Cloud-based adaptive exon prediction for DNA analysis
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Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for
storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send
out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of
cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic
sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in
bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all
exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods.
Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants
to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity,
specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic

sequence database.

1. Introduction: Cloud computing facilitates the storage and
management of huge amounts of data. It is a method of
delivering technology to the consumer by using Internet servers
for processing and data storage, while the data are used by the
client. In genomics research, cloud computing technology
provides a way for researchers to enhance their capacity to store
and share data, save time and costs of data sharing [1]. By DNA
analysis now becoming economical, more swiftly than data
computation or data storage, the genome informatics is migrating
to the cloud. With next-generation sequencing that yields
unparalleled amounts of data, the knack of cloud computing to
search for common patterns and to generalise results will
accelerate the development of treatments and diagnostic tools.

Genomics deals with the study of genomes which involves the
sequencing and analysis of genomes. Cloud computing in genomics
is a scalable service, where genetic sequence information is stored
and processed virtually usually via networked, large-scale data
centres accessible remotely through various clients and platforms
over the Internet [2]. Beneath the traditional flow of information,
gene sequencing laboratories transmit the data over the Internet to
several sequencing archives as shown in Fig. 1.

Using this model, the gene sequence records, value-added integra-
tors and all power users sustain their own storage and compute clus-
ters and remain local copies of the gene sequence datasets. In this
Letter, we put forward a new genome informatics cloud-based
model that can be used by different healthcare organisations to
store and manage large amounts of genomic sequence information
of patients using Amazon Cloud Services platform [2]. The gene se-
quence information can be accessed from the National Center for
Biotechnology Information (NCBI) gene database node using
Amazon Cloud Services, which is sent as an input to adaptive
exon predictors (AEPs) for locating exon regions in a DNA sequence
as shown in Fig. 2. Over the past more than 25 years, there is a need
for contented and efficient ecosystem for the creation and usage of
gene information (Fig. 1). Sequence laboratories present their
genomic data to a large collection of databases such as the NCBI,
European Molecular Biology Laboratory (EMBL) database of the
European Bioinformatics Institute and the DNA Data Bank of Japan.

These databases preserve, manage and provide the sequencing
data. The majority of the users get the information either via
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websites produced by the archival databases or using the value-
added integrators of genetic data such as Ensemble database, the
University of California at the Santa Cruz Genome Browser.
Power users and other biometricians access the genetic data from
the primary and secondary sources to high-performance clusters
of computers known as ‘compute clusters’, work along with them
and abandon them when they are no longer desired (Fig. 1). Data
storage, managing, accessing sequence data and cost challenges
of traditional genome informatics are overcome using the cloud-
based genome informatics system proposed in this Letter. With
the use of this system, the stored DNA sequences can be accessed
by the healthcare organisations with high speeds and genome se-
quence is used for prediction of exon regions which help in
disease identification and drug design.

Locating the regions which code for proteins is an immense area
of research in genomics. This is due to the importance of exon
regions for disease analysis and design drugs. The DNA sequence
is a combination of genes and inter-genic sections [3]. The study of
prime protein region structure helps the secondary and the tertiary
structure of protein coding regions. Once the whole structure of
protein region is analysed, it is likely to detect all abnormalities,
cure diseases and design drugs [4, 5]. All the living organisms
are separated into eukaryotes and prokaryotes. Protein coding seg-
ments in eukaryotes are termed as exons, whereas the non-protein
coding regions are known as introns. The coding regions in
human eukaryotes are only 3% of the sequence and the remaining
97% are non-coding sections. Hence, the identification of coding
segments in a DNA sequence is an important task [6, 7]. Almost
in all DNA sequences, the coding sections display a three base peri-
odicity (TBP) property. This is obvious by a sharp peak at a fre-
quency f=1/3 in the power spectral density (PSD) plot [8]. Many
exon identification techniques presented in the literature are based
on various signal processing techniques [9-13]. Adaptive algo-
rithms are able to process very long sequences in several iterations.
In this Letter, a novel bioinformatics cloud-based system is pro-
posed to access DNA sequences and an AEP is developed using
adaptive algorithms. To improve the performance of AEP than
least mean square (LMS) algorithm, a variable normalised LMS
(VNLMS) algorithm with its signed versions is considered.
Varable least mean square (VLMS) algorithm overcomes the
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Fig. 1 Traditional genome informatics system

drawbacks of LMS and improves tracking ability and convergence
speed. This also reduces excess mean square error (EMSE) in the
process of exon prediction [14]. To overcome the computational
complexity of an AEP in real-time applications, the VN adaptive
algorithms are combined with sign-based algorithms. Sign-based
algorithms apply signum function and reduce the number of multi-
plication operations [15]. Owing to normalisation, the larger tap
length can be minimised to one, irrespective of tap length by
using an approach called maximum variable normalisation. The
fixed step size algorithms are data independent and the step size
changes do not meet the tracking requirements and results in
more error. Best rate of convergence requires larger step size and
small EMSE requires smaller step size. To surmount this limitation,
the variable step size (VSS) algorithms are used. Here, the step size
is forbidden by the error obtained in the iteration process examples
of VSS algorithms are seen in [16—19].

These techniques better perform than LMSs counterparts. The
proposed AEP uses a hybrid algorithm based on VSS and normal-
isation strategy. The resultant algorithm is VNLMSs algorithm. To
reduce the computational complexity, we combine VNLMSs with
signed algorithms. To further minimise the computational burden

on the normalisation factor, we performed maximum normalisation
[19, 20]. On the basis of the VN and maximum VN algorithms,
various AEPs are developed. Hybrid versions of proposed AEPs
include VNLMS, VN sign regressor LMS (VNSRLMS), VN sign
LMS (VNSLMS), VN sign SLMS (VNSSLMS), maximum
VNLMS (MVNLMS), maximum VNSRLMS (MVNSRLMS),
maximum VNSLMS (MVNSLMS) and maximum VNSSLMS
(MVNSSLMS) algorithms. The performances of proposed AEPs
are tested using real standard genomic datasets taken from the
NCBI gene sequence database node accessed from the cloud
using Amazon Cloud Services [21]. Convergence characteristics,
computational complexity (O), sensitivity (Sn), specificity (Sp)
and precision (Pr) are considered as performance characteristics
to evaluate the performance of the various AEPs. The theory of
the adaptive algorithms, results of AEPs and discussion on the per-
formance of various AEPs is presented in the following sections.

2. AEPs using novel genome bioinformatics system based on
cloud computing: A significant aspect of cloud computing in the
field of genome informatics is the capability of providers of service
and their customers for storing large datasets in the cloud [1].
Thanks to the Amazon Infrastructure as a Service by name ‘Virtual
Machines (VMs)’ service, which enables storage and access of
datasets as mentioned above. Amazon also provides redundancy to
ensure that VMs and the datasets would not disappear due to
hardware and disc failures. In the proposed genome bioinformatics
model, the compute and storage resources of the community are
collocated in the ‘cloud’ maintained by a huge service provider as
shown in Fig. 2. The value-added integrators and sequence
archives retain servers and storage systems inside the cloud, and
utilise less or more capacity as required for seasonal and daily
fluctuations in practise. Untailored users go on to get the data
through the websites of the integrators and the archives, though
power users at present have the choice of creating essential on
demand clusters for computer in the cloud, which have direct
admission to the gene sequence datasets. The proposed AEP using
a novel bioinformatics genome model is shown in Fig. 2 below.

In the proposed AEP-based cloud-based bioinformatics system,
the first step is getting access to the cloud services by healthcare
organisations such as hospitals and researchers [2]. The advantage
of cloud service is the cost cut in maintaining the data centre and the
cost involved in accessing the data. The genome datasets were con-
tributed to Amazon’s repository of public datasets by a variety of
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Fig. 2 Novel genome bioinformatics cloud-based system for exon prediction
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institutions and can be attached to VM images for a nominal fee.
They only pay for the time that the VM is running, i.e. by the
minute and only while it is running, though there is a minimal
storage charge of keeping the VM available. Second, converting
the genomic sequences of patients are accessed from the NCBI
genome database node present in the cloud into numerical notation
as an input to the proposed AEP. This digital conversion is a key
task of genomic sequence processing because signal processing
techniques can be applied only on digital or discrete signals.
Here, this binary mapping is used to convert DNA sequence
accessed from NCBI node using Amazon Cloud Services into
binary data which represents DNA as four binary sequences. In
this, a presence of a nucleotide at a location is indicated by 1 and
its absence by 0. Now, the resulting sequence is suitable to give
as an input to adaptive algorithm. Consider an AEP that is devel-
oped using adaptive signal processing techniques. Let I(n) be
genomic sequence, M(n) be mapped digital sequence, R(n) be
TBP obeyed genomic sequence, 7(n) represents the output obtained
by applying the adaptive algorithm and D(n) denotes the feedback
signal to update weight coefficients of the adaptive method. The
length of LMS adaptive algorithm is considered as ‘7”. The subse-
quent weight coefficient in this algorithm can be predicted based
on the present weight coefficient, step size parameter ‘S°, input
sequence sample value /(n) at the instance and feedback signal
D(n) generated in the feedback loop. Mathematical expression
and analysis of LMS algorithm is presented in [14]. A typical
block diagram of an AEP using a novel cloud-based genome bio-
informatics system is shown in Fig. 2.

The conventional LMS adaptive algorithm may be used in exon
prediction applications because of its simplicity and robustness. The
LMS filter requires a priori knowledge of the input power level to
select the step size parameter for stability and convergence. Since
the input power level is usually one of the statistical unknowns, it
is normally estimated from the data prior to beginning of the adap-
tation process. However, in practical situations LMS algorithm
suffers with two major drawbacks. The input data vector is directly
proportional to the weight update mechanism. Another one is the
step size and is fixed. In real time, an algorithm has to be designed
such that it has to handle both strong and weak signals. Hence,
based on the filter input and output fluctuations, the tap coefficients
should be adjusted accordingly. Therefore, when there is a large
input data vector, the amplification intricacy of gradient noise is suf-
fered by LMS adaptive algorithm. To avoid this problem, normal-
isation has to be applied. By doing so, the change applied to the
coefficient of the weight vector of filter is normalised with
respect to a squared form of Euclidian norm for the input vector
during each iteration. Owing to normalisation, the step size varies
iteratively and is proportional to the inverse of the expected total
energy of immediate values of the coefficients of the data input
vector. The normalised adaptive LMS algorithm generally has
quicker convergence than the LMS adaptive method, because it
uses an inconsistent convergence factor which aims at minimising
the instant output error. Here, data normalisation is adopted in
which the step size is normalised with respect to the input data
vector [19]. In this case, it is a binary mapped sequence B(n).
Now, the resulting algorithm is called as data normalised LMSs
(DNLMS) algorithm. The expression of the weight update equation
of this algorithm is written as

wn + 1) = wn) + D(m)I(n) ey

c+ ()2

The problem of small tap input vector B(n) is introduced by the
DNLMS algorithm with numerical difficulties because for a
squared norm has to divide by a small value. To get through this
problem, its recursion is to be modified by adding a small positive
constant c. The constant c is set to avoid step size parameter being
too big and the denominator is too small. By means of normalising
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the step size of LMS by ||/(n)|]2 in the DNLMS adaptive algorithm,
the problem of amplification of noise is reduced. Although the
problem of amplification of noise is bypassed by the DNLMS adap-
tive algorithm, less complexity of computations is highly desirable
for adaptive algorithms in exon prediction applications for develop-
ing nanodevices. This reduction is generally obtainable by clipping
either the input data or feedback signal or both. The algorithms
based on clipping of error or data are presented in [15]. These are
sign regressor algorithm (SRA), sign algorithm (SA) and sign SA
(SSA). This combination of three simplified SAs with DNLMSs
algorithms provides fast convergence and reduced computational
complexity. The convergence rate and a steady-state error of
SRA, SA and SSA algorithms are slightly lower to those of the
LMS adaptive algorithm for the similar parameter settings. The
signum function is written as follows:

1:I(n) >0
0:I(n) =0 2)
—1:I(n) <0

N{I(m)} =

The step size of the DNLMS algorithm can be selected
independent of the number of tap weights and input signal power,
which is a major advantage over LMS algorithm. For this
reason, the steady-state error and convergence rate of DNLMS
algorithm are much better compared with an LMS adaptive algo-
rithm. On the other side, calculation of S(z) requires some extra
computations.

The DNLMS improves rate of convergence and stability over
LMS algorithm. However, these methods are suitable if and only
if the step size is properly chosen. The step size will make the
rate of convergence either slower or faster depending on the
step size and also the misadjustment. The rates of convergence
and misadjustment have quite opposite step size requirements. To
overcome it, the VSS algorithms were used. The DNLMS too can
be considered as the VSS algorithm, because here the step size is
controlled with the help of the signal power. Many proposals
exist for the VSS algorithms. In our AEP implementations, we con-
sidered the VS strategy mentioned in [19] due to its simplicity and
performance of the hybrid algorithms. By combining this, VSS
strategy with DNLMS results in VNLMS algorithm. The weight
update equations of VLMS and VNLMS algorithm are written as
below:

wn + 1) = w(n) + S, 1(n)D(n) 3)

Sk
ml (m)D(n) “)

wn + 1) =whn)+
where the term S, is a ratio of weighted energies updated in the
iterations.
It is mathematically written as

_Ei

S =
k =y

)

and €i=ae€i(n—1)+e2(n), €/=pgj(n—1)+e2(n) and 0<a<l,
0<p<l1.

The term S, makes the step size variable. The proposed novel
cloud-based AEP structure presented above in Fig. 2 helped to
improve the stability and the rate of convergence. Furthermore, to
reduce the complexity the signum function is used. By applying
this signum function to VNLMS, we can implement four simplified
algorithms: VNLMS, VNSRLMS, VNSLMS and VNSSLMS
algorithms.
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The mathematical expressions can be written as

_ Sk
wn + 1) =wn)+ Ty N[I(n)]D(n) (6)
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Further the complexity can be reduced by normalising the VSS with
a maximum value of data vector instead of normalising with the
entire vector. This reduces the multiplications in the denominator
from a length of filter to only one. Now, the modified algorithms
are termed as MVNLMS algorithm and its signed versions which
include MVNSRLMS, MVNSLMS and MVNSSLMS algorithms.
Mathematically, these recursions can be written as

A —— +#}fv(")2]mwm) ©)

w(n + 1) = w(n) +C+Tk[l(n)z]w(n)]0(n) (10)
A —— +c++;[](n)z]z<nww<n>] ()
win + 1) = win) + H%}j[l(mzvmmww(m (12)

Finally, we choose these algorithms to develop four AEPs and
compare their performance with LMS-based AEP. From the per-
formance analysis based on the measures Sn, Sp and Pr, it is
evident that MVNSRLMS is just inferior to its non-sign regressor
version. Hence, among the algorithms considered for the implemen-
tation, MVNSRLMS is found to be better among its signed variants
with reference to computational complexity and performance
measures.

3. Results and discussion

3.1. Platform and input data: Our cloud-based model uses up to
three numbers of computing nodes, each of whom equipped with
three cores Intel Xeon X-5550 at 2.67GHz central processing
units with 64 GB of random access memory. These nodes include
VM images with a complete copy of NCBI datasets (200 GBs) as
node 1, datasets from the 1000 genomes project (700 GBs)
as node 2 and the genome databases from Ensembl database,
which includes the annotated genomes of human and 50 other
species (150 GBs of annotations plus 100 GBs of sequence) as
node 3. All nodes are connected with 1 GB Ethernet. In this
Letter, the input genome sequences are accessed from node 1
using Amazon Cloud Services in fast A file format.

3.2. Task distribution and performance: In the proposed model,
the task distribution will be done on one of three available
nodes based on the location of the input genomic sequence.
In the proposed model, the input gene sequences are considered
and accessed from National NCBI node 1. All the three nodes
can be accessed in the form of VM images. At present, one can
establish an account with Amazon Web Services, launch a VM
instance from the available wide variety of three generic and
bioinformatics-oriented images and attach any one of available
three images for genomic data processing. If the input genomic
sequence is from other nodes, the task distribution will be done
on that particular node.

In this model, the input genomic sequences are considered and
accessed from NCBI of node 1 using Amazon Cloud Services
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within less time than the actual way of accessing the data. Data is
accessed and execution times of gene sequences are computed to
analyse the performance. The input genomic sequences then fed
as input to the proposed AEPs for prediction of exon locations.
The performance in terms of execution times for the five input
genomic sequences with the cloud-based model is compared with
traditional methods without cloud is tabulated in Table 1.

From Table 1, it was clear that the performance in terms of exe-
cution times using the proposed cloud-based model is much
improved and it is more efficient than traditional methods without
a cloud.

3.3. Results discussion: In this section, performance of various
AEPs is compared using the proposed cloud-based model.
The novel cloud-based AEP structure is shown in Fig. 2. The
MVNLMS algorithm and its sign-based versions are used to
develop various AEPs. For purpose of comparison, an
LMS-based AEP is also developed. For evaluation purpose, we
obtained standard DNA sequences from NCBI database [21]. For
consistency of results, to evaluate the performance of various
algorithms five DNA sequences are considered from NCBI as our
datasets. The accession numbers of the sequences are E15270.1,
X77471.1, AB035346.2, AJ225085.1 and AF009962 as shown in
Table 2.

The performance measure is carried using parameters such as Sn,
Sp and Pr. The theory and expressions for these parameters are
given in [13]. The exon prediction results for sequence with acces-
sion number AF009962 are shown in Fig. 3. The performance mea-
sures Sn, Sp and Pr are measured at threshold values from 0.4 to 0.9
with an interval of 0.05. At threshold 0.8, the exon prediction seems
to be better. Hence, at threshold 0.8 values are shown in Table 3.
The steps in AE prediction are as follows.

The steps in AE prediction are as follows:

(1) Load the VM image of node 1 and choose input DNA
sequences from node 1 genome database using the novel
cloud-based genome bioinformatics system [2]. Using a
binary mapping technique, convert the DNA sequence to

Table 1 Performance comparison in terms of execution times

Sequence Execution time with Execution time without
number proposed model, s cloud, s

1 116 286

2 183 314

3 224 375

4 257 412

5 292 483

Table 2 Dataset of DNA sequences from NCBI database on node 1

Sequence Accession Sequence definition

number number

1 E15270.1 human gene for osteoclastogenesis
inhibitory factor gene

2 X77471.1 Homo sapiens human tyrosine
aminotransferase gene

3 AB035346.2 Homo sapiens T cell lymphoma/

leukaemia 6 gene
4 AJ225085.1 Homo sapiens Fanconi anaemia group
A gene
5 AF009962 Homo sapiens CC chemokine

(CCR-5) receptor gene
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Fig. 3 Location of exon (3934-4581) for a DNA sequence with accession AF009962 predicted using various AEPs
a LMS-based AEP
b VNLMS-based AEP
¢ VNSRLMS-based AEP
d VNSLMS-based AEP
e VNSSLMS-based AEP
fMVNLMS-based AEP
g MVNSRLMS-based AEP
h MVNSLMS-based AEP
i MVNSSLMS-based AEP

Table 3 Performance measures of various AEPs with respect to Sn, Sp and Pr calculations

Sequence number Parameter LMS ~ VNLMS VNSRLMS VNSLMS VNSSLMS MVNLMS MVNSRLMS MVNSLMS MVNSSLMS

1 Sn 0.6286  0.8128 0.7972 0.7795 0.7581 0.7692 0.7507 0.7416 0.7302
Sp 0.6435  0.8021 0.7836 0.7732 0.7565 0.7684 0.7423 0.7465 0.7212
Pr 0.5922  0.8137 0.7783 0.7697 0.7488 0.7595 0.7512 0.7396 0.7323

2 Sn 0.6384  0.8024 0.7835 0.7769 0.7597 0.7691 0.7456 0.7432 0.7318
Sp 0.6628  0.7992 0.7841 0.7685 0.7586 0.7635 0.7523 0.7476 0.7311
Pr 0.5894  0.8136 0.7924 0.7715 0.7526 0.7463 0.7392 0.7257 0.7186

3 Sn 0.6457  0.8028 0.7882 0.7793 0.7581 0.7692 0.7517 0.7446 0.7306
Sp 0.6587  0.8121 0.7936 0.7592 0.7465 0.7682 0.7423 0.7365 0.7212
Pr 0.5934  0.7994 0.7823 0.7667 0.7488 0.7596 0.7532 0.7456 0.7323

4 Sn 0.6273  0.8145 0.7936 0.7735 0.7557 0.7638 0.7537 0.7374 0.7214
Sp 0.6405  0.8024 0.7835 0.7529 0.7497 0.7691 0.7476 0.7402 0.7318
Pr 0.5858  0.8137 0.7941 0.7775 0.7586 0.7598 0.7443 0.7376 0.7251

5 Sn 0.6481  0.7989 0.7884 0.7615 0.7526 0.7663 0.7546 0.7457 0.7306
Sp 0.6518  0.8058 0.7812 0.7596 0.7461 0.7692 0.7583 0.7446 0.7382
Pr 0.5904  0.8121 0.7936 0.7782 0.7565 0.7682 0.7525 0.7465 0.7296
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binary data. Give the obtained binary data as input to AEP
structure.

(i) A biological sequence obeying TBP is given as reference to
the AEP.

(iii) As shown in Fig. 2, a feedback signal is generated and is used
to update filter coefficients.

(iv) When the feedback signal becomes minimum, adaptive algo-
rithm predicts the location of coding region accurately.

(v) The locations of exons are plotted using PSD. The perform-
ance measures such as Sn, Sp and Pr are measured in Table 3.

Fig. 3 shows the predicted exon locations using various adaptive
algorithms. From these plots, it is clear that LMS-based AEP is not
predicting the coding regions accurately. This algorithm causes
some ambiguities in location prediction by identifying some non-
coding regions.

In Fig. 3a, some unwanted peaks are identified as locations 800,
1200 and 2400th sample values. At the same time, the actual exon
location 3934-4581 is not predicted. In case of VN and its
maximum normalised versions, the proposed VNLMS-based algo-
rithms exactly predicted the exon locations in 3934-4581 with good
intensity of PSD. These PSDs are shown in Figs. 36—i. Owing to
normalisation involved in these algorithms, tracking capabilities
of proposed AEPs are better than LMS algorithm. Among these
three signed algorithms, MVNSRLMS is found to be better with
reference to its computational complexity and convergence
characteristics which need only two multiplications, which are inde-
pendent of tap length of AEP. The performance measures of pro-
posed AEPs are tabulated below in Table 3.

The convergence characteristics of MVNSRLMS are just
inferior to MVNLMS, but due to a large number of reduced multi-
plications this inferior behaviour in convergence can be tolerable.
Owing to clipped input sequence and clipped feedback signal in
MVNSSLMS, the performance of exon prediction is inferior to
other signed versions.

Therefore, based on computational complexity, exon prediction
plots, Sn, Sp and Pr calculations shown in Table 3, it is found
that MVNSRLMS-based AEP is found to be the better candidate
in practical applications such as simplified architecture for the lab
on a chip (LOC) or system on chip (SOC).

4. Conclusion: In this Letter, the problem of exon prediction in a
DNA sequence is addressed using AEPs proposed using a novel
cloud-based novel cloud-based genome informatics system at
node 1. The concept of exact location prediction of exons has
several applications in modern healthcare technology. Here, a
new AE prediction technique is proposed. To fulfil this, cloud
services based on Amazon Cloud Services based ‘VMs’ with
custom-designed virtual hard discs for storing and accessing the
genome database information and VN adaptive algorithms are
considered for processing of DNA sequences. Hence, to reduce
computational complexity of the proposed implementation, the
concept of maximum variable normalisation is introduced instead
of variable normalisation. To further minimise the computational
complexity, the proposed MVNLMS algorithm is combined with
sign-based algorithms. As a result, three new hybrid algorithms
come into the scenario of exon prediction. These are
MVNSRLMS, MVNSLMS and MVNSSLMS algorithms. Using
these four algorithms, different AEPs are developed and tested
on real DNA sequences obtained from NCBI database. From
the performance measures shown in Table 3 and performance
characteristics that are shown in Fig. 3, it is clear that
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MVNSRLMS algorithm-based AEP is better in exon prediction
applications. This also again evidenced from the performance
measures tabulated in Table 3 and PSD of exon locations
shown in Fig. 3. Hence, MVNSRLMS-based AEP is suitable for
practical genomic applications for the development of LOCs,
SOCs and nanodevices.
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