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Introduction: DNAJC3, abundant in the pancreatic cells, attenuates endoplasmic
reticulum stress. Homozygous DNAJC3 mutations have been reported to cause non-
immune juvenile-onset diabetes, neurodegeneration, hearing loss, short stature, and
hypothyroidism.

Case Description:We report a case of homozygous DNAJC3mutation in two siblings of
a consanguineous family. A 3-year-old boy presented with short stature and a thyroid
nodule. Laboratory findings confirmed hypothyroidism. Subsequently, levothyroxine was
administered. Growth hormone (GH) stimulation test results were within the normal limits.
His stature was exceedingly short (80.5 cm) (−3.79 SDS). The patient developed
sensorineural hearing loss at age 6 years; his intellectual functioning was impaired.
Recombinant Human Growth Hormine (rhGH) treatment was postponed until the age
of 6.9 years due to a strong family history of diabetes. At age 9 years, he developed an
ataxic gait. Brain magnetic resonance imaging (MRI) revealed neurodegeneration. The
patient developed diabetes at the age of 11 years—5 years after the initiation of rhGH
treatment. Tests for markers of autoimmune diabetes were negative. Lifestyle modification
was introduced, but insulin therapy was eventually required. Whole-exome-sequencing
(WES) revealed a homozygous DNAJC3 mutation, which explained his clinical
presentation. MRI revealed a small, atrophic pancreas. At the age of 17, his final adult
height was 143 cm (−4.7 SDS). His elder brother, who had the same mutation, had a
similar history, except that he had milder ataxia and normal brain MRI finding at the age of
28 years.
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Conclusion: We propose that DNAJC3 mutation can be considered as a cause of
maturity onset diabetes of the young. Patients with DNAJC3 mutations may possess a
small atrophic pancreas.
Keywords: DNAJC3, diabetes, monogenic diabetes, case report, pancreatic atrophy, neurodegeneration, short
stature, hypothyroidism
INTRODUCTION

Diabetes mellitus (DM), one of the major public health challenges
(1), is classified into type 1 diabetes (T1D), type 2 diabetes (T2D),
gestational diabetes, and diabetes due to other causes, such as
monogenic diabetes, exocrine pancreatic insufficiency, and diabetes
secondary tomitochondrial disease (2). Typically, T1D occurs due to
an autoimmune process that destroys the pancreatic b-cells, resulting
in absolute insulin deficiency (3); T1D accounts for 75%, while T2D
accounts for 15% of diabetes cases in pediatrics (4). Its incidence has
increased in recent years due to the obesity epidemic (5–7). T2D is
mainly caused by insulin resistance, resulting from poor insulin
secretion leading to relative insulin deficiency (8).

In individuals with diabetes whose clinical manifestations cannot
be categorized as either T1D or T2D, other causes of diabetes should
be considered. For example, mitochondrial disease is considered in
patients with DM accompanied by deafness, neurodegeneration, or
optic nerve atrophy (9). Mitochondrial function is essential for
normal insulin secretion and pancreatic response (10), with
mitochondrial dysfunction leading to insulin resistance and
pancreatic b-cell dysfunction (11). Additionally, mitochondria play
a central role in aging-related neurodegenerative disorders as they are
essential regulators of cell death—a key feature of neurodegeneration
(12, 13). Monogenic diabetes is another important cause of diabetes
in youth, accounting for 2–6% of all cases (14, 15). Maturity-onset
diabetes of the young (MODY), one of the common causes of
monogenic diabetes, is suspected when there is a family history of
diabetes with an autosomal dominant pattern of inheritance and
onset before 25 years old (16). Mutations in genes that regulate b-cell
function have been identified as the cause of monogenic diabetes
(17–21). Rare mutations, such as the DNAJC3 mutation, which is
associated withDM andmultisystemic neurodegeneration, have been
described recently (22–25). Herein, we report a familial case of
DNAJC3 mutation manifesting as juvenile-onset DM,
hypothyroidism, multisystemic neurodegeneration, short-stature,
and sensorineural hearing loss (SNHL). This case associates the
previously described phenotype of DNAJC3 mutation with the new
finding of pancreatic fibrosis and atrophy. To the best of our
knowledge, this is the first case of a DNAJC3 mutation reported in
the Arab region.

This study was approved by the IRB of KAIMRC. Written
informed consent was obtained from the patients and their
guardians for publication.
CASE DESCRIPTION

We report a 2-year-10-month-old boy (patient A) who was
referred to the endocrinology clinic due to short-stature, with
n.org 2
no symptoms suggestive of chronic illness. He had a small body,
triangular face, and deep-set eyes. His growth parameters were as
follows: height, 80.5 cm (−3.7 SDS); weight, 10.3 kg (−2.79 SDS);
and head circumference, 45.5 cm (-2.45 SDS). Patient A was born
prematurely at 32 weeks’ gestation via normal vaginal delivery
(birth weight, 2 kg, +0.59 SDS and birth length 42 cm, +0.8 SDS)
(26). The patient was appropriate for gestational age.

Regarding family history, the mother’s height was 151 cm,
and the father’s height was 165 cm, with a mid-parental height
(MPH) of 164.5 cm (−1.62 SDS). The parents were first-degree
cousins. Multiple members of the maternal family had DM
(Figure 1). Of note, the patient’s elder brother (patient B) was
also followed up for short-stature and was known to have DM
and hypothyroidism (described further below).

Initial investigation of patient A revealed a thyroid-
stimulating hormone (TSH) level of 27.8 mIU/L and free
thyroxine (FT4) level of 6.7 pmol/L (Table 1). The thyroid
uptake was normal. Thyroid antibody tests were negative, and
neonatal cord blood TSH screening result was normal. Based on
the initial results, patient A was administered 25 µg of
levothyroxine daily (2.5 mcg/kg/day). Other laboratory
investigations, including liver function tests, complete blood
count, erythrocyte sedimentation rate, celiac screening, bone
profile, and parathyroid hormone levels, were within the
normal limits. Additionally, the skeletal survey was normal,
and chromosomal analysis showed a 46, XY karyotype with no
structural abnormalities.

The growth hormone (GH) stimulation test (Clonidine),
conducted after thyroid function normalization, showed a
normal peak at 15.3 ng/mL (normal >10 ng/ml). Serum IGF-1
was 132 ng/ml (normal 52–297 ng/ml). On subsequent follow-up
at the age of 4.5 years, the patient’s height was 85 cm (−4.5 SDS),
and growth velocity (GV) was suboptimal (2.5 cm/year, −3.1
SDS). rhGH therapy was deferred to a later age due to the risk of
insulin resistance and the significant family history of DM
(Figure 1). Of note, the patient’s elder brother (patient B) had
been treated with rhGH therapy and subsequently developed
diabetes. However, due to persistently low GV and short stature,
rhGH therapy was initiated at a height 96.5 cm (−4.4 SDS) with a
small dose (0.015 mg/kg/day) for patient A at the age of 6.9 years.
Bone age was normal for chronological age, and hemoglobin A1c
(HbA1c) level was 4.6% (<5.7) prior to rhGH therapy. GV during
1st year of treatment was 3.9 cm (−2.1 SDS); therefore the rhGh
dose was increased to 0.025 mg/kg/day. HbA1c levels were
frequently assessed during rhGH therapy due to the strong
family history of DM. Serum IGF-1 was 154 ng/ml (57–316)
on rhGH therapy. Consequently, rhGH was discontinued at
10.10 years due to poor response (height 111 cm, −4.6 SDS),
and elevated HbA1c (7.6%). Physical examination revealed
September 2021 | Volume 12 | Article 742278
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normal body mass index (BMI), and absence of acanthosis
nigricans. He was prepubertal at that time. Insulin and C-
peptide levels were detectable. Autoimmune diabetes markers
(glutamic-acid decarboxylase, islet-cell antibodies, and
insulin antibodies) were absent; the tests were repeated
multiple times and remained negative. He was managed with
lifestyle modifications, eventually requiring insulin therapy
3 years later.

At 13 years old, the patient’s glycemic control deteriorated,
HbA1c level rising to 9.8% with DM symptoms. This coincided
Frontiers in Endocrinology | www.frontiersin.org 3
with the progression of puberty. At that time, he was at Tanner
stage III for pubic hair and testicle volume. Basal-bolus insulin
therapy was initiated (0.5 unit/kg/day). His HbA1c dropped to
6.9% and 7.1% after 3 and 12 months, respectively. His final
height was 143 cm (-4.7 SDS, corrected for MPH –3.9). Finally,
pancreatic exocrine function, assessed by levels of lipase and
vitamins A, D, E, and K, was normal. MRI of the pancreas
revealed a small, shrunken, and atrophic pancreas, with signs of
fibrosis at the age of 18 years (Figure 2). Of note, there was no
history of neonatal hyperinsulinemic hypoglycemia.
FIGURE 1 | Family pedigree of patients A and B.
TABLE 1 | Thyroid function tests in individuals with homozygous DNAJC3 mutation.

Test Present Study Bublitz et al. (25) Synofzik et al. (22) Ozon et al. (23) Lytrivi et al. (24)

Patient a Patient b Patient a Patient a Patient b Patient c Patient d Patient a Patient b Patient a Patient b

TSH 27.8
(0.5–5.0)

28.2
(0.5–5.0)

4.9
(0.5–5.0)

2.93
(0.5–5.0)

20.9
(0.5–5.0)

Transient elevation Transient elevation 22.0
(0.45–4.20)

11.2
(0.45–4.20)

Elevated High

FT4 6.7
(9.0–19.0)

12.0
(9.0–19.0)

14.2
(11.6–20.6)

10.95
(11.6–20.6)

9.65
(11.6–20.6)

– – 10.5
(12.0–22.0)

11.1
(12.0–22.0)

Normal Low

Thyroid function tests after treatment initiation
TSH 90.7

(0.5–5.0)
17.1

(0.5–5.0)
– – – – – 0.012

(0.45–4.20)
3.9

(0.45–4.20)
– –

FT4 6.4
(9.0–19.0)

10.8
(9.0–19.0)

– – – – – 15.8
(12.0–22.0)

11.2
(12.0–22.0)

– –

TSH 1.07
(0.5–5.0)

5.7
(0.5–5.0)

– – – – – – – – –

FT4 12.1
(9.0–19.0)

10.3
(9.0–19.0)

– – – – – – – – –
September 2021 | Volum
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TSH, thyroid stimulating hormone, values reported in mIU/L (normal range: 0.35–4.94); FT4, free thyroxine, values reported in pmol/L (normal range: 9.00–19.00); -, not available.
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From a neurodevelopmental point of view, patient A showed
a delay in the attainment of language, with only two-word
sentences at 5 years and delay of other milestones. Audiometry
confirmed bilateral SNHL. Speech evaluation revealed good
perception but poor expressive language, with severe
impairment in intelligible speech production. Although he was
6 years old, he could not attend school. His intellectual function
was reported as mild-to-moderate intellectual disability, with
significant academic delay and an inability to proceed to
intermediate school.

At 9 years of age, gait abnormalities started to develop, requiring
multiple visits to the emergency department due to frequent
falls. His gait was unsteady, with high heel steps and progressive
deterioration. Rheumatological causes were excluded based
on clinical evaluations and laboratory tests. Neurological
examination showed increased deep tendon reflexes, mild
bilateral nystagmus, and atrophied lower limb muscles. Cerebellar
Frontiers in Endocrinology | www.frontiersin.org 4
examination revealed bilateral dysmetria in the upper extremities.
Brain and spine MRI demonstrated bilateral subcortical white
matter intensity with bilateral middle cerebellar peduncle
involvement. Electromyography revealed prolongation over the
tibial and ulnar nerves. His visual acuity was normal. Both
atypical multiple sclerosis and mitochondrial disease were
considered because of the patient’s progressive history. The
former was excluded based on normal visual evoked potentials
and negative antinuclear antibodies, while the latter was
excluded due to normal results of muscle and skin biopsy, whole
mitochondrial genome sequencing, respiratory chain enzymology,
magnetic resonance spectroscopy, and urine amino acid levels.

Patient B, the elder brother of patient A, was initially
evaluated at 5 years of age for short-stature and found to have
subclinical hypothyroidism, requiring levothyroxine (2 mcg/kg/
day). Serum TSH level was 28.5 mIU/L, while serum FT4 level
was 12 pmol/L (Table 1), with normal thyroid uptake scan and
FIGURE 2 | Pancreatic MRI scan of the index patient (patient A) and control patient. The MRI scan in (A, B) showing a small atrophic pancreas of the index patient (patient
A). Images clearly show global parenchymal atrophy of the pancreas. The pancreatic parenchyma appears thin with heterogeneous low T1 signals, indicating fibrosis. The
MRI scan in (C, D) are axial T2 weighted MRI images of a control case, a 26-year-old male with type 1 DM. The images (C, D) show a normal volume of the pancreas.
September 2021 | Volume 12 | Article 742278
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negative thyroid antibodies. rhGH therapy was initiated at 8
years of age at a dose of 0.35 mg/kg/day; his initial HbA1c level
was 5.9%.

Regarding development, patient B was hyperactive; a learning
or intellectual disability and cognitive impairment were
suspected as he had academic difficulties, requiring repetition
of three school years. Audiometry confirmed bilateral SNHL at
the age of 11 years; the karyotype was 46XY, and fragile X test
was negative. Finally, pancreatic MRI showed a small-atrophic
pancreas similar of his brother; pancreatic exocrine function was
normal, with no symptoms suggestive of malabsorption.

rhGH therapy was intermittently continued for 6 years with poor
response. At 14 years of age, patient B developed DM with a normal
BMI. He was at Tanner stage III for pubic hair and testicle volume.
rhGH treatment was discontinued, and metformin was initiated in
addition to lifestyle modifications. One year later, the patient required
insulin due to deterioration of his glycemic control (HbA1c, 13%).
Similar to the index patient, he developed a mild form of ataxia.
Neurological examination revealed abnormal cerebellar signs in the
form of bilateral dysmetria in the upper extremities,
dysdiadochokinesia, and intention tremor. Audiometry confirmed
bilateral SNHL. However, a brain MRI performed for patient B at 28
years of age showed no signs of neurodegeneration. His final height
was 147 cm (–4.01 SDS, corrected for MPH –3.3 SDS).

Owing to the progressive disease nature, and the concerning
brain MRI changes in patient A, WES was performed. The result
showed a previously reported homozygous pathogenic variant in
DNAJC3 [NM_006260.5:c.1177C>T;p.(Arg393Ter)], by Lytrivi
et al. (24), with an autosomal recessive mode of inheritance. Both
parents are carriers, which explained the patient’s clinical
presentation. Other family members were analyzed for segregation,
and it was shown to be well segregated with the phenotype. The
variant was identified as pathogenic/likely pathogenic in several
international databases like ClinVar, Varsome and gnomAD.
Furthermore, the mutation is extremely rare in various
populations, with a mean allele frequency (MAF) of less than 1%.
In silico parameters like BayesDel addAF, DANN, EIGEN,
FATHMM-MKL, and MutationTaster predict this variant as
disease causing/damaging. Subsequently, WES was performed for
patient B, and the presence of the same mutation was confirmed.
DISCUSSION

To the best of our knowledge, this is the first reported case of
DNAJC3mutation reported in the Arab region.DNAJC3 functions
as a co-chaperone of BiP, which promotes the proper folding of
proteins in the endoplasmic reticulum (ER) by binding to amino
acid segments of unfolded proteins (27). ER stress induces
DNAJC3 expression, which then inhibits eukaryotic initiation
factor−2 signaling and reduces the unfolded protein response,
thereby decreasing apoptosis (28). While DNAJC3 is present in all
tissues, it is predominantly found in the pancreatic cells, including
b-cells, and hepatocytes (29). Since DNAJC3 plays a vital role in
attenuating the ER stress, defective DNAJC3 leads to the activation
Frontiers in Endocrinology | www.frontiersin.org 5
of cellular apoptosis, with loss of pancreatic b-cells and decreased
insulin secretion (30). This is evidenced by the hyperglycemia
observed in DNAJC3-null mice (31). Interestingly, DNAJC3-null
mice also showed reduced body weight (31). Defects in other genes
that mediate ER stress response have also been associated with
widespread neurodegeneration (32–35), potentially explaining the
neurodegenerative symptoms observed in individuals with
DNAJC3 mutations. For example, in Wolfram syndrome, which
consists of optic nerve atrophy, SNL and insulin-dependent DM,
abnormal ER stress regulation and signaling occurs with resulting
apoptosis (36, 37).

Synofzik et al. first described two families with DNAJC3
mutations in 2014 (22). Five individuals were described, all of
whom had juvenile-onset diabetes and a combination of various
neurodegenerative symptoms, including SNHL, ataxia, abnormal
nerve conduction, and cognitive deficits (Table 2). Short-stature
and low weight were also observed. The phenotype of DNAJC3
mutations was later expanded to include hypothyroidism based
on a case reported by Bublitz et al. (25). The authors described a
20-year-old female with juvenile-onset diabetes, SNHL, cognitive
deficits , ataxia, and sensorimotor neuropathy, with
hypothyroidism and slightly elevated TSH levels that improved
with thyroid hormone replacement.

Of the five individuals reported by Synofzik et al. (22), two
required thyroid replacement, while the other two had transient
TSH elevations. Two unrelated children with DNAJC3 mutations
have also been recently described by Ozon et al. as having diabetes,
neurodegenerative symptoms, and hypothyroidism requiring
thyroid replacement (23). Furthermore, two unrelated patients
were recently reported to have the same symptoms, including
hypothyroidism (24). The presence of hypothyroidism in the
siblings we reported herein, supports hypothyroidism should be
considered a feature of DNAJC3 mutations. However, the
etiopathogenesis of hypothyroidism associated with DNAJC3
mutations remains unclear. We observed various hormonal
patterns in thyroid function tests performed in individuals with
homozygous DNAJC3mutations (Table 1). An elevated TSH level
of 90.7 mIU/L in patient A (Table 1) suggests primary
hypothyroidism as the most likely cause, which may reflect a
vital role of the DNAJC3 gene in thyroid hormone synthesis.

Juvenile-onset DM is a frequent manifestation of homozygous
DNAJC3 mutations, with the onset of hyperglycemia occurring
between 11 and 19 years of age (22–25). In such cases, DM is
characterized by a lack of pancreatic autoimmunity markers, an
insidious onset, and normal-to-low BMI without signs of insulin
resistance (22–25); these presentations limit the diagnosis as either
T1D or T2D, pointing to another cause. Of note, anti-glutamic
acid decarboxylase (anti-GAD) antibody tests were positive in one
of the individuals described by Synofzik et al. (23); however, anti-
islet tyrosine phosphatase 2 antibody tests were negative.
Moreover, less than half of individuals with isolated positive
GAD-antibodies develop diabetes over an 18-year period (34).

The two cases reported by Ozon et al. had a history of
hyperinsulinemic hypoglycemia, and both required diazoxide
(24). This reflects abnormal b-cell function and is in keeping
with other causes of monogenic diabetes, such as HNF1A and
September 2021 | Volume 12 | Article 742278

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


TABLE 2 | Characteristics of individuals with homozygous DNAJC3 mutations.

zon et al. (23) Lytrivi et al. (24)

(c.393+2T,C,
NM_006260.4)

(c.1036C>T, p.R346*)
Compound Het

(c.1177C>T,
p.R393*)

+ – +
h Presumed Turkish Armenian Algerian

1 1 1
Female Female Male

NA* 143 (−3) 150.5 (−4)

+ + +
NA* 43 36

17.40 (0.48) 21.0 (−3.6) 15.9 (−5.6)

+ + +
+ + +
5 6 NA

+ – NA
+ + NA
3 Neonate NA

+ + NA
+ + +
13.8 12 16

+ + NA

NA NA NA
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Patient Present Study Synofzik et al. (22) Bublitz et al.
(24)

O

a b

DNAJC3 variant c.1177C>T
(p.R393X)

c.580C>T
(p.Arg194*)

Deletion of exons 6–
12(p.)?

c.580C>T,
(p.Arg194)

(c.393+2T>G,
NM_006260.4)

Consanguinity + – + – +
Ethnicity Middle Eastern Turkish Turkish Turkish Presumed Turki
Number of members affected 2 3 2 1 1
Sex Male Male Male (a, b): 2 Female (a, b) Female Male

Female (c): 1
Final adult height, cm (Z-
score)

143 (−4.7) 147
(−4.1)

a: 152 (−3.44) a: 136 (−4.18) 149 (−2.20) NA*
b: 156 (−2.89) b: 143 (−3.12)
c: 145 (−2.81)

Short stature + + + in 2/3 + + +
Adult weight, kg (Z-score) 31.4

(7.44)
51
(−2.35)

a: 45 (−3.45) a: 39 (−3.31) 42 (−2.53) NA*
b: 49 (−2.69) b: 39 (−3.31)
c: 38 (−3.60)

BMI in kg/m2 (Z-score) 17.49
(−2.65)

23.60
(0.18)

a: 19.50 (−1.44) a: 21.10 (−0.19) 18.90 (−1.07) 17.10 (1.00)
b: 20.10 (−1.15) b: 19.10 (−0.98)
c: 18.10 (−1.49)

Hypothyroidism + + + in 2/3 NA + +
Hypoacusis + + + + in 1/2 + +
Age during onset of
hypoacusis, years

6 8.5 a: 6 a: 2 7 6.5
b: 14 b: NA
c: 27

Cognitive deficits + + + NA + +
Ataxia + + + + + +
Age during onset of ataxia,
years

9 NA a: 6 a: 2 15 15.5
b: 19 b: 11
c: 34

Sensorimotor neuropathy + – + + + +
DM + + + + + +
Age during onset of DM,
years

11 14 a: 18 a: 14 19 15.5
b: 15 b: 11
c: 18

Abnormal brain and spine
MRI findings

+ – + + + +

Abnormal pancreas MRI
findings

+ + NA NA NA NA

*Final adult height and weight was not achieved at date of publication.
BMI, body mass index; DM, diabetes mellitus; NA, not available
Z-scores and SDS are based on Centers for Disease Control and Prevention growth charts 2000 (38).
s
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HNF4A mutations, wherein hyperinsulinemic hypoglycemia
occurs in early life with the development of diabetes at an older
age (39–41). The detectable levels of endogenous insulin observed
in patient A have also been described in insulin gene mutations
that lead to b-cell ER stress and eventually apoptosis and resulting
in higher insulin levels than in autoimmune DM (42, 43).

Structural anomalies of the pancreas are common in patients
with monogenic diabetes (44). Pancreatic anomalies can present
as atrophy, aplasia, agenesis, and lipomatosis, which are typical
in certain types of MODY and neonatal diabetes (45, 46).
HNF1A, HNF1B, and CEL-MODY gene mutations are known
to cause pancreatic hypoplasia (47, 48). In our two cases, MRI
showed hypoplasia and atrophy of the pancreas. These findings
support the involvement of DNAJC3 in pancreatic development.
No previously described cases underwent pancreatic MRI and
pancreatic anatomic features are not described in the literature
for patients with DNAJC3 mutation. This feature of the pancreas
is to be added as a phenotype of the DNAJC3 mutation. We
suggest using imaging modalities to evaluate the structural
changes of the pancreas in the early stages of suspected
monogenic DM to characterize their progression.

The patients reported here, and the four described by Ozon
et al. (23) and Lytrivi et al. (24) were administered rhGH therapy
for 2-5 years. GH is a counterregulatory hormone, promoting
insulin-antagonistic effects both in the liver and in peripheral
tissues. While it has a mitogenic effect on b-cells; it causes
hyperglycemia by stimulating glucose production through
increased glycogenolysis and gluconeogenesis (49, 50).
Additionally, GH decreases glucose uptake by adipose tissue (47).
Therefore, the hyperglycemia developed was presumed to be
related to rhGH therapy in the setting of limited insulin
secretory capacity due to the b-cell’s genetic anomaly. However,
hyperglycemia persisted or recurred in all six patients even after the
discontinuation of rhGH therapy, indicating the hyperglycemia
was, in fact, due to new-onset diabetes. We hypothesized rhGH
accelerated hyperglycemia-induced ER stress (42), which facilitated
b-cell loss in the setting of DNAJC3 mutation and an inadequate
response to ER stress. Frequent monitoring of HbA1c levels during
rhGH therapy may have contributed to our earlier detection of
hyperglycemia compared to the other reported cases of
homozygous DNAJC3 mutations.

It is unclear whether individuals with homozygous DNAJC3
mutations have insufficient GH secretory capacity. The two
patients we described herein showed a normal response on GH
stimulation, as did the three patients reported by Bublitz et al.
(25) and Lytrivi et al. (24). In the report by Ozon et al. (23), one
patient had a sufficient GH response initially, with a subsequent
suboptimal response, whereas the second patient had an initial
suboptimal GH peak. However, rhGH therapy response was
inadequate in all patients, which is unusual in true GH
deficiency. Therefore, rhGH treatment should not be initiated
in patients with DNAJC3 mutations, given their increased risk of
diabetes and inadequate response to rhGH therapy. The risk of
hyperglycemia may outweigh the potential growth benefit.

Neurological manifestations are present in all patients, in varying
degrees. The constellation of neurological symptoms includes
Frontiers in Endocrinology | www.frontiersin.org 7
SNHL, cognitive deficits, ataxia, and sensorimotor neuropathy
(22–25). The loss of mitigation of the ER stress response is
implicated in the pathogenesis of widespread neurodegeneration
associated with the DNAJC3 mutation. Other gene mutations
leading to dysregulation of ER stress by affecting BiP co-
chaperones or other transmembrane proteins have been
associated with multisystemic neurodegenerative disorders, such
as Marinesco-Sjögren syndrome and Wolfram syndrome (32–35).
Notably, mitochondrial disease was considered a potential etiology
in patient A and in previous reports of DNAJC3 mutations due to
overlapping clinical presentations of diabetes, hearing-impairment,
and neurodegeneration. Therefore, we suggest DNAJC3 mutations
should be included in the differential diagnosis when investigating
suspected mitochondrial disease.

Our knowledge of the homozygous DNAJC3 mutation
phenotypes is evolving. This condition should be suspected in
youth presenting with juvenile-onset diabetes, ataxia, SNHL,
progressive neurodegeneration, short stature, and hypothyroidism.
Given early age of diabetes onset, absence of autoimmunity
markers, lack of signs of insulin resistance, and imaging findings
of pancreatic atrophy, we propose addingDNAJC3mutations to the
list of mutations known to cause monogenic diabetes. rhGH therapy
seems not effective in promoting growth acceleration, thus
prescription should be discussed with the family considering
available evidence.
PATIENT PERSPECTIVE

Patient A stated that he could not complete high school. He
experiences difficulty in walking for long distances; this requires
him to use a wheelchair. He does not experience mood swings.
He requires his mother’s assistance in performing some of the
outdoor daily activities.

Patient B reported he is a high school graduate coping with his
condition with minimal effect on his quality of life. He has a simple
job and is unmarried. He can drive a car, take care of himself as a
mature adult, and has a good relationship with friends.
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