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The bivariate or multivariate distribution can be used to account for the dependence structure between different failure modes.
This paper considers two dependent competing failure modes from Gompertz distribution, and the dependence structure of these
two failure modes is handled by the Marshall-Olkin bivariate distribution. We obtain the maximum likelihood estimates (MLEs)
based on classical likelihood theory and the associated bootstrap confidence intervals (CIs). The posterior density function based
on the conjugate prior and noninformative (Jeffreys and Reference) priors are studied; we obtain the Bayesian estimates in explicit
forms and construct the associated highest posterior density (HPD) CIs. The performance of the proposed methods is assessed by

numerical illustration.

1. Introduction

It is extremely common that the failure of a product or a
system contains several competing failure modes in reli-
ability engineering; any failure mode will lead to the failure
result. Competing risks’ data contain the failure time and the
corresponding failure mode, which can be modeled by the
competing risks’ model and has been commonly performed
in many research fields, such as engineering and medical
statistics. Previous studies have mostly assumed the com-
peting failure modes to be independent; Wang et al. [1], Ren
and Gui [2], and Qin and Gui [3] focused on the inde-
pendent competing risks’ model under progressively hybrid
censoring from Weibull and Burr-XII distributions. Ob-
jective Bayesian analysis for the competing risks’ model with
Wiener degradation phenomena and catastrophic failures
was studied by Guan et al. [4]. In practice, the independency
relationship between different failure modes is a very special

case; a more common situation is dependency. That is, the
failure mechanisms are interactive and interdependent; the
occurrence of one failure mode will affect the occurrence of
other failure modes. For example, a ship fixed carbon di-
oxide fire extinguishing system can fail due to pressure
gauge, distribution value, cylinder group, and so on; these
failure modes are dependent because they all are related to
the storage environment. Therefore, it is more reasonable to
assume dependency among different competing failure
modes. The competing risks’ model considers the product or
system with multiple dependent competing failure modes,
any one of which will cause the occurrence of failure. The
dependent competing risks’ model has been extensively
studied. Zhang et al. [5] and Zhang et al. [6] studied the
dependent competing risks’ model under accelerated life
testing (ALT) by copula function to measure the dependence
between different competing failure modes; the results in-
dicate the copula construction method has good accuracy
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and universality. Wang and Yan [7] and Wu et al. [8] also
studied this model under ALT and progressively hybrid-
censoring scheme using Clayton copula and Gumbel copula,
respectively. For other related works, see the works of Lo and
Wike [9] and Fang et al. [10].

In addition to using copula function to handle the re-
lationship between different competing failure modes, the
bivariate or multivariate distribution also can be used to
account for the correlation between different failure modes.
The Marshall-Olkin distribution [11], which has many good
properties, is the best-known bivariate distribution and has
been discussed extensively; it has a parameter to describe the
dependence structure. Li et al. [12], Kundu and Gupta [13],
and Bai et al. [14] provided reviews on Marshal-
1-Olkin-Weibull distribution; Kundu and Gupta [13] ob-
tained the explicit forms of the unknown parameters when
the shape parameter is known; when the shape parameter is
unknown, they used the importance sampling to compute
the Bayesian estimates of the unknown parameters. Bai et al.
[14] discussed the statistical analysis for the accelerated
dependent competing risks’ model under Type-II hybrid
censoring schemes. Guan et al. [15] studied objective
Bayesian analysis for the Marshall-Olkin exponential dis-
tribution based on reference priors; they also found that
some of the reference priors are also matching priors and the
posterior distributions based on these priors are proper.

The Gompertz distribution is a widely used growth
model which has been studied extensively; Ismail [16]
studied the Bayesian analysis of Gompertz distribution
parameters and acceleration factor in the case of partially
accelerated life testing under Type-I censoring scheme.
Ghitany et al. [17] considered a progressively censored
sample from Gompertz distribution; they discussed the
existence and uniqueness of the MLEs of the unknown
parameters. The Gompertz distribution plays an important
role in fitting clinical trials’ data in medical science and can
be used to the theory of extreme-order statistics. In this
paper, we will study the dependent competing risks’ model
from the Marshall-Olkin bivariate Gompertz (MOGP)
distribution, which is a bivariate distribution with Gompertz
marginal distributions. We focus our attention on the

From, (tt23 4,00, 6,,0,) = 5

The surface plots of fr 1 (f1,1,;1,0y,0,,0,) are pre-
sented in Figure 1. From Figure 1, we can see that
Sr, 1, (t1, 1531, 64,0, 6,) is a unimodal function.

Put » identical products into test, and each product has
two dependent failure modes with lifetimes T, T,,

[ f(t1;4, 00+ 0,)f (t251,6,)

F(t34,0,)f (t; 4,6, +6,)
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statistical analysis of the model parameters, including
classical likelihood inference, Bayesian analysis, and ob-
jective Bayesian analysis. Because the Bayesian analysis
based on conjugate prior is sensitive to the hyperparameters,
inappropriate choice of it will cause bad priors. Based on this
reason, we propose the objective Bayesian analysis based on
noninformative priors for comparison. The objective
Bayesian inference has been studied by Guan et al. [14],
Bernardo [18], and Berger and Bernardo [19] based on
Reference and Jeffreys priors.

In the rest of this paper, we will present the model
description and some properties. Section 3 presents the
MLEs and associated bootstrap CIs. In Section 4, Bayesian
estimates and associated HPD ClIs based on conjugate prior,
Jeffreys prior [20], and reference priors [18] are obtained,
and these priors lead to proper posteriors which are proved.
Section 5 presents some results obtained from simulation
study and illustrative analysis. Section 6 gives some final
concluding remarks.

2. Model Description

Suppose that f(t;A,6) is a Gompertz distribution; the
density function and reliability function of it are

F(t:1,0) = XD ) 950, >0, o
1
S(t;1,0) =DM ) 650, t>0,

where A is shape parameter and 6 is scale parameter.

Suppose U, U,, and U, are three independent Gom-
pertz variables with different scale parameters, that is,
U, ~GP(A,6,), U, ~GP(A,0,), and U, ~GP (A, 0,). Let
T, =min(U,,U,;) and T, =min(U,U,); we obtain
T, ~GP(A, 6, +6,) and T, ~ GP (A, 6, + 6,). Then, the pair
of variables (T}, T,) follows the MOGP distribution denoted
by (T,,T,) ~ MOGP (4, 6,, 0,,0,). When 6, =0, the two
variables T', and T', are independent and T, and T', will be
dependent when 6;>0; hence, 6, can be regarded as a
correlation coefficient between T, and T',.

The joint PDF of (T, T,) can be written as

t,>t,

t, <t

(2)

0
(m)f(t,l, 90 + 01 + 62) tl = t2 =t
L 0 1 2

(T,,T,) ~ MOGP (A, 6,,0,, 0,). Then, the system lifetime is
X =min(T,,T,) ~MOGP(A,0,+0,+0,). Let 8,=I(T;=
TZZ)’ 8” =I(T”<T21), and 821 =I(T”>T21), for l= 1,"‘,7’1,
where I(-) is an indicator function. Then, we can compute
1y = Y00 1y = 2101, 1y = Y0y, and n=ny+n, +n,.
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Fiure 1: Surface plot of fr r (f1,£5;4,60,,0,,0,) with different values of A, 6,, 6,, 0,. (@) (A, 6y, 0, 6,) = (3, 0.5, 2, 1). (b)
A, 6y, 6, 6,) = (3, 1.5, 0.5, 2). (c) (A, 6,, 6, 6,) = (1, 0.5, 0.5, 0.5). (d) (A, 6, 6, 6,) = (1, 0.2, 0.8, 0.6).

Theorem 1. For I=1,---,n 0&y=I1(T;;=Ty), ;=
I(Ty; <Ty), and 6, = I(Ty; >Ty), We have

9 9 o
, 85, 8) ~ Multinomial( 1; 0o L 2 d=1,---,n
(3or: 11, 1) “mmm<’%+@+@%+@+@%+@+@>l " (3

Proof. Forl=1,---,n, we have §y; + 8, + 6 = 1,

0o rt, 0
P(T,<T,) = J J F(t:4,00) f (£2:4, 00 + 6,)dt,dt, = m’

0 0
HT>T)—erl(ﬁAG+9)(ﬁABMnh———£L—— (@)
1 2) — 0 Of 1,/»Y0 lf 297 V) 2 1_90+61+62’
P(T,=T,)=1- 6, b, il

0,+0,+0, 0,+0,+6, 0,+6,+0,

Therefore, (8, 6,5, ,) ~ Multinomial (1;6,/(6, + 0, + The likelihood function is
0,),0,/ (8, + 0, + 6,),0,/ (6, + 6, +6,)).

oy

su[ OSr, 1, (t1 1251, 00,04, 6,)
o, () |

L(2,6,,6,,6,) = H [le, T, (%1, 151, 6, ’91’92)]
1
(5)

aSTl’TZ (tl,tz;A, 90, 61,92) ]521
at2 |(x1,x,)



where

le,T2 (x5, 6,04, 0,) = 0

=0, exp{)tx, -
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0
0+02f(t;l,60+91+92),

00+il +0, (e)\x, B 1)}

B OSr,, 1, (t t2; A, 65, 0,,6,)

=0, exp«l)tx, -

a, (s

O0,+0,+0,, 1
hrfrb s o)

(6)

B 0Sy 1, (t1,t2; ), 6, 0,,0,)

=0, exp«l)tx, -

Then, we obtain

L(x;A,6,,6,,0,) = 6,6, 6 exp«iA

3. Classical Inference

3.1. Maximum Likelihood Estimates (MLEs). The MLEs of
0> 0,, 0,, andA can be obtained by maximizing the

ologL(x;A,60,,6,,0,)
o _;&
odlogL(x;A,6,,0,,0,) n

=_J_
26, 0,

> \

From (8), we get the MLEs of 6, 6,, and 6, as
n;A j
(2™ -1)]

Substituting 5 (A) into log L(x;A, 90, 0,,0,), we obtain

h(}) = Ale+21n<zl e 1)) (10)

which is the profile logarithm likelihood function of A.

6,1 = =0,1,2. (9)

a, [y

(90+(11 +0, (e"x’ ~ 1)}

Gy } @)

1

O
logarithm of L(x; A, 6, 6;, 6,). Set the first partial derivation
of log L(x;A,0,,0,,0,) about 6,, 6,, 6,, A to 0, i.e.,

0+ 61+, {Z( o )]_90+il+92<leem>:0’
) )

[;( s 1)} =0, j=0,1,2.

(8)

We can show that 0*h(1)/0A* <0, which implies that
h(A) is concave. Some iterative schemes can be used to find
the MLE for A, such as Newton-Raphson algorithm.

3.2. Bootstrap Confidence Intervals (CIs). Since it is hard to
construct the exact ClIs for the unknown parameters, we
consider the Bootstrap method to construct CIs for pa-
rameters 0, 0,, 0,, andA. The Bootstrap method is a
resampling method to estimate some statistical character-
istics for the unknown parameters by taking samples from
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the original samples repeatedly; the obtained samples are
called Bootstrap samples. This method has a great practical
value since it does not need to assume the overall distri-
bution or construct the pivot quantity. We generate the
Bootstrap sample by the following three steps:

Step 1: for the fixed value of n and observed data
(x> %5, ++,x,), we get the estimates A, 6, 0,, and 0,
based on the maximum likelihood method.

I I

{90[1] < v <00[M]’ 91[1] < v

Based on the Bootstrap sample and by percentile
Bootstrap (Boot-P) method, we construct the Boot-P CIs for
0y, 0,1, 05, A at 1 —y confidence level as

nn nn an nn an nn I "
(60[My/2] > VO[M (1-y/2)] )’ (91 [My/2] > 61[M(1—y/2)] )’ (ez[My/Z] > 92[M(1—y/2)] )’ (A[My/z] > MM (1-y/2)] )

4. Bayesian Inference and HPD ClIs

4.1. Conjugate Prior. In this section, we suppose the shape
parameter A is known. Denote 6 = 6, + 6, + 0,, which has a
Gamma prior with hyperparameters a and b as

7_[(9) =(rlzu))9u 1 —bf)’

a>0,b>0,0>0.

(13)

11

0, 0
HD<91, %

Therefore, the joint prior of 6, 6,, and 8, becomes

TGO aery U 4
bo ;!
T )( )’ QF(C, !

) r(IO,)

Ci
71 (6> 6, 055a,b,¢,¢15¢5) “exp (-b6;),

(15)

where ¢ = ¢, +¢; +¢,.

4.2. Jeffreys Prior. According to Jeffreys [20], Jeftreys prior is
proportional to the square root of the determinant of the
Fisher information matrix. From (7), we obtain the Fisher
information matrix of (6,,0,, 0,) as

<61[M],

("

Step 2: for the values of #, 1, @0, @1, and @2, we generate
the sample (x1 ,%5,---,x,). Then, get the MLEs

A 60, 61, and@
Step 3: repeat Step 2 M times to obtain M sets of the

values /\ 60, 91, and 9 Arrange them as follows to get
the Bootstrap sample:

I I I

Ory <o <Orpup Ay <o

Al (11)

(12)

Due to 6,/0+0,/0 + 0,/0 = 1, so given 0, (0,/0, 0,/0)
follows a Dirichlet prior with hyper parameters ¢, c;, and ¢,,
that is,

0,>0,¢;>0,i=0, 1, 2. (14)
Ny
— 0 0
2
6,
m
=1(6,6,,6,)=| 0 5 O (16)
1
)
0 0 —=
2
6,
From Theorem 1, we have

n=n-0/(0,+6,+0,),i=0,1, 2, so I(6,,0,, 0,) can be

written as



0 0
(656)
I 0 ! 0 (17)
=n
(6,9)
(6,6)

Thus, the Jeffreys prior is given by

L(x;
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1
7, (0y, 0, 0,) o< \|[———.
S

Theorem 2. Based on the Jeffreys prior m,(0,,0,, 6,), the
joint posterior distribution of (0,,0,, 0,) is proper.

(18)

Proof. From (6) and (7), we obtain the joint posterior
distribution of (6,,0,, 6,) based on m, (6,,0,, 0,) as

A, 6y, 01, 0,)m, (65, 0, 6,)

Us) (90)91’ 92"‘) = Joo J‘oo J-ooL(x.
0o Jo Jo )

A, 60,61, 6,)7, (65, 6, 6,)d6,d6,d6,’

(19)
o 6(,3/2)60(710—1/2)el(nl—llz)ez(nz—l/z)e(,Ae/A).
Integrating 7, (6,, 6, 0,|x) with respect to 6, 8,, and 6,,
we obtain
[ OO0—3/26n071/28n171/20n271/26(—A9/A)d9 do.do ,
Jo Jo Jo 0 1 2 04b,a0,
00 00 OO 90 ny—1/2 91 ny—1/2 92 ny—1/2 . A
- % 2 2) o e{H(%)6)dondo,do,
J-o ,[o L(e) 0 0 A VYA it
(20)
1 n—1/2 1 n,—1/2
0,\" 0; 6, ,6 JOO 1 A
- % 1=y o) atatk | e texpl-o)de,
i—()(e) < ;0> 00 Jo 1
0<6,/6+6,/60<1
—B(n +1 n +n +1>B(n +1 n +1> L{n) <00
U R YAV} Ea
where A = Y7 (e™ —1) and B(., -) is a beta function. 0, = uy (1 — y; — u,). The Jacobian matrix of the transfor-
Thus, the joint posterior distribution of (6, 0,, 6,) based  mation has the form
0y, 0,, 6,) i . O
on 1, (6,,0,, 8,) is proper “ w0
4.3. Reference Priors. Bernardo [18] and Berger and Ber- ] = < 0 o |[0<pg<00 O<py+ppp<l.
nardo [19] proposed the reference prior which plays a vital L=y —py —ty o
role in the objective Bayesian inference. We set (21)
Uo=0=0y+0,+0,, u =0y/0, and p, = 0,/0; the trans- o ‘
formation from (6, 6;, 6,) to (4, ;> ) is one-to-one The likelihood function (3) becomes
with the inverse transformation 6, = pou,, 0, = poH,, and
ny m n n U Ax
L (65 A, phos s ) = 05" (1 =y = i)™ iy exp{lzxz —(70) [Z(e - 1)] } (22)
1 ]
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The Fisher information matrix of (y,, y;, 4,) can be
written as

l/yé 0 0
1 1
I oZ 77— 0 —+
1 =J'1J=n o (U=p =) (I—p—py)
1 1 1
e — _+7
(I —w) (L= —phy)

(23)

Theorem 3.

(i) Under the ordering groups {uy (uy, )} and
{(py> ty), iy}, the reference priors are the same, which

is given by wg, (o> 1> M) =
\/l/ygylyz (1 = py — u,); the corresponding reference

prior for (6,,0,, 6,) is 1, (6, 0,, 6,) = 1/1/6,6,6,6°

(ii) Under the ordering groups {py, 1> th}> {0 ot 1>

{u1s o> 1o}, and {uy, uy, uy}, the reference priors are
the same, which is given by wg (4o, phy> ) =

\/l/ygylyz (1—uy — ) (1 = y); the corresponding
reference prior for (8,,0,, 0,) is m5(0,, 0,, 0,) =
\1/626,6,60, (6, +6,)

(iii) Under the ordering groups {u,, o, py} and
{tr> 11> py}, the reference priors are the same, which
is given by wg, (o> p1> o) =
\/l/yéylyz (1—u, — ) (1 = y); the corresponding
reference prior for (0,,0,, 0,) is m,(0,, 0, 0,)) =
\1/626,6,6, (6, + 6,)

B

7
Proof.
(i) The Fisher information matrix of (y, yy, y,) is
Y o
11
I, = , (24)
1 0 Z
2
where Y =n/ud and Y, =n
(1/.“1*'1/(1_#1_/42) V(1 =p - I‘z) )
/(1 =y —py) Ty, +1/(1 -

The reference prior for the or ermg groups

{tho» (1> uy)} and {(uy, py), pho} is the same as in
[21], which is given by

12, (12 1
Wg, (to> 1> ) ox o :
; Nesgprtas (1 =y — )
(25)
(ii) The inverse of I, is
ue 0 0
1
H = n 0w (1-p) —wpy : (26)
0~y w(1-u)
(iii) According the notations in [18], we obtain
hy =g hy = Upy (1), and by = (1 - )/ (g,
(1= py = ).
Choose the compact sets Q= {(pg, py> )l

Ao < o <bop> A <Hys Qg < s Py + Py <dy}, such
that a, a, ay — 0, by, — 00, and d;, — 1,
as k — o0o. Then, we have

k
m (o» p1> ) = f B Io, (vt ta)> (27)
’ 1 [ * ’ k
aOk d “i(k d‘ul “:k |d‘u2
bO b()
where Jaoi NIALTE Iaoi 1/uoduy = log by—
log a:
A~ di—4) 1 . 0 .
le \|hs|du, = Jalk mdyl = —arcsm(l - Z(dk - /,tz)) +arcsin (1 - 2ay),
(28)

/ K 1-u
d = j —
J- ‘uz Aok (1 —H -

) Ha»

Hy

=y = 2(dy

1
=(1- yl)”z(—arcsin(

— ‘“1)) + arcsin(w)).
-

1=
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Then, we get the reference prior as

k
(4> 1> 12) ’ 1
wg, (Ho» ph1> ) = lim o< , (29)
k—co n* (ui, ity 1) \eatiaptn (1 =y — ) (1 - 1y)

where (ug, pi, p5) is an inner point of Q. The inverse of I, is
Similarly, under the ordering group {u, t4,, 4}, the w(l=p) 0 —uw,
reference prior is wg (4o, H1> fa)- )
The Fisher information matrix of {u;, py, p,} is H, = . 0 T 0 . (31)
L. ! 0 ! 0 uy(1—u,)
w (L= =) (1= =) it ki
Similarly, we obtain h; = 1/p; (1 —u,), h, = 1/u2,
L =n 0 1 0 and hiy = (1= )/ (py (1 = py = 1))
2 = P :
Ho Choose the compact sets Q= {(uy, o> t2)
lagk <y i <pho <bygs Ao <fhys phy + fhy <di}s
1 1 1 such that ay, ay, ay — 0, by — oo, and
d, — 1, as k — 00. Then, we have
(1t — ) (1= —uy)

(30)

7 (w15 s 1) j:k_u \/7(1#1\/];\/\/:;/; T \/Tdyzlgk(ﬂl’.“o’.“z),

wheref et NI d‘ul = ij—ug Uy, (1= py)du, =
—arcsm(f Z(dk ud)) + arcsm(l - 2ay),

(32)

bk by 1
J \/Ih2|dﬂo = J %dﬂo = log by, —log ay.
Ay ak
A= di=th 1-pu
Il = J Bl R (33)
«[aZk I 3| & a ‘“2(1_#1‘#2) #

2k

=(1- yl)llz(—arcsin<1 —th =2 - ul)) + arcsin(—1 iz 2a2k)).
1 - L=y

Let (u3, pg» 45) be an inner point of Q; we get the
reference prior as

k
: 7 (U1 Hos ) I 1
wg, (o> p1> fp) = lim e - (34)
R = ”k(lfll’/‘on”z) V//’S/"l‘“z(l_ﬂl_ﬂz)(l_ﬂl)
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Similarly, under the ordering group {u;, u,, #4,}, the
reference prior is wp (4o, H1> fs)-

(v) The Fisher information matrix of {u,, p;, o} is

[N L,
ty (L= =) (1=py )
! 1 1+ 1 0 (35)
=n w —t— .
} (- —w) o (L= —p)
1
0 0 —
Ho

P

9
The inverse of I is
w(l-) -y 0
Hz:% “thty i (l—p) O [ (36)
0 0
Then, we obtain h; = 1/p, (1 —p,), hy = (1 —u,)/ (py

(1 - py — ), and hy = 1/ug.

Choose the compact sets Q= {(py ty» pho)lag <
Mo Q< Py fly + iy <dpay <phg<by}, such  that
Age> Ayj> Gg — 0, by — 00, and dj — 1, as k — oo.
Then, we have

o, (2> 1> tho)> (37)

7 (s Uy )

where j kil Ik ldu, = Idk_u? 1/p, (1 = p,y)du, = —arcsin
(1-2 (dk u?)) + arcsin (1 — 2ay;),

A=, A=, 1-pu
NP =j B S
Jalk | 2| . (1 =4y — ) i

Ak

Zl(:k ul \/7‘1”2 jfk " \/7d‘ul ﬂzk \/7(1‘[/!0

1=y —2(dy — 1—p, -2
:(l—yz)m(—arcsin< = 2(dy uZ))+arcsin(M>), (38)

bak bak 1
| sl = [y = 10g by~ tog ae
Aok ay Ko

Let (43, uy> pgy) be an inner point of ), we obtain the
reference prior as

k
(25 1> tho) o

| ! (39)

Wp, (.”0’ H1» .”2) = lim

koo 7 (5, ui, ug)

Similarly, under the ordering group {u,, 4y, 4}, the
reference prior is wg, (#g, #1> f,)- According to the one-to-
one transformation from (g, y;, ;) to (8, 6;, 6,), we can
obtain the reference priors m, (yy, phy> ta)s 73 (Ugs thys
ta)s 74 (Hos 1> o) from Wg,» Wg,» and wg,
respectively. O

ety (1 =y — 1) (1 - 1)

Theorem 4. Based on the reference priors 1, (6,,0,, 6,) and
714 (0,,0,,0,), the posterior distributions of (0,,0,,0,) are proper.

Proof. 'The joint posterior distributions of (6,,0,, 0,) based
on reference prior 75 (6, 0,, 6,) and 7, (6,, 0, 8,) are, re-
spectively, as
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L(x;l,90,01,92)7r3(00,91,92)
JO Io Jo L(x;,6,,6,,0,)m;(6,,6,,0,)d0,d6,do,

73 (6, 0, 0,1x) =

6 e e 6 0) o] L

(40)
L(x§/\>90’91>92)”4(90’91a92)
Io Io Jo L(x; A, 6,,6,,0,)m,(6,,6,,6,)d0,d6,d6,

Ty (60’ 0, 92|x) =

- - - - Af
o 9—16610 1/29211 1/29212 1/2 (90 + 92) 172 eXP{—T]’-

Integrating 75 (6, 0, 0,1x) and m,(6,,0,, 6,]x) with
respect to 0, 0,, and 0,, respectively, we obtain

J J' J' gl g (g 4 g,) 1 exp«[—ATe}dGOdeldez,

1 1) T'(n)

1 1
=B n0+5,n1+n2+§)3<n1+ W<OO,

_’n2+_

2 2
(41)

o[ Ooe—lgno—l/Zenl—l/Zenz—l/Z 6. +0.) 12 Af 46.46.46

o Jo o 0 1 2 (6o +6,) " exp T [4Pedia%

B( +1 + +1>B( +1 +1> L) <
=B|\n, +n,+n, += Ny +=Mn, += | —75<00.
) 07272 2] (AL

Thus, the posterior distributions of (6,,0,, 0,) based on  4.4. Bayesian Estimates. The joint posterior distributions of
75 (6, 0,, 8,) and 7, (6,, 0,, 8,) are proper. O (6y,0,, 0,) based on m, m,, m;, and 71, are, respectively, as

L (x; A, 6,, 0, 92)”1 (90’ 0, 92)

1 (60, 61> 051%) = oo 7o , (42)
PO T [T T L (x5, 60, 6, 6,7, (B, 6, 6,)d60,d6, 6,
where
JO JO JO L(x; A, 8,,0,,0,)7, (8,6, 0,)d0,d6,d6,
L /0 ni+c;—1 g fyt+cy—1 0 0 o
= Zi _N Y .Yy nta+tl —(A/A+b)0
_wlwzeXp{A;xl} 1_01(9) <1 5 > dede’Jo O e (43)

0<6,/0+0,/0<1

I'n+ta+2)

=w,w,expi A Y x; +B(n, +cy,n; +¢c, +n, +¢,)B(n; +c,n, +c,) ——m =,
1w P{Zl:l]’ (0 00" T 6 2 2)(1 1 2)(A/)t+b)"+‘”2
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where w, =F(Zizzoci)b“‘%‘cl‘“zll"(a) and w, = H?:o bSIT (c;). Thus, we obtain

g agtaTighratlghtaTl exn (A/A + b)6
1 (60, 6,5 0,1x) = p{( )0}

B(ng +coony +¢y +1y + cz)B(n1 +cp,my + )T (n+a) (AL +b)™™

Similarly,
TT (6 9 0 Ix) = L('x;l’emepez)ﬂz(eo,el’62)
I 1o 50 T3 L5 A, 64,61, 6,)7, (60, 6y, 6,)d6,d6,d6,
where
JO _[0 jo L(x;A,6,,0,,0,)m, (6, 6,,0,)d0,d0,d0,,
A% p-32 gn0-102 nl 1/2 y1,-1/2 A
J ,[0 Jo 760 %, XP{AZXI 5 }dGOdGIdGZ,
1 1 1\ T'(n)
{)Lzl:xl } ( R 1)B<n1 +om +§) G
We obtain
(80,01, B3lx) = 66y 07 " exp(-A6/M)
T B B(ny +1/2,n; +ny + 1)B(n, + 1/2,n, + 1/2)T (n)/ (A/A)"
75 (60, 0y, 6,1x) = (x 1,04, 0,,0,)7; (6, 6,,6,)
3(Up> Uy i
-[0 .[0 JO x A’ 60’81’92)7[3(6())91:ez)deodgldez
where

j J J L(x: 1, 0y, 6, 0,)723 (60, 6., 6,)d6,d0, 6,

0 I

{/\Zl:xl} ( n1+n2+;>3<n1+%,n2+%)%.

J’ J J' o g 2gn 20 (6, + 6,) I/Zexp{Ale—f}dQOdeldez,

11

(44)

(45)

(46)

(47)

(48)
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We obtain
— 1 n1g—1/2 qn,—1/2 qn,—-1/2 -1/2
0 1 2 —A
7, (60,6, 6, ]) = 60, O 0 (6, +6,) T exp{-A6/A} ~
B(ny + 1/2,n, + ny + 1/2)B(n; + 1/2,n, + 1/2)T' (n)/ (A/)) )
49
7, (00,01, 051%) = —5—o5 OOL(’QA’ 09,01, 0,)7, (60, 6, 6,) )
Io To Ty L(x:A,6,,6,,0,)m,(6,,6,,6,)d6,d6,do,
where
jo JO JO L(x: ), 00, 6,, 0,)7, (60, 0y 6,)d0,d6, d6,,
O o1 =172 ity —172 gp—172 -1 Af
_ JO jo IO oo 0 e (0, + 0,) " expd A Y 3 - O 6,646, (50)
1
1 1 I'(n)
:exp{lzl:xl]»3<nl+E,n0+n2+5>B( )W
Then, we have
—1 1172 g =112 i, =172 -112 _
74 (60, 01, 0,1) = 0 600 (0, + 6,) T exp{—AB/A} (51)

From (9)-(12), we get the Bayesian estimates of pa-
rameters 6, 6, 0,, and 6 against squared error loss function
based on 7}, 7m,, 75, and 714, respectively, which are listed in
Table 1.

4.5. HPD Credible Intervals. The HPD credible intervals of
parameters 0, 0,, 0,, and60 can be constructed by the
Monte Carlo method studied by Chen and Shao [22].

B(ny + 1/2,ny + ny + 1/2)B(ny + 1/2,n, + 1/2)T (n)/ (AJN)"

Step 1: given the value of n and the observed
data (x,x,,---,x,), compute the Bayesian es-
timates of 6, 0,, 0,, andf based on
71y, Ty, T3, and 714, respectively.

Step 2: repeat Step 1 M times; we obtain M sets
of the values 6, 0,,0,, and0 based on
Ty, Ty, T3, and 7y, respectively. Arrange them
in the ascending order, we obtain

B0, 111 <+ < Oom, vy Orm (1 <+ <Ot aap Orm (1 < - <Oy iy O (1 < -+ <O iy K= 1,2,3,4 (52)

Step 3: compute the CIs at 1 — y confidence level
as

(evnk[w]’ evnk[w+(1—)/)M])’ (eﬂk[w]’ enk[w+(l—y)M])’ v=0,1,2%w=12--M-(1-y)M;k=12,34 (53)

Step 4: the HPD CIs for 6,,v=0,1,2, and 0 are the
shortest intervals among (6, )6y, (w+ (1-y)m1)>

(enk[w],enk[w+(l_y)M]), and w=1, 2,"', M- (].—'y)

M, respectively.
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TABLE 2: MSEs, ALs, and CPs of 0, 6,, 6,, and 0 (n=10).
Method Para. 0, 0, 0, 0

MSE 0.4858 0.8030 0.4865 0.9374

MLE Boot-AL 2.2414 2.7146 2.2266 1.7920

Boot-CP 0.9339 0.9294 0.9405 0.9321

MSE 0.4850 0.8012 0.4857 0.9340

m HPD-AL 2.0388 2.5119 2.0425 1.9018

HPD-CP 0.9663 0.9440 0.9645 0.9369

MSE 0.4055 0.5903 0.4061 0.9374

T, HPD-AL 1.7980 2.2183 1.8016 1.9034

Bayes HPD-CP 0.9552 0.9399 0.9539 0.9335

MSE 0.4678 0.5732 0.3909 0.9374

T3 HPD-AL 1.8797 2.2193 1.7850 1.9034

HPD-CP 0.9481 0.9405 0.9569 0.9460

MSE 0.3748 0.7042 0.3754 0.9374

un HPD-AL 1.7724 2.3192 1.7760 1.9034

HPD-CP 0.9527 0.9468 0.9515 0.9405
TaBLE 3: MSEs, ALs, and CPs of 6, 0,, 0,, and 8 (n=20).

Method Para. 0, 0, 0, 0

MSE 0.2505 0.4519 0.2523 0.6907

MLE Boot-AL 1.5795 1.9048 1.5807 1.2957

Boot-CP 0.9488 0.9483 0.9412 0.9407

MSE 0.2503 0.4512 0.2520 0.6893

m HPD-AL 1.4434 1.7573 1.4382 1.3635

HPD-CP 0.9832 0.9692 0.9831 0.9415

MSE 0.2335 0.3766 0.2350 0.6907

T, HPD-AL 1.3512 1.6476 1.3462 1.3640

Bayes HPD-CP 0.9746 0.9447 0.9762 0.9409

MSE 0.2551 0.3662 0.2293 0.6907

T3 HPD-AL 1.3834 1.6486 1.3398 1.3640

HPD-CP 0.9668 0.9506 0.9777 0.9598

MSE 0.2201 0.4260 0.2216 0.6907

Ty HPD-AL 1.3399 1.6868 1.3348 1.3640

HPD-CP 0.9614 0.9525 0.9613 0.9498

TaBLE 4: MSEs, ALs, and CPs of 6, 6, 0,, and 6 (n=30).

TaBLE 5: MSEs, ALs, and CPs of 6, 6, 0,, and 8 (n=50).

Method Para. 0, 0, 0, 0 Method Para. 0, 0, 0, 0
MSE 01752 0.3345 01771  0.6049 MSE 0.1158  0.2460  0.1161  0.5380
MLE Boot-AL  1.2849  1.5451 1.2896  1.0510 MLE Boot-AL 09947  1.1981 1.0018  0.8227
Boot-CP  0.9651 09516 0.9654  0.9415 Boot-CP 09829 09578 0.9831  0.9554
MSE 0.1751  0.3341  0.1770  0.6040 MSE 0.1157  0.2458  0.1161  0.5375
m,  HPD-AL 11710 1.4354 11727 1.1164 m,  HPD-AL 09118 11075 0.9071  0.8677
HPD-CP  0.9919  0.9629  0.9901  0.9427 HPD-CP  0.9955 0.9822  0.9954 0.9724
MSE 01694  0.2922 01712  0.6049 MSE 0.1150  0.2243  0.1154  0.5380
m, HPD-AL 11197 13745 11213 1.1167 n, HPD-AL 0.8874 1.0786 0.8828  0.8679
Bayes HPD-CP  0.9839 0.9723 0.9835 0.9418 Bayes HPD-CP 09884 0.9900 0.9870  0.9702
MSE 0.1814  0.2849 0.1679  0.6049 MSE 0.1209  0.2196  0.1137  0.5380
n;  HPD-AL 11377 13750 1.1177  1.1167 my;  HPD-AL  0.8961 1.0791  0.8811  0.8679
HPD-CP 09783 09770 0.9851  0.9615 HPD-CP 09813 0.9933 09901 0.9721
MSE 0.1612  0.3228 0.1629  0.6049 MSE 0.1105  0.2417  0.1109  0.5380
m, HPD-AL 11132 13966 11148 1.1167 m, HPD-AL 0.8842 1.0892 0.8796  0.8679
HPD-CP 09896 09581 0.9885 0.9638 HPD-CP 09938 0.9789 09931 0.9717
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TaBLE 7: Point estimates and 95% CIs of 6, 0,, 6,, and 6.
Method Para. 0, 0, 0, 0
MLE MLE 0.8029 1.9270 1.2847 4.0146
Boot-CI (0.0408, 1.8099) (0.1891, 2.8803) (0.0642, 1.8178) (0.7671, 4.4112)
. Bayes 0.8029 1.9267 1.2845 4.0141
! HPD CI (0.0898, 1.6991) (0.3473, 2.9083) (0.0396, 1.7374) (0.8141, 4.1876)
. Bayes 0.8332 1.8937 1.2877 4.0146
Baves 2 HPD CI (0.0694, 1.7457) (0.3070, 2.8296) (0.0364, 1.7697) (0.7893, 4.4378)
4 . Bayes 0.8492 1.8841 1.2812 4.0146
3 HPD CI (0.0798, 1.7561) (0.1251, 2.5045) (0.0315, 1.4392) (0.6368, 4.1407)
n Bayes 0.8189 1.9301 1.2656 4.0146
4 HPD-CP (0.0638, 1.4011) (0.2448, 2.8554) (0.0456, 1.7418) (0.8474, 4.3484)
TaBLE 8: Point estimates and 95% CIs of 6,, 0,, 6,, and 0.
Method Para. 0, 0, 0, 0
MLE MLE 1.0882e-2 0.4664e-2 1.3214e-2 2.8760e-2
Boot-CI (0.7354e-3, 1.2770e-2) (0.3244e-2, 2.4914e-2) (0.4077e-3, 1.5990e-2) (0.7324e-2, 3.5454e-2)
. Bayes 1.1882e-2 0.6879e-2 1.3758e-2 3.2520e-2
! HPD CI (0.2305e-2, 1.1210e-2) (0.3998e-2, 1.9825e-2) (0.1861e-2, 1.4366e-2) (1.0088e-2, 3.8182¢-2)
. Bayes 1.0832e-2 0.4856e-2 1.3073e-2 2.8760e-2
Baves 2 HPD CI (0.8317e-3, 1.1676e-2) (0.2315e-2, 1.8702e-2) (0.8807e-3, 1.3700e-2) (0.5246e-2, 3.2002e-2)
Y - Bayes 1.0974e-2 0.4817e-2 1.2969e-2 2.8760e-2
3 HPD CI (0.8499¢-3, 1.1535e-2) (0.3160e-2, 1.7152e-2) (0.8814e-3, 1.4144e-2) (0.6994e-2, 3.2140e-2)
n Bayes 1.0803e-2 0.4919e-2 1.3038e-2 2.8760e-2
4 HPD-CP  (0.8949¢-3, 1.1372e-2)  (0.3365e-2, 1.8866e-2)  (0.6968e-3, 1.4164e-2)  (0.7224e-2, 3.0467¢-2)

5. Numerical Simulation and
IMlustrative Example

5.1. Simulation. Suppose the common shape parameter A is
known. The initial values for parameters (A, 6,,0,, 0,) are
(3, 1,2, 1). The initial values for the hyperparameters
a, b, ¢;, ¢, andc, are all 0.001. Take the sample size n = 10,
20, 30, and 50. Generate the random samples (xq, x5, -+, x,,)
from MOGP (A, 6,, 6,, 0,) by the following steps:

Step 1: for a fixed value n, generate n samples
Ugp> Ugys ++ + > Ug, from GP (A, 6y), uyq, Uy, -+, Uy, from
GP (A, 0,), and u,;, Uy, -+, Uy, from GP(A,0,). Then,
we obtain T'}; = min (uy, uy;) and T = min (1, ty),
I=1,2,--+,n

Step 2: compute (x;, 8y, 8155 05), [ =1,2,---,n, where
xp = min(Ty;, Ty), 8o = I(Tyy = Ty), 6y =1(T;<Ty),
and 621 = I(Tll >T21).

Repeat the procedures 10,000 times; we get the values of
the mean squared errors (MSEs) of the MLEs, the average
lengths (ALs), and coverage probabilities (CPs) of the 95%
Boot-P CIs, and the MSEs of the Bayesian estimates, the ALs,
and CPs of the 95% HPD Cls, which are shown in Table 2-5.
From the results in Table 2-5, we can make the following
conclusions.

The MSEs of MLEs and Bayesian estimates decrease as
the sample size increases. For given sample size n, the
Bayesian estimates based on 7, 7,, and 7, are smaller than
the MSEs of MLEs. The MSEs of Bayesian estimates of

0,and 0, based on m, are smaller than that based on
7,,7,, and 7r;. The MSEs of Bayesian estimates of 6, based
on 7, are smaller than that based on m,,7,, andm,. The
MSE:s of Bayesian estimates of 0 based on 7, are smaller than
that based on 7,, 75, and 7,.

The CPs of Boot-P and HPD ClIs are all close to 0.95. The
ALs of Boot-P and HPD CIs decrease; the associated CPs
increase when the sample size increases. The CPs of HPD Cls
based on Bayesian estimates are larger than the CPs of Boot-
P CIs based on MLEs.

5.2. lllustrative Analysis

5.2.1. Simulated Data. For illustrative purposes, with initial
value for parameters (A, 6,,0,,6,) as (3,1,2,1), we use the
procedures mentioned above to generate U,, U,, andU,
from GP(3,1), GP(3,2), and GP(3,1), respectively. We
then get T, = min(U,,U,) and T, = min (U, U,); the latent
lifetime of the system is min (T';, T,). The simulated data are
listed in Table 6. The MLEs, Bayesian estimates, and asso-
ciated 95% ClIs for parameters 6, 0,, 6,, and 6 are shown in
Table 7. From Table 7, all the MLEs and Bayesian estimates
of (8y, 0, 0,,0) are close to the true value.

5.2.2. Real Data. Use the procedures mentioned above to a
real dataset. Kundu and Gupta [13] analyzed the football
data of UEFA Champions’ League data which are presented
in Table 1. From the data, T, and T', can be regarded as two
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dependent failure modes, and n, = 7,n, = 17, andn, = 13.
This data have been fitted by Marshall-Olkin bivariate
Gompertz distribution (see Wang et al. [23]).

The MLEs, Bayesian estimates, and associated 95% Cls
for parameters 6, 6,, 6,, and 0 are shown in Table 8. From
Tables 7 and 8, Bayesian estimates under different priors are
close to MLEs, and the lengths of 95% Boot-p CIs associated
to MLEs are longer than the lengths of 95% HPD ClIs as-
sociated to Bayesian estimates.

6. Conclusion

This paper discussed the point estimates and CIs for the
parameters of the dependent competing risks’ model from
MOGP distribution. We studied the appropriateness of the
posteriors based on conjugate prior and Jeftreys and Ref-
erence priors, obtained the Bayesian estimates in closed
forms, and constructed the associated HPD Cls. From the
simulations results, the use of the Bayesian method can be
recommended if the priors are available. The results of the
illustrative analysis show that the proposed methods work
well; from the lengths of CIs, we can conclude the Bayesian
estimates are better than MLEs in general.
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