of 16 key volatiles in each
processing level showed that the concentration of hexanal, 1-octen-3-ol, and 2-pentylfuran
were significantly high in all the PR samples. The PPR1 and PPR2 samples showed a
similar or improved composition of volatile compounds as compared with the RPR sample.
Furthermore, the PPR3 and PPR4 samples exhibited a similar flavor chemical composition.
The samples from PPR5 to PPR9 also exhibited similar compositions, indicating the flavor
reached a steady state after four cycles.
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In general, volatile markers associated with grassy, green, gasoline-like, and irritation,
(e.g., hexanal and undecane) decreased during the processing cycle, whereas thermal-load,
cabbage (e.g., dimethyl disulfide and dimethyl trisulfide), browning, almond, and burnt
(e.g., furfural) indicator compounds increased during the processing cycle. Due to the
abovementioned findings, PPR was more suitable for food applications with desirable
aromas than RPR. It was useful for the determination of processing level in food and
pharmaceutical industries based on samples with specific flavor characteristics.
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2.4.2. Differentiation of Ten Different Processed PR Samples by PCA

A PCA was performed on the data matrix (30 samples × 12 volatile classes) to observe
a possible sample distribution according to different processing levels. The cumulative
variance contribution R2X of the first three principal components reached 0.971, and the
predictive ability parameter Q2 was 0.836. As shown in the score plot of PCA (Figure 8A),
the samples exhibited a tendency to form three major groups. The RPR and PPR1 samples
were all located in the third quadrant of the graph, while the PPR2, PPR3, and PPR4
samples were located in the second quadrant. The PPR5 and PPR6 samples were distributed
close to the fourth quadrant, whereas the PPR7, PPR8 and PPR9 samples were located
in the fourth quadrant of the graph. According to the PCA loading plot (Figure 8B),
aldehydes, alkanes/alkenes, ketones, nitrogen heterocycles, and furans/pyrans had a
greater influence on the differentiation ability as compared with other components. The
aldehydes and alkanes/alkenes mainly distinguished RPR and PPR1 samples from other
processed samples. In addition, ketones and nitrogen heterocycles contributed more to the
PPR3 and PPR4 samples. Finally, the contents of furans/pyrans correlated more with the
PPR5, PPR6, PPR7, PPR8, and PPR9 samples.
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2.5. Correlation Analysis of pH and E–Tongue

A Pearson correlation analysis was conducted to determine the relationship between
pH and E–tongue sensors (Figure 9A). The pH value showed strong positive correlations
with the sweetness and umami of the RPR sample, while pH value showed strong negative
correlations with the sourness and richness of the PPR9 sample. The result indicated
that pH value could discriminate PR samples by responding to human-perceived taste
indicators such as sweetness and sourness.

2.6. Correlation Analysis of E–Nose and E–Tongue

The flavor of PR samples was developed through a series of complex processes. Taste
was affected by the perception of odor, and its changes could be partially explained by
changes in smell. Figure 9B shows that E–nose sensors were associated with E–tongue sen-
sors, and changes in the taste would be further reflected in the changes of odor. Moreover,
it was revealed that E–nose had the feasibility of evaluating taste-presenting substances
and achieving rapid and non-destructive prediction of sample taste.
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2.7. Correlation Analysis of E–Nose and GC-MS

Sixteen volatile compounds with high relative odor activity values (ROAV ≥ 0.1)
based on GC-MS analysis were selected to correlate with E–nose signals (Figure 9C). The
results showed that the signal intensities of E–nose sensors had significant and positive cor-
relations with the abundances of m-cresol, furfural, 2-furanmethanol, and 5-methylfurfural,
which indicated that E–nose sensors were sensitive to furan derivatives and phenolic
compounds. In comparison, the intensities of E–nose signals were negatively correlated
with the abundances of hexanal, 2-heptanone, 1-octen-3-ol, and 2-pentylfuran. Therefore,
these eight volatiles might be related significantly to the flavor of the PR samples. This
showed that E–nose was capable of distinguishing PR samples by responding specifically
to volatile compounds.

2.8. HCA of the Fusion Dataset of pH, E–Nose, E–Tongue, and GC-MS

A Cluster analysis was performed by using the between-groups linkage method and
the squared Euclidean distance to the fused dataset comprised of pH, E–nose, E–tongue,
and HS-GC-MS data. The dendrogram, shown in Figure 10, indicates that the relationships
and distribution among the samples in different processing levels and four main clusters
of the samples were as follows: RPR (Cluster 1); PPR1, PPR2, PPR3, and PPR4 (Cluster 2);
PPR5, PPR6, PPR7, and PPR8 (Cluster 3); and PPR9 (Cluster 4). These classification
groups were consistent with the PCA results in which all samples were fully distinguished
according to their processing levels.
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3. Materials and Methods
3.1. Samples and Sample Preparation

Fresh rhizomes of Polygonatum sibiricum (FPR) were harvested in October 2019 from
Qingyuan County, Liaoning Province, one of the most famous PR growing regions in China;
only fresh undamaged rhizomes with similar weight and size were selected for this study.
There were 3 batches of samples, and the same batch of FPR was divided into 10 groups.
According to the Chinese Pharmacopoeia (2020 edition), one group of FPR was processed
into raw rhizomes of Polygonatum sibiricum (RPR), by boiling in water for 5 min, and then
drying at 55 ◦C for 9 h. The remaining groups were subsequently processed into processed
rhizomes of Polygonatum sibiricum samples (PPR1–PPR9), by 3 h of steaming (over boiling
water), 1 h of simmering, followed by 9 h of oven drying (55 ◦C), repeated for 1–9 cycles.

3.2. pH Measurement

The pH value was determined using a Mettler Toledo FE 28 pH meter (Mettler Toledo
Instruments Co. Ltd., Shanghai, China) at room temperature. Ten-gram sample thick slices
(range 2–4 mm) were soaked in 10 times the volume of distilled water for 1 h at room
temperature (25 ◦C), and then refluxed twice by boiling for 1.5 h each time. Each extract
was filtered, and the combined extracts were used for pH measurement.

3.3. Electronic Nose Analysis

The E–nose analyses were performed using a commercial PEN3 electronic nose
(Airsense Analytics GmbH., Schwerin, Germany). The instrument consists of a gas-rate
control system, a sensor array, and a pattern analysis software (WinMuster, v.1.6., Airsense
Analytics GmbH., Schwerin, Germany). The sensor array is composed of 10 metal-oxide
semiconductor sensors, i.e., W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S, W2W, and
W3S, which are sensitive to specific volatile compounds (Table S1).

In brief, a sample of 4.0 g of powder (40 mesh) was put into a 250 mL beaker sealed
with cling film and incubated for 30 min at 25 ◦C to reach the headspace equilibrium. The
test parameters were set as follows: the flow rate was 200 mL/min, measurement time 60 s,
and flush time 120 s. Responses of the sensors were expressed as the ratio of conductance
G/G0 (G and G0, respectively, indicate the conductance of the sensors in contact with
sample gas and clean gas), which varied with different substances. Each sample was
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measured in triplicate and the average of sensor responses after stabilization was taken for
subsequent analysis.

3.4. Electronic Tongue Analysis

The difference in taste of 10 samples was evaluated by using an electronic tongue
(taste sensing system SA402B, Intelligent Sensor Technology Co., Kanagawa, Japan), which
contained eight multichannel lipid membrane sensors: CA0, CT0, AAE, C00, AE1, GL1,
AC0, and AE1(aftertaste), which were potentiometric sensors with specific sensitivity and
selectivity to different taste substances.

A total of 1 g of dried sample powder (40 mesh) was extracted with 100 mL distilled
water under ultrasonication (40 kHz) for 30 min. Subsequently, the solution was centrifuged
at 3000 rpm for 10 min at 25 ◦C and the supernatant was obtained. The supernatant of each
sample measured 80 mL, was divided into two parts, and placed in two rows of circular
sample cups in parallel. Acidity, bitterness, astringency, saltiness, sweetness, umami,
and aftertaste were tested at room temperature (25 ◦C). Each sample was measured in
quadruplicate. The data of the first cycle was removed, and the data of the following
three cycles were taken as the measured values. After each measurement, the sensors were
cleaned automatically.

3.5. Headspace GC-MS Analysis

The headspace autosampler combined with GC-MS was conducted to analyze the
volatile compounds of PR samples. In brief, accurately weighed 3.0 g of different sample
powder (40 mesh), was put into 20 mL headspace vials and capped with a PTFE/silicon
septum. After incubation at 120 ◦C for 20 min, 10 µL of headspace gas was injected into
to a gas chromatography inlet. The GC-MS analyses consisted of a TRACE 1300 Series
GC and an ISQ Series MS (Thermo Fisher Scientific, Waltham, MA, USA). The volatiles
were separated on a TG-5MS capillary column (30 m × 0.25 mm, 0.25 µm, Thermo Fisher
Scientific, Waltham, MA, USA) based on the following analytical conditions: the injection
port temperature was set to 250 ◦C, the flow rate of helium carrier gas was set to 1 mL/min,
and the split ratio was 1:5. The condition of the oven temperature ramp was as follows:
initial temperature of 35 ◦C for 2 min, 5 ◦C/min to 75 ◦C for 4 min, 15 ◦C/min to 95 ◦C
for 1 min, and 20 ◦C/min to 150 ◦C, followed by 15 ◦C/min to 270 ◦C (maintained for
3 min). The programmed temperature mode was carried out in the range from 35 ◦C to
270 ◦C. Mass spectra were acquired in electron impact (EI) mode at 70 eV, with the ion
source temperature of 280 ◦C, and a transfer line temperature of 280 ◦C. The detection was
performed in full scan mode over a mass range of 40–250 m/z, with a scan time of 0.2 s
per scan.

First, the obtained GC/MS data were converted to an Analysis Base File (ABF) format
using an ABF converter (https://www.reifycs.com/AbfConverter/index.html, accessed
on 8 April 2021), and then imported into the MS-DIAL software for deconvolution, peak
detection, alignment, and filtering. The identification of volatile compounds was performed
using MoNA mass spectral libraries and Kovats retention index (RI), as shown in Table
S9, Figures S4 and S5. The results with dot and reverse dot product scores greater than
0.7 were selected. The retention indices of the identified compounds were calculated from
the van den Dool and Kratz equation using the retention times of the alkane standards
(C6–C20).The relative contents of components in each sample were determined by the
normalization method [11,48].

3.6. Statistical Analysis

To differentiate and classify samples, in this study, unsupervised principal component
analysis (PCA) was performed on the data, using SIMCA software (version 14.1, Umeå,
Sweden). The statistical significance test was performed by one-way ANOVA and the
Kruskal–Wallis test using SPSS 25.0 software (SPSS Inc., Chicago, IL, USA). For statistical
testing, p < 0.05 was considered to be the critical level of significance. The hierarchical

https://www.reifycs.com/AbfConverter/index.html
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cluster analysis (HCA) was conducted using SPSS 25.0 software. The sensor response data
were plotted to a polar coordinate heat map using the dycharts website (https://www.
dycharts.com, accessed on 12 April 2021). The correlation analysis was performed using
the OmicStudio tools, a free online platform for data analysis (https://www.omicstudio.
cn/tool, accessed on 27 September 2021).

4. Conclusions

In this study, volatile profiles and flavor properties of PR samples prepared through
traditional processing methods were characterized by E–nose, E–tongue, and HS-GC-MS.
The total relative content of furans/pyrans increased significantly when the number of
cycles increased, while the relative contents of aldehydes and alkanes/alkenes decreased.
In addition, alcohols, terpenoids, ketones, sulfides, and nitrogen heterocycles exhibited
a tendency of increasing first, and then decreasing and stabilizing. Esters, carboxylic
acids, and phenols did not undergo significant changes. The Pearson correlation analysis
indicated that the eight volatiles might be significantly correlated with the flavor of the
PR samples. The PCA and HCA analysis showed that the number of cycles had a certain
effect on the volatile compounds, odor, and taste of PR samples. The RPR sample was
significantly different from other PR samples at different processing levels. It is worth
noting that additional cycles had little effect on most features when the number of cycles
exceeded four.

Therefore, processed PR after four cycles was considered to have similar volatile
compounds and flavor characteristics based on the HCA results. The results confirmed
the potential applicability of volatile profiles and flavor properties for classification of PR
samples with different processing levels. The volatile fingerprint and classification of PR
could allow for the selection of samples with specific flavor characteristics based on the
food and pharmaceutical applications. Our results provide an effective way to determine
the level of PR processing by monitoring the changes of volatile components and flavor
characteristics. In conclusion, our study supported the application of this method for
discrimination of processed PR samples, and also supported the establishment of similar
methods for other traditional Chinese steaming products.

Supplementary Materials: The following are available online. Figure S1: Appearance characteristics
of FPR and PR samples with different processing levels, Figure S2: Odor response curves of PR
samples with different processing levels, Figure S3: GC–MS profile of PR samples with different pro-
cessing levels, Figure S4: Mass spectra of 54 identified compounds, Figure S5: Identification of 6 key
flavor compounds. (A) Hexanal. (B) 1-Octen-3-OL. (C) Nonanal. (D) Furfural. (E) 2-Furanmethanol.
(F) 5-Methylfurfural, Table S1: Sensors used in PEN3 electronic nose and their performance descrip-
tion, Table S2: Odor response values of PR samples with different processing levels, Table S3: Taste
response values of PR samples with different processing levels, Table S4: Number of volatile com-
pounds in PR samples with different processing levels, Table S5: Relative content of volatile com-
pounds in PR samples with different processing levels, Table S6: The relative content of common
compounds in PR samples with different processing levels, Table S7: The relative content of new
compounds in different processing levels, Table S8: The relative content of disappeared compounds
in different processing levels, Table S9: List of compounds identified in PR samples with different
processing levels.
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