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,e bivariate or multivariate distribution can be used to account for the dependence structure between different failure modes.
,is paper considers two dependent competing failure modes from Gompertz distribution, and the dependence structure of these
two failure modes is handled by the Marshall–Olkin bivariate distribution. We obtain the maximum likelihood estimates (MLEs)
based on classical likelihood theory and the associated bootstrap confidence intervals (CIs). ,e posterior density function based
on the conjugate prior and noninformative (Jeffreys and Reference) priors are studied; we obtain the Bayesian estimates in explicit
forms and construct the associated highest posterior density (HPD) CIs. ,e performance of the proposed methods is assessed by
numerical illustration.

1. Introduction

It is extremely common that the failure of a product or a
system contains several competing failure modes in reli-
ability engineering; any failure mode will lead to the failure
result. Competing risks’ data contain the failure time and the
corresponding failure mode, which can be modeled by the
competing risks’ model and has been commonly performed
in many research fields, such as engineering and medical
statistics. Previous studies have mostly assumed the com-
peting failure modes to be independent; Wang et al. [1], Ren
and Gui [2], and Qin and Gui [3] focused on the inde-
pendent competing risks’ model under progressively hybrid
censoring from Weibull and Burr-XII distributions. Ob-
jective Bayesian analysis for the competing risks’ model with
Wiener degradation phenomena and catastrophic failures
was studied by Guan et al. [4]. In practice, the independency
relationship between different failure modes is a very special

case; a more common situation is dependency. ,at is, the
failure mechanisms are interactive and interdependent; the
occurrence of one failure mode will affect the occurrence of
other failure modes. For example, a ship fixed carbon di-
oxide fire extinguishing system can fail due to pressure
gauge, distribution value, cylinder group, and so on; these
failure modes are dependent because they all are related to
the storage environment. ,erefore, it is more reasonable to
assume dependency among different competing failure
modes.,e competing risks’ model considers the product or
system with multiple dependent competing failure modes,
any one of which will cause the occurrence of failure. ,e
dependent competing risks’ model has been extensively
studied. Zhang et al. [5] and Zhang et al. [6] studied the
dependent competing risks’ model under accelerated life
testing (ALT) by copula function to measure the dependence
between different competing failure modes; the results in-
dicate the copula construction method has good accuracy
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and universality. Wang and Yan [7] and Wu et al. [8] also
studied this model under ALT and progressively hybrid-
censoring scheme using Clayton copula and Gumbel copula,
respectively. For other related works, see the works of Lo and
Wike [9] and Fang et al. [10].

In addition to using copula function to handle the re-
lationship between different competing failure modes, the
bivariate or multivariate distribution also can be used to
account for the correlation between different failure modes.
,e Marshall–Olkin distribution [11], which has many good
properties, is the best-known bivariate distribution and has
been discussed extensively; it has a parameter to describe the
dependence structure. Li et al. [12], Kundu and Gupta [13],
and Bai et al. [14] provided reviews on Marshal-
l–Olkin–Weibull distribution; Kundu and Gupta [13] ob-
tained the explicit forms of the unknown parameters when
the shape parameter is known; when the shape parameter is
unknown, they used the importance sampling to compute
the Bayesian estimates of the unknown parameters. Bai et al.
[14] discussed the statistical analysis for the accelerated
dependent competing risks’ model under Type-II hybrid
censoring schemes. Guan et al. [15] studied objective
Bayesian analysis for the Marshall–Olkin exponential dis-
tribution based on reference priors; they also found that
some of the reference priors are also matching priors and the
posterior distributions based on these priors are proper.

,e Gompertz distribution is a widely used growth
model which has been studied extensively; Ismail [16]
studied the Bayesian analysis of Gompertz distribution
parameters and acceleration factor in the case of partially
accelerated life testing under Type-I censoring scheme.
Ghitany et al. [17] considered a progressively censored
sample from Gompertz distribution; they discussed the
existence and uniqueness of the MLEs of the unknown
parameters. ,e Gompertz distribution plays an important
role in fitting clinical trials’ data in medical science and can
be used to the theory of extreme-order statistics. In this
paper, we will study the dependent competing risks’ model
from the Marshall–Olkin bivariate Gompertz (MOGP)
distribution, which is a bivariate distribution with Gompertz
marginal distributions. We focus our attention on the

statistical analysis of the model parameters, including
classical likelihood inference, Bayesian analysis, and ob-
jective Bayesian analysis. Because the Bayesian analysis
based on conjugate prior is sensitive to the hyperparameters,
inappropriate choice of it will cause bad priors. Based on this
reason, we propose the objective Bayesian analysis based on
noninformative priors for comparison. ,e objective
Bayesian inference has been studied by Guan et al. [14],
Bernardo [18], and Berger and Bernardo [19] based on
Reference and Jeffreys priors.

In the rest of this paper, we will present the model
description and some properties. Section 3 presents the
MLEs and associated bootstrap CIs. In Section 4, Bayesian
estimates and associated HPD CIs based on conjugate prior,
Jeffreys prior [20], and reference priors [18] are obtained,
and these priors lead to proper posteriors which are proved.
Section 5 presents some results obtained from simulation
study and illustrative analysis. Section 6 gives some final
concluding remarks.

2. Model Description

Suppose that f(t; λ, θ) is a Gompertz distribution; the
density function and reliability function of it are

f(t; λ, θ) � θe
(λt− θ eλt− 1( )/λ), λ, θ> 0, t> 0,

S(t; λ, θ) � e
(− θ eλt− 1( )/λ), λ, θ> 0, t> 0,

(1)

where λ is shape parameter and θ is scale parameter.
Suppose U0, U1, and U2 are three independent Gom-

pertz variables with different scale parameters, that is,
U0 ∼ GP(λ, θ0), U1 ∼ GP(λ, θ1), and U2 ∼ GP(λ, θ2). Let
T1 � min(U0, U1) and T2 � min(U0, U2); we obtain
T1 ∼ GP(λ, θ0 + θ1) and T2 ∼ GP(λ, θ0 + θ2). ,en, the pair
of variables (T1, T2) follows theMOGP distribution denoted
by (T1, T2) ∼ MOGP(λ, θ0, θ1, θ2). When θ0 � 0, the two
variables T1 andT2 are independent and T1 andT2 will be
dependent when θ0 > 0; hence, θ0 can be regarded as a
correlation coefficient between T1 andT2.

,e joint PDF of (T1, T2) can be written as

fT1 , T2
t1, t2; λ, θ0, θ1, θ2(  �

f t1; λ, θ0 + θ1( f t2; λ, θ2(  t1 > t2

f t1; λ, θ1( f t2; λ, θ0 + θ2(  t1 < t2.

θ0
θ0 + θ1 + θ2( 

 f t; λ, θ0 + θ1 + θ2(  t1 � t2 � t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

,e surface plots of fT1 , T2
(t1, t2; λ, θ0, θ1, θ2) are pre-

sented in Figure 1. From Figure 1, we can see that
fT1 , T2

(t1, t2; λ, θ0, θ1, θ2) is a unimodal function.
Put n identical products into test, and each product has

two dependent failure modes with lifetimes T1, T2,

(T1, T2) ∼ MOGP(λ, θ0, θ1, θ2). ,en, the system lifetime is
X �min(T1,T2)∼MOGP(λ,θ0 +θ1 +θ2). Let δ0l � I(T1l �

T2l), δ1l � I(T1l<T2l), and δ2l � I(T1l>T2l), for l � 1, · · · ,n,
where I(·) is an indicator function. ,en, we can compute
n0 � lδ0l, n1 � lδ1l, n2 � lδ2l, and n � n0 + n1 + n2.
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Theorem 1. For l � 1, · · · , n, δ0l � I(T1l � T2l), δ1l �

I(T1l <T2l), and δ2l � I(T1l >T2l), We have

δ0l, δ1l, δ2l(  ∼ Multinomial 1;
θ0

θ0 + θ1 + θ2
,

θ1
θ0 + θ1 + θ2

,
θ2

θ0 + θ1 + θ2
 , l � 1, · · · , n. (3)

Proof. For l � 1, · · · , n, we have δ0l + δ1l + δ2l � 1,

P T1 <T2(  � 
∞

0


t2

0
f t1; λ, θ1( f t2; λ, θ0 + θ2( dt1dt2 �

θ1
θ0 + θ1 + θ2

,

P T1 >T2(  � 
∞

0


t1

0
f t1; λ, θ0 + θ1( f t2; λ, θ2( dt2dt1 �

θ2
θ0 + θ1 + θ2

,

P T1 � T2(  � 1 −
θ1

θ0 + θ1 + θ2
−

θ2
θ0 + θ1 + θ2

�
θ0

θ0 + θ1 + θ2
.

(4)

,erefore, (δ0l, δ1l, δ2l) ∼ Multinomial(1; θ0/(θ0 + θ1 +

θ2), θ1/(θ0 + θ1 + θ2), θ2/(θ0 + θ1 + θ2)).
,e likelihood function is

L λ, θ0, θ1, θ2(  � 
l

fT1 , T2
xl, xl; λ, θ0, θ1, θ2(  

δ0l
−

zST1 , T2
t1, t2; λ, θ0, θ1, θ2( 

zt1
| xl, xl( ) 

δ1l

,

× −
zST1 , T2

t1, t2; λ, θ0, θ1, θ2( 

zt2 | xl, xl( )

⎡⎣ ⎤⎦
δ2l

,

(5)
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Figure 1: Surface plot of fT1 , T2
(t1, t2; λ, θ0, θ1, θ2) with different values of λ, θ0, θ1, θ2. (a) (λ, θ0, θ1, θ2) � (3, 0.5, 2, 1). (b)

(λ, θ0, θ1, θ2) � (3, 1.5, 0.5, 2). (c) (λ, θ0, θ1, θ2) � (1, 0.5, 0.5, 0.5). (d) (λ, θ0, θ1, θ2) � (1, 0.2, 0.8, 0.6).
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where

fT1 , T2
xl, xl; λ, θ0, θ1, θ2(  �

θ0
θ0 + θ1 + θ2

f t; λ, θ0 + θ1 + θ2( ,

� θ0 exp λxl −
θ0 + θ1 + θ2

λ
e
λxl − 1  ,

−
zST1, T2

t1, t2; λ, θ0, θ1, θ2( 

zt1
| xl, xl( ),

� θ1 exp λxl −
θ0 + θ1 + θ2

λ
e
λxl − 1  ,

−
zST1,T2

t1, t2; λ, θ0, θ1, θ2( 

zt2
| xl,xl( ),

� θ2 exp λxl −
θ0 + θ1 + θ2

λ
e
λxl − 1  .

(6)

,en, we obtain

L x; λ, θ0, θ1, θ2(  � θn0
0 θ

n1
1 θ

n2
2 exp λ

l

xl −
θ0 + θ1 + θ2

λ


l

e
λxl − 1 ⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (7)

□
3. Classical Inference

3.1. Maximum Likelihood Estimates (MLEs). ,e MLEs of
θ0, θ1, θ2, and λ can be obtained by maximizing the

logarithm of L(x; λ, θ0, θ1, θ2). Set the first partial derivation
of log L(x; λ, θ0, θ1, θ2) about θ0, θ1, θ2, λ to 0, i.e.,

zlogL x; λ, θ0, θ1, θ2( 

zλ
� 

l

xl +
θ0 + θ1 + θ2

λ2


l

e
λxl − 1 ⎡⎣ ⎤⎦ −

θ0 + θ1 + θ2
λ


l

xle
λxl⎛⎝ ⎞⎠ � 0,

zlogL x; λ, θ0, θ1, θ2( 

zθj

�
nj

θj

−
1
λ


l

e
λxl − 1 ⎡⎣ ⎤⎦ � 0, j � 0, 1, 2.

(8)

From (8), we get the MLEs of θ0, θ1, and θ2 as

θj(λ) �
njλ

l e
λxl − 1  

, j � 0, 1, 2. (9)

Substituting θj(λ) into log L(x; λ, θ0, θ1, θ2), we obtain

h(λ) � λ
l

xl + 
2

j�0
ln

njλ
l eλxl − 1( 

 

nj

, (10)

which is the profile logarithm likelihood function of λ.

We can show that z2h(λ)/zλ2 < 0, which implies that
h(λ) is concave. Some iterative schemes can be used to find
the MLE for λ, such as Newton–Raphson algorithm.

3.2. Bootstrap Confidence Intervals (CIs). Since it is hard to
construct the exact CIs for the unknown parameters, we
consider the Bootstrap method to construct CIs for pa-
rameters θ0, θ1, θ2, and λ. ,e Bootstrap method is a
resampling method to estimate some statistical character-
istics for the unknown parameters by taking samples from
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the original samples repeatedly; the obtained samples are
called Bootstrap samples. ,is method has a great practical
value since it does not need to assume the overall distri-
bution or construct the pivot quantity. We generate the
Bootstrap sample by the following three steps:

Step 1: for the fixed value of n and observed data
(x1, x2, · · · , xn), we get the estimates λ, θ0, θ1, and θ2
based on the maximum likelihood method.

Step 2: for the values of n, λ, θ0, θ1, and θ2, we generate
the sample (x∗1 , x∗2 , · · · , x∗n ). ,en, get the MLEs
λ
’′, θ

’′
0,

θ
’′
1, and θ

’′
2.

Step 3: repeat Step 2 M times to obtain M sets of the

values λ
’′, θ

’′
0,

θ
’′
1, and θ

’′
2. Arrange them as follows to get

the Bootstrap sample:

θ
’′
0[1] < · · · < θ

’′
0[M],

θ
’′
1[1] < · · · < θ

’′
1[M],

θ
’′
2[1] < · · · < θ

’′
2[M],

λ
’′
[1] < · · · < λ

’′
[M] . (11)

Based on the Bootstrap sample and by percentile
Bootstrap (Boot-P) method, we construct the Boot-P CIs for
θ0, θ1, θ2, λ at 1 − c confidence level as

θ0[Mc/2]
″ , θ0[M(1− c/2)]

″ , θ1[Mc/2]
″ , θ1[M(1− c/2)]

″ , θ2[Mc/2]
″ , θ2[M(1− c/2)]

″ , λ[Mc/2]
″ , λ[M(1− c/2)]

″ . (12)

4. Bayesian Inference and HPD CIs

4.1. Conjugate Prior. In this section, we suppose the shape
parameter λ is known. Denote θ � θ0 + θ1 + θ2, which has a
Gamma prior with hyperparameters a and b as

π(θ) �
b

a

Γ(a)
 θa− 1

e
− bθ

,

a> 0, b> 0, θ> 0.

(13)

Due to θ0/θ + θ1/θ + θ2/θ � 1, so given θ, (θ1/θ, θ2/θ)

follows a Dirichlet prior with hyper parameters c0, c1, and c2,
that is,

πD

θ1
θ

,
θ2
θ

|θ  �
Γ 

2
i�0 ci 


2
i�0 Γ ci( 



2

i�0

θi

θ
 

ci − 1

, θi > 0, ci > 0, i � 0, 1, 2. (14)

,erefore, the joint prior of θ0, θ1, and θ2 becomes

π1 θ0, θ1, θ2; a, b, c0, c1, c2(  �
Γ(c)

Γ(a)
(bθ)

a− c


2

i�0

b
ci

Γ ci( 
θci − 1

i exp − bθi( ,

(15)

where c � c0 + c1 + c2.

4.2. Jeffreys Prior. According to Jeffreys [20], Jeffreys prior is
proportional to the square root of the determinant of the
Fisher information matrix. From (7), we obtain the Fisher
information matrix of (θ0, θ1, θ2) as

I � I θ0, θ1, θ2(  �

n0

θ20
0 0

0
n1

θ21
0

0 0
n2

θ22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

From ,eorem 1, we have
ni � n · θi/(θ0 + θ1 + θ2), i � 0, 1, 2, so I(θ0, θ1, θ2) can be
written as
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I � n

1
θ0θ( 

0 0

0
1
θ1θ( 

0

0 0
1
θ2θ( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

,us, the Jeffreys prior is given by

π2 θ0, θ1, θ2( ∝
�������

1
θ0θ1θ2θ

3



. (18)

Theorem 2. Based on the Jeffreys prior π2(θ0, θ1, θ2), the
joint posterior distribution of (θ0, θ1, θ2) is proper.

Proof. From (6) and (7), we obtain the joint posterior
distribution of (θ0, θ1, θ2) based on π2(θ0, θ1, θ2) as

π2 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π2 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π2 θ0, θ1, θ2( dθ0dθ1dθ2

,

∝ θ(− 3/2)θ n0− 1/2( )
0 θ n1− 1/2( )

1 θ n2− 1/2( )
2 e

(− Aθ/λ)
.

(19)

Integrating π2(θ0, θ1, θ2|x) with respect to θ0, θ1, and θ2,
we obtain


∞

0

∞

0

∞

0
θ− 3/2θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 e
(− Aθ/λ)

dθ0dθ1dθ2,

� 
∞

0

∞

0

∞

0

θ0
θ

 

n0− 1/2 θ1
θ

 

n1− 1/2 θ2
θ

 

n2− 1/2

θn− 3 exp −
A

λ
 θ dθ0dθ1dθ2,

� 

0< θ0/θ+θ1/θ< 1



1

i�0

θi

θ
 

ni − 1/2

1 − 
1

i�0

θi

θ
⎛⎝ ⎞⎠

n2− 1/2

d
θ0
θ

d
θ1
θ

· 
∞

0
θn− 1 exp −

A

λ
θ dθ,

� B n0 +
1
2
, n1 + n2 + 1 B n1 +

1
2
, n2 +

1
2

 
Γ(n)

(A/λ)
n <∞,

(20)

where A � 
n
i�1(eλxi − 1) and B(·, ·) is a beta function.

,us, the joint posterior distribution of (θ0, θ1, θ2) based
on π2(θ0, θ1, θ2) is proper. □

4.3. Reference Priors. Bernardo [18] and Berger and Ber-
nardo [19] proposed the reference prior which plays a vital
role in the objective Bayesian inference. We set
μ0 ≡ θ � θ0 + θ1 + θ2, μ1 � θ0/θ, and μ2 � θ1/θ; the trans-
formation from (θ0, θ1, θ2) to (μ0, μ1, μ2) is one-to-one
with the inverse transformation θ0 � μ0μ1, θ1 � μ0μ2, and

θ2 � μ0(1 − μ1 − μ2). ,e Jacobian matrix of the transfor-
mation has the form

J �

μ1 μ0 0

μ2 0 μ0
1 − μ1 − μ2 − μ0 − μ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, 0< μ0 <∞, 0< μ1 + μ2 < 1.

(21)

,e likelihood function (3) becomes

L x; λ, μ0, μ1, μ2(  � μn0
1 μ

n1
2 1 − μ1 − μ2( 

n2μn
0 exp λ

l

xl −
μ0
λ

  
l

e
λxl − 1 ⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (22)
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,e Fisher information matrix of (μ0, μ1, μ2) can be
written as

I1 � J′IJ � n

1/μ20 0 0

0
1
μ1

+
1

1 − μ1 − μ2( 

1
1 − μ1 − μ2( 

0
1

1 − μ1 − μ2( 

1
μ2

+
1

1 − μ1 − μ2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

Theorem 3.

(i) Under the ordering groups μ0, (μ1, μ2)  and
(μ1, μ2), μ0 , the reference priors are the same, which
is given by ωR1

(μ0, μ1, μ2) �
������������������
1/μ20μ1μ2(1 − μ1 − μ2)


; the corresponding reference

prior for (θ0, θ1, θ2) is π2(θ0, θ1, θ2) �

���������

1/θ0θ1θ2θ
3



(ii) Under the ordering groups μ0, μ1, μ2 , μ0, μ2, μ1 ,
μ1, μ0, μ2 , and μ1, μ2, μ0 , the reference priors are
the same, which is given by ωR2

(μ0, μ1, μ2) �
������������������������
1/μ20μ1μ2(1 − μ1 − μ2)(1 − μ1)


; the corresponding

reference prior for (θ0, θ1, θ2) is π3(θ0, θ1, θ2) �����������������

1/θ2θ0θ1θ2(θ1 + θ2)


(iii) Under the ordering groups μ2, μ0, μ1  and
μ2, μ1, μ0 , the reference priors are the same, which
is given by ωR3

(μ0, μ1, μ2) �
������������������������
1/μ20μ1μ2(1 − μ1 − μ2)(1 − μ2)


; the corresponding

reference prior for (θ0, θ1, θ2) is π4(θ0, θ1, θ2)) �����������������

1/θ2θ0θ1θ2(θ0 + θ2)


Proof.

(i) ,e Fisher information matrix of (μ0, μ1, μ2) is

I1 �


11

0

0 
22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (24)

where 11 � n/μ20 and 22 � n
1/μ1 + 1/(1 − μ1 − μ2) 1/(1 − μ1 − μ2)

1/(1 − μ1 − μ2) 1/μ2 + 1/(1 − μ1 − μ2)
 .
,e reference prior for the ordering groups
μ0, (μ1, μ2)  and (μ1, μ2), μ0  is the same as in
[21], which is given by

ωR1
μ0, μ1, μ2( ∝ 

11





1/2


22





1/2

∝
����������������

1
μ20μ1μ2 1 − μ1 − μ2( 



.

(25)

(ii) ,e inverse of I1 is

H �
1
n

μ20 0 0

0 μ1 1 − μ1(  − μ1μ2

0 − μ1μ2 μ2 1 − μ2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

(iii) According the notations in [18], we obtain
h1 � 1/μ20, h2 � 1/μ1(1 − μ1), and h3 � (1 − μ1)/(μ2
(1 − μ1 − μ2)).
Choose the compact sets Ωk � (μ0, μ1, μ2)|

a0k < μ0 < b0k, a1k < μ1, a2k < μ2, μ1 + μ2 <dk}, such
that a0k, a1k, a2k⟶ 0, b0k⟶∞, and dk⟶ 1,
as k⟶∞. ,en, we have

πk μ0, μ1, μ2(  �

���
h1




 ���
h2




 ���
h3







b0k

a0k

���
h1





dμ0 · 

dk− μ02
a1k

���
h2





dμ1 · 

dk− μ1
a2k

���
h3





dμ2

IΩk
μ0, μ1, μ2( , (27)

where 
b0k

a0k

���
|h1|


dμ0 � 

b0k

a0k
1/μ0dμ0 � log b0k−

log a0k:


dk− μ02

a1k

���

h2






dμ1 � 
dk− μ02

a1k

���������
1

μ1 1 − μ1( 



dμ1 � − arcsin 1 − 2 dk − μ02   + arcsin 1 − 2a1k( ,


dk− μ1

a2k

���

h3






dμ2 � 
dk− μ1

a2k

�������������
1 − μ1

μ2 1 − μ1 − μ2( 



dμ2,

� 1 − μ1( 
1/2

− arcsin
1 − μ1 − 2 dk − μ1( 

1 − μ1
  + arcsin

1 − μ1 − 2a2k

1 − μ1
  .

(28)
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,en, we get the reference prior as

ωR2
μ0, μ1, μ2(  � lim

k⟶∞

πk μ0, μ1, μ2( 

πk μ∗0 , μ∗1 , μ∗2( 
∝

�����������������������
1

μ20μ1μ2 1 − μ1 − μ2(  1 − μ1( 



, (29)

where (μ∗0 , μ∗1 , μ∗2 ) is an inner point of Ωk.
Similarly, under the ordering group μ0, μ2, μ1 , the
reference prior is ωR2

(μ0, μ1, μ2).
,e Fisher information matrix of μ1, μ0, μ2  is

I2 � n

1
μ1

+
1

1 − μ1 − μ2( 
0

1
1 − μ1 − μ2( 

0
1
μ20

0

1
1 − μ1 − μ2( 

0
1
μ2

+
1

1 − μ1 − μ2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)

,e inverse of I2 is

H1 �
1
n

μ1 1 − μ1(  0 − μ1μ2

0 μ20 0

− μ1μ2 0 μ2 1 − μ2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

Similarly, we obtain h1 � 1/μ1(1 − μ1), h2 � 1/μ20,
and h3 � (1 − μ1)/(μ2(1 − μ1 − μ2)).
Choose the compact sets Ωk � (μ1, μ0, μ2)

|a0k < μ1, a1k < μ0 < b1k, a2k < μ2, μ1 + μ2 <dk},
such that a0k, a1k, a2k⟶ 0, b1k⟶∞, and
dk⟶ 1, as k⟶∞. ,en, we have

πk μ1, μ0, μ2(  �

���
h1




 ���
h2




 ���
h3







dk− u0

2
a0k

���
h1





dμ1 · 

b1k

a1k

���
h2





dμ0 · 

dk− μ1
a2k

���
h3





dμ2

IΩk
μ1, μ0, μ2( , (32)

where 
dk− u0

2
a0k

���
|h1|


dμ1 � 

dk− u0
2

a0k

����������
1/μ1(1 − μ1)


dμ1 �

− arcsin(1 − 2(dk − u0
2)) + arcsin(1 − 2a0k),


b1k

a1k

���

h2






dμ0 � 
b1k

a1k

1
μ0

dμ0 � log b1k − log a1k,


dk− μ1

a2k

���

h3






dμ2 � 
dk− μ1

a2k

�������������
1 − μ1

μ2 1 − μ1 − μ2( 



dμ2,

� 1 − μ1( 
1/2

− arcsin
1 − μ1 − 2 dk − u1( 

1 − μ1
  + arcsin

1 − μ1 − 2a2k

1 − μ1
  .

(33)

Let (μ∗1 , μ∗0 , μ∗2 ) be an inner point of Ωk; we get the
reference prior as

ωR2
μ0, μ1, μ2(  � lim

k⟶∞

πk μ1, μ0, μ2( 

πk μ∗1 , μ∗0 , μ∗2( 
∝

�����������������������
1

μ20μ1μ2 1 − μ1 − μ2(  1 − μ1( 



. (34)
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Similarly, under the ordering group μ1, μ2, μ0 , the
reference prior is ωR2

(μ0, μ1, μ2).
(v) ,e Fisher information matrix of μ2, μ1, μ0  is

I3 � n

1
μ2

+
1

1 − μ1 − μ2( 

1
1 − μ1 − μ2( 

0

1
1 − μ1 − μ2( 

1
μ1

+
1

1 − μ1 − μ2( 
0

0 0
1
μ20

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

,e inverse of I3 is

H2 �
1
n

μ2 1 − μ2(  − μ1μ2 0

− μ1μ2 μ1 1 − μ1(  0

0 0 μ20

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (36)

,en, we obtain h1 � 1/μ2(1 − μ2), h2 � (1 − μ2)/(μ1
(1 − μ1 − μ2)), and h3 � 1/μ20.

Choose the compact sets Ωk � (μ2, μ1, μ0)|a0k <

μ2, a1k < μ1, μ2 + μ1 <dk, a2k < μ0 < b2k}, such that
a0k, a1k, a2k⟶ 0, b2k⟶∞, and dk⟶ 1, as k⟶∞.
,en, we have

πk μ2, μ1, μ0(  �

���
h1




 ���
h2




 ���
h3







dk− u0

1
a0k

���
h1





dμ2 · 

dk− μ2
a1k

���
h2





dμ1 · 

b2k

a2k

���
h3





dμ0

IΩk
μ2, μ1, μ0( , (37)

where 
dk− u0

1
a0k

���
|h1|


dμ2 � 

dk− u0
1

a0k

����������
1/μ2(1 − μ2)


dμ2 � − arcsin

(1 − 2(dk − u0
1)) + arcsin(1 − 2a0k),


dk− μ2

a1k

���

h2






dμ1 � 
dk− μ2

a1k

�������������
1 − μ2

μ1 1 − μ1 − μ2( 



dμ1,

� 1 − μ2( 
1/2

− arcsin
1 − μ2 − 2 dk − u2( 

1 − μ2
  + arcsin

1 − μ2 − 2a1k

1 − μ2
  ,


b2k

a2k

���

h3






dμ0 � 
b2k

a2k

1
μ0

dμ0 � log b2k − log a2k.

(38)

Let (μ∗2 , μ∗1 , μ∗0 ) be an inner point of Ωk, we obtain the
reference prior as

ωR3
μ0, μ1, μ2(  � lim

k⟶∞

πk μ2, μ1, μ0( 

πk μ∗2 , μ∗1 , μ∗0( 
∝

�����������������������
1

μ20μ1μ2 1 − μ1 − μ2(  1 − μ2( 



. (39)

Similarly, under the ordering group μ2, μ0, μ1 , the
reference prior is ωR3

(μ0, μ1, μ2). According to the one-to-
one transformation from (μ0, μ1, μ2) to (θ0, θ1, θ2), we can
obtain the reference priors π2(μ0, μ1, μ2), π3 (μ0, μ1,
μ2), π4(μ0, μ1, μ2) from ωR1

, ωR2
, andωR3

,
respectively. □

Theorem 4. Based on the reference priors π3(θ0, θ1, θ2) and
π4(θ0,θ1,θ2), the posterior distributions of (θ0,θ1,θ2) are proper.

Proof. ,e joint posterior distributions of (θ0, θ1, θ2) based
on reference prior π3(θ0, θ1, θ2) and π4(θ0, θ1, θ2) are, re-
spectively, as
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π3 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π3 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π3 θ0, θ1, θ2( dθ0dθ1dθ2

,

∝ θ− 1θn0− 1/2
0 θn1− 1/2

1 θn2− 1/2
2 θ1 + θ2( 

− 1/2 exp −
Aθ
λ

 ,

π4 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π4 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π4 θ0, θ1, θ2( dθ0dθ1dθ2

,

∝ θ− 1θn0− 1/2
0 θn1− 1/2

1 θn2− 1/2
2 θ0 + θ2( 

− 1/2 exp −
Aθ
λ

 .

(40)

Integrating π3(θ0, θ1, θ2|x) and π4(θ0, θ1, θ2|x) with
respect to θ0, θ1, and θ2, respectively, we obtain


∞

0

∞

0

∞

0
θ− 1θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 θ1 + θ2( 
− 1/2 exp −

Aθ
λ

 dθ0dθ1dθ2,

� B n0 +
1
2
, n1 + n2 +

1
2

 B n1 +
1
2
, n2 +

1
2

 
Γ(n)

(A/λ)
n <∞,


∞

0

∞

0

∞

0
θ− 1θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 θ0 + θ2( 
− 1/2 exp −

Aθ
λ

 dθ0dθ1dθ2,

� B n1 +
1
2
, n0 + n2 +

1
2

 B n0 +
1
2
, n2 +

1
2

 
Γ(n)

(A/λ)
n <∞.

(41)

,us, the posterior distributions of (θ0, θ1, θ2) based on
π3(θ0, θ1, θ2) and π4(θ0, θ1, θ2) are proper. □

4.4. Bayesian Estimates. ,e joint posterior distributions of
(θ0, θ1, θ2) based on π1, π2, π3, and π4 are, respectively, as

π1 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π1 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π1 θ0, θ1, θ2( dθ0dθ1dθ2

, (42)

where


∞

0

∞

0

∞

0
L x; λ, θ0, θ1, θ2( π1 θ0, θ1, θ2( dθ0dθ1dθ2

� w1w2 exp λ
l

xl

⎧⎨

⎩

⎫⎬

⎭ 

0< θ0/θ+θ1/θ< 1



1

i�0

θi

θ
 

ni+ci − 1

1 − 
1

i�0

θi

θ
⎛⎝ ⎞⎠

n2+c2− 1

d
θ0
θ

d
θ1
θ

, 
∞

0
θn+a+1

e
− (A/λ+b)θ

dθ

� w1w2 exp λ
l

xl

⎧⎨

⎩

⎫⎬

⎭B n0 + c0, n1 + c1 + n2 + c2( B n1 + c1, n2 + c2( 
Γ(n + a + 2)

(A/λ + b)
n+a+2,

(43)
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where w1�Γ(
2
i�0ci)b

a− c0− c1− c2 /Γ(a) and w2 � 
2
i�0 bci/Γ(ci). ,us, we obtain

π1 θ0, θ1, θ2|x(  �
θa− c0− c1− c2θn0+c0− 1

0 θn1+c1− 1
1 θn2+c2− 1

2 exp − (A/λ + b)θ{ }

B n0 + c0, n1 + c1 + n2 + c2( B n1 + c1, n2 + c2( Γ(n + a)/(A/λ + b)
n+a. (44)

Similarly,

π2 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π2 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π2 θ0, θ1, θ2( dθ0dθ1dθ2

, (45)

where


∞

0

∞

0

∞

0
L x; λ, θ0, θ1, θ2( π2 θ0, θ1, θ2( dθ0dθ1dθ2,

� 
∞

0

∞

0

∞

0
θ− 3/2θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 exp λ
l

xl −
A

λ
θ

⎧⎨

⎩

⎫⎬

⎭dθ0dθ1dθ2,

� exp λ
l

xl

⎧⎨

⎩

⎫⎬

⎭B n0 +
1
2
, n1 + n2 + 1 B n1 +

1
2
, n2 +

1
2

 
Γ(n)

(A/λ)
n.

(46)

We obtain

π2 θ0, θ1, θ2|x(  �
θ− 3/2θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 exp − Aθ/λ{ }

B n0 + 1/2, n1 + n2 + 1( B n1 + 1/2, n2 + 1/2( Γ(n)/(A/λ)
n,

π3 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π3 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π3 θ0, θ1, θ2( dθ0dθ1dθ2

,

(47)

where


∞

0

∞

0

∞

0
L x; λ, θ0, θ1, θ2( π3 θ0, θ1, θ2( dθ0dθ1dθ2,

� 
∞

0

∞

0

∞

0
θ− 1θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 θ1 + θ2( 
− 1/2 exp λ

l

xl −
Aθ
λ

⎧⎨

⎩

⎫⎬

⎭dθ0dθ1dθ2,

� exp λ
l

xl

⎧⎨

⎩

⎫⎬

⎭B n0 +
1
2
, n1 + n2 +

1
2

 B n1 +
1
2
, n2 +

1
2

 
Γ(n)

(A/λ)
n.

(48)
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We obtain

π3 θ0, θ1, θ2|x(  �
θ− 1θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 θ1 + θ2( 
− 1/2 exp − Aθ/λ{ }

B n0 + 1/2, n1 + n2 + 1/2( B n1 + 1/2, n2 + 1/2( Γ(n)/(A/λ)
n,

π4 θ0, θ1, θ2|x(  �
L x; λ, θ0, θ1, θ2( π4 θ0, θ1, θ2( 


∞
0 
∞
0 
∞
0 L x; λ, θ0, θ1, θ2( π4 θ0, θ1, θ2( dθ0dθ1dθ2

,

(49)

where


∞

0

∞

0

∞

0
L x; λ, θ0, θ1, θ2( π4 θ0, θ1, θ2( dθ0dθ1dθ2,

� 
∞

0

∞

0

∞

0
θ− 1θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 θ0 + θ2( 
− 1/2 exp λ

l

xl −
Aθ
λ

⎧⎨

⎩

⎫⎬

⎭dθ0dθ1dθ2,

� exp λ
l

xl

⎧⎨

⎩

⎫⎬

⎭B n1 +
1
2
, n0 + n2 +

1
2

 B n0 +
1
2
, n2 +

1
2

 
Γ(n)

(A/λ)
n.

(50)

,en, we have

π4 θ0, θ1, θ2|x(  �
θ− 1θn0− 1/2

0 θn1− 1/2
1 θn2− 1/2

2 θ0 + θ2( 
− 1/2 exp − Aθ/λ{ }

B n1 + 1/2, n0 + n2 + 1/2( B n0 + 1/2, n2 + 1/2( Γ(n)/(A/λ)
n. (51)

From (9)–(12), we get the Bayesian estimates of pa-
rameters θ0, θ1, θ2, and θ against squared error loss function
based on π1, π2, π3, and π4, respectively, which are listed in
Table 1.

4.5. HPD Credible Intervals. ,e HPD credible intervals of
parameters θ0, θ1, θ2, and θ can be constructed by the
Monte Carlo method studied by Chen and Shao [22].

Step 1: given the value of n and the observed
data (x1, x2, · · · , xn), compute the Bayesian es-
timates of θ0, θ1, θ2, and θ based on
π1, π2, π3, and π4, respectively.
Step 2: repeat Step 1 M times; we obtain M sets
of the values θ0, θ1, θ2, and θ based on
π1, π2, π3, and π4, respectively. Arrange them
in the ascending order, we obtain

θ0πk[1]< · · · < θ0πk[M],
θ1πk[1]< · · · < θ1πk[M],

θ2πk[1]< · · · < θ2πk[M],
θπk[1]< · · · < θπk[M], k � 1, 2, 3, 4. (52)

Step 3: compute the CIs at 1 − c confidence level
as

θvπk[w],
θvπk[w+(1− c)M] , θπk[w],

θπk[w+(1− c)M] , v � 0, 1, 2; w � 1, 2, · · · , M − (1 − c)M; k � 1, 2, 3, 4. (53)

Step 4: the HPD CIs for θv, v � 0, 1, 2, and θ are the
shortest intervals among (θvπk[w],

θvπk[w+(1− c)M]),

(θπk[w],
θπk[w+(1− c)M]), and w�1, 2, ···, M− (1− c)

M, respectively.
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Table 2: MSEs, ALs, and CPs of θ0, θ1, θ2, and θ (n� 10).

Method Para. θ0 θ1 θ2 θ

MLE
MSE 0.4858 0.8030 0.4865 0.9374

Boot-AL 2.2414 2.7146 2.2266 1.7920
Boot-CP 0.9339 0.9294 0.9405 0.9321

Bayes

π1
MSE 0.4850 0.8012 0.4857 0.9340

HPD-AL 2.0388 2.5119 2.0425 1.9018
HPD-CP 0.9663 0.9440 0.9645 0.9369

π2
MSE 0.4055 0.5903 0.4061 0.9374

HPD-AL 1.7980 2.2183 1.8016 1.9034
HPD-CP 0.9552 0.9399 0.9539 0.9335

π3
MSE 0.4678 0.5732 0.3909 0.9374

HPD-AL 1.8797 2.2193 1.7850 1.9034
HPD-CP 0.9481 0.9405 0.9569 0.9460

π4
MSE 0.3748 0.7042 0.3754 0.9374

HPD-AL 1.7724 2.3192 1.7760 1.9034
HPD-CP 0.9527 0.9468 0.9515 0.9405

Table 3: MSEs, ALs, and CPs of θ0, θ1, θ2, and θ (n� 20).

Method Para. θ0 θ1 θ2 θ

MLE
MSE 0.2505 0.4519 0.2523 0.6907

Boot-AL 1.5795 1.9048 1.5807 1.2957
Boot-CP 0.9488 0.9483 0.9412 0.9407

Bayes

π1
MSE 0.2503 0.4512 0.2520 0.6893

HPD-AL 1.4434 1.7573 1.4382 1.3635
HPD-CP 0.9832 0.9692 0.9831 0.9415

π2
MSE 0.2335 0.3766 0.2350 0.6907

HPD-AL 1.3512 1.6476 1.3462 1.3640
HPD-CP 0.9746 0.9447 0.9762 0.9409

π3
MSE 0.2551 0.3662 0.2293 0.6907

HPD-AL 1.3834 1.6486 1.3398 1.3640
HPD-CP 0.9668 0.9506 0.9777 0.9598

π4
MSE 0.2201 0.4260 0.2216 0.6907

HPD-AL 1.3399 1.6868 1.3348 1.3640
HPD-CP 0.9614 0.9525 0.9613 0.9498

Table 4: MSEs, ALs, and CPs of θ0, θ1, θ2, and θ (n� 30).

Method Para. θ0 θ1 θ2 θ

MLE
MSE 0.1752 0.3345 0.1771 0.6049

Boot-AL 1.2849 1.5451 1.2896 1.0510
Boot-CP 0.9651 0.9516 0.9654 0.9415

Bayes

π1
MSE 0.1751 0.3341 0.1770 0.6040

HPD-AL 1.1710 1.4354 1.1727 1.1164
HPD-CP 0.9919 0.9629 0.9901 0.9427

π2
MSE 0.1694 0.2922 0.1712 0.6049

HPD-AL 1.1197 1.3745 1.1213 1.1167
HPD-CP 0.9839 0.9723 0.9835 0.9418

π3
MSE 0.1814 0.2849 0.1679 0.6049

HPD-AL 1.1377 1.3750 1.1177 1.1167
HPD-CP 0.9783 0.9770 0.9851 0.9615

π4
MSE 0.1612 0.3228 0.1629 0.6049

HPD-AL 1.1132 1.3966 1.1148 1.1167
HPD-CP 0.9896 0.9581 0.9885 0.9638

Table 5: MSEs, ALs, and CPs of θ0, θ1, θ2, and θ (n� 50).

Method Para. θ0 θ1 θ2 θ

MLE
MSE 0.1158 0.2460 0.1161 0.5380

Boot-AL 0.9947 1.1981 1.0018 0.8227
Boot-CP 0.9829 0.9578 0.9831 0.9554

Bayes

π1
MSE 0.1157 0.2458 0.1161 0.5375

HPD-AL 0.9118 1.1075 0.9071 0.8677
HPD-CP 0.9955 0.9822 0.9954 0.9724

π2
MSE 0.1150 0.2243 0.1154 0.5380

HPD-AL 0.8874 1.0786 0.8828 0.8679
HPD-CP 0.9884 0.9900 0.9870 0.9702

π3
MSE 0.1209 0.2196 0.1137 0.5380

HPD-AL 0.8961 1.0791 0.8811 0.8679
HPD-CP 0.9813 0.9933 0.9901 0.9721

π4
MSE 0.1105 0.2417 0.1109 0.5380

HPD-AL 0.8842 1.0892 0.8796 0.8679
HPD-CP 0.9938 0.9789 0.9931 0.9717
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5. Numerical Simulation and
Illustrative Example

5.1. Simulation. Suppose the common shape parameter λ is
known. ,e initial values for parameters (λ, θ0, θ1, θ2) are
(3, 1, 2, 1). ,e initial values for the hyperparameters
a, b, c0, c1, and c2 are all 0.001. Take the sample size n� 10,
20, 30, and 50. Generate the random samples (x1, x2, · · · , xn)

from MOGP(λ, θ0, θ1, θ2) by the following steps:

Step 1: for a fixed value n, generate n samples
u01, u02, · · · , u0n from GP(λ, θ0), u11, u12, · · · , u1n from
GP(λ, θ1), and u21, u22, · · · , u2n from GP(λ, θ2). ,en,
we obtain T1l � min(u0l, u1l) and T2l � min(u0l, u2l),

l � 1, 2, · · · , n.
Step 2: compute (xl, δ0l, δ1l, δ2l), l � 1, 2, · · · , n, where
xl � min(T1l, T2l), δ0l � I(T1l � T2l), δ1l � I(T1l<T2l),
and δ2l � I(T1l>T2l).

Repeat the procedures 10,000 times; we get the values of
the mean squared errors (MSEs) of the MLEs, the average
lengths (ALs), and coverage probabilities (CPs) of the 95%
Boot-P CIs, and theMSEs of the Bayesian estimates, the ALs,
and CPs of the 95% HPD CIs, which are shown in Table 2–5.
From the results in Table 2–5, we can make the following
conclusions.

,e MSEs of MLEs and Bayesian estimates decrease as
the sample size increases. For given sample size n, the
Bayesian estimates based on π1, π2, and π4 are smaller than
the MSEs of MLEs. ,e MSEs of Bayesian estimates of

θ0 and θ2 based on π4 are smaller than that based on
π1, π2, and π3. ,e MSEs of Bayesian estimates of θ1 based
on π3 are smaller than that based on π1, π2, and π4. ,e
MSEs of Bayesian estimates of θ based on π1 are smaller than
that based on π2, π3, and π4.

,e CPs of Boot-P and HPD CIs are all close to 0.95. ,e
ALs of Boot-P and HPD CIs decrease; the associated CPs
increase when the sample size increases.,e CPs of HPDCIs
based on Bayesian estimates are larger than the CPs of Boot-
P CIs based on MLEs.

5.2. Illustrative Analysis

5.2.1. Simulated Data. For illustrative purposes, with initial
value for parameters (λ, θ0, θ1, θ2) as (3, 1, 2, 1), we use the
procedures mentioned above to generate U0, U1, andU2
from GP(3, 1), GP(3, 2), and GP(3, 1), respectively. We
then get T1 � min(U0, U1) and T2 � min(U0, U2); the latent
lifetime of the system is min(T1, T2). ,e simulated data are
listed in Table 6. ,e MLEs, Bayesian estimates, and asso-
ciated 95% CIs for parameters θ0, θ1, θ2, and θ are shown in
Table 7. From Table 7, all the MLEs and Bayesian estimates
of (θ0, θ1, θ2, θ) are close to the true value.

5.2.2. Real Data. Use the procedures mentioned above to a
real dataset. Kundu and Gupta [13] analyzed the football
data of UEFA Champions’ League data which are presented
in Table 1. From the data, T1 and T2 can be regarded as two

Table 7: Point estimates and 95% CIs of θ0, θ1, θ2, and θ.

Method Para. θ0 θ1 θ2 θ

MLE MLE 0.8029 1.9270 1.2847 4.0146
Boot-CI (0.0408, 1.8099) (0.1891, 2.8803) (0.0642, 1.8178) (0.7671, 4.4112)

Bayes

π1
Bayes 0.8029 1.9267 1.2845 4.0141

HPD CI (0.0898, 1.6991) (0.3473, 2.9083) (0.0396, 1.7374) (0.8141, 4.1876)

π2
Bayes 0.8332 1.8937 1.2877 4.0146

HPD CI (0.0694, 1.7457) (0.3070, 2.8296) (0.0364, 1.7697) (0.7893, 4.4378)

π3
Bayes 0.8492 1.8841 1.2812 4.0146

HPD CI (0.0798, 1.7561) (0.1251, 2.5045) (0.0315, 1.4392) (0.6368, 4.1407)

π4
Bayes 0.8189 1.9301 1.2656 4.0146

HPD-CP (0.0638, 1.4011) (0.2448, 2.8554) (0.0456, 1.7418) (0.8474, 4.3484)

Table 8: Point estimates and 95% CIs of θ0, θ1, θ2, and θ.

Method Para. θ0 θ1 θ2 θ

MLE MLE 1.0882e-2 0.4664e-2 1.3214e-2 2.8760e-2
Boot-CI (0.7354e-3, 1.2770e-2) (0.3244e-2, 2.4914e-2) (0.4077e-3, 1.5990e-2) (0.7324e-2, 3.5454e-2)

Bayes

π1
Bayes 1.1882e-2 0.6879e-2 1.3758e-2 3.2520e-2

HPD CI (0.2305e-2, 1.1210e-2) (0.3998e-2, 1.9825e-2) (0.1861e-2, 1.4366e-2) (1.0088e-2, 3.8182e-2)

π2
Bayes 1.0832e-2 0.4856e-2 1.3073e-2 2.8760e-2

HPD CI (0.8317e-3, 1.1676e-2) (0.2315e-2, 1.8702e-2) (0.8807e-3, 1.3700e-2) (0.5246e-2, 3.2002e-2)

π3
Bayes 1.0974e-2 0.4817e-2 1.2969e-2 2.8760e-2

HPD CI (0.8499e-3, 1.1535e-2) (0.3160e-2, 1.7152e-2) (0.8814e-3, 1.4144e-2) (0.6994e-2, 3.2140e-2)

π4
Bayes 1.0803e-2 0.4919e-2 1.3038e-2 2.8760e-2

HPD-CP (0.8949e-3, 1.1372e-2) (0.3365e-2, 1.8866e-2) (0.6968e-3, 1.4164e-2) (0.7224e-2, 3.0467e-2)
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dependent failure modes, and n0 � 7, n1 � 17, and n2 � 13.
,is data have been fitted by Marshall–Olkin bivariate
Gompertz distribution (see Wang et al. [23]).

,e MLEs, Bayesian estimates, and associated 95% CIs
for parameters θ0, θ1, θ2, and θ are shown in Table 8. From
Tables 7 and 8, Bayesian estimates under different priors are
close to MLEs, and the lengths of 95% Boot-p CIs associated
to MLEs are longer than the lengths of 95% HPD CIs as-
sociated to Bayesian estimates.

6. Conclusion

,is paper discussed the point estimates and CIs for the
parameters of the dependent competing risks’ model from
MOGP distribution. We studied the appropriateness of the
posteriors based on conjugate prior and Jeffreys and Ref-
erence priors, obtained the Bayesian estimates in closed
forms, and constructed the associated HPD CIs. From the
simulations results, the use of the Bayesian method can be
recommended if the priors are available. ,e results of the
illustrative analysis show that the proposed methods work
well; from the lengths of CIs, we can conclude the Bayesian
estimates are better than MLEs in general.

Data Availability

,e data used to support the findings of the study are
available within the article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work is supported by the National Social Science
Foundation of China “Research on the optimal control of air
pollutant emission in the era of big data” (grant number
18ZDA052), the National Natural Science Foundation of
China (grant numbers 12071372, 71571144, 12061091,
11701406, 12101393) and the National Statistical Science
Research Project (grant number 2021LZ41).

References

[1] L. Wang, Y. M. Tripathi, C. Lodhi, and X. Zuo, “Inference for
constant-stress Weibull competing risks model under gen-
eralized progressive hybrid censoring,” Mathematics and
Computers in Simulation, vol. 192, pp. 70–83, 2022.

[2] J. Ren and W. Gui, “Statistical analysis of adaptive type-II
progressively censored competing risks for Weibull models,”
Applied Mathematical Modelling, vol. 98, pp. 323–342, 2021.

[3] X. Qin and W. Gui, “Statistical inference of Burr-XII dis-
tribution under progressive Type-II censored competing risks
data with binomial removals,” Journal of Computational and
Applied Mathematics, vol. 378, Article ID 112922, 2020.

[4] Q. Guan, Y. Tang, and A. Xu, “Objective Bayesian analysis for
competing risks model with Wiener degradation phenomena
and catastrophic failures,” Applied Mathematical Modelling,
vol. 74, pp. 422–440, 2019.

[5] X. P. Zhang, J. Z. Shang, X. Chen, C. H. Zhang, and
Y. S. Wang, “Statistical inference of accelerated life testing
with dependent competing failures based on copula theory,”
IEEE Transactions on Reliability, vol. 63, no. 3, pp. 764–780,
2014.

[6] F. Zhang, Y. Shi, and R. Wang, “Geometry of the q-expo-
nential distribution with dependent competing risks and
accelerated life testing,” Physica A: Statistical Mechanics and
Its Applications, vol. 468, pp. 552–565, 2017.

[7] Y. Wang and Z. Yan, “Statistical inference on accelerated life
testing with dependent competing failure model under pro-
gressively type II censored data based on copula theory,”
Quality and Reliability Engineering International, vol. 37,
no. 4, pp. 1396–1408, 2021.

[8] M. Wu, Y. M. Shi, and C. F. Zhang, “Statistical analysis of
dependent competing risks model in accelerated life testing
under progressively hybrid censoring using copula function,”
Communications in Statistics - Simulation and Computation,
vol. 46, no. 5, pp. 4004–4017, 2017.

[9] S. M. S. Lo and R. A. Wilke, “A copula model for dependent
competing risks,” Journal of the Royal Statistical Society: Series
C (Applied Statistics), vol. 59, no. 2, pp. 359–376, 2010.

[10] G. Fang, R. Pan, and Y. Hong, “Copula-based reliability
analysis of degrading systems with dependent failures,” Re-
liability Engineering & System Safety, vol. 193, Article ID
106618, 2020.

[11] A. W. Marshall and I. Olkin, “A multivariate exponential
distribution,” Journal of the American Statistical Association,
vol. 62, no. 317, pp. 30–44, 1967.

[12] Y. Li, J. Sun, and S. Song, “Statistical analysis of bivariate
failure time data with Marshall-Olkin Weibull models,”
Computational Statistics & Data Analysis, vol. 56, no. 6,
pp. 2041–2050, 2012.

[13] D. Kundu and A. K. Gupta, “Bayes estimation for the Mar-
shall-Olkin bivariate Weibull distribution,” Computational
Statistics & Data Analysis, vol. 57, no. 1, pp. 271–281, 2013.

[14] X. Bai, Y. Shi, H. K. T. Ng, and Y. Liu, “Inference of
accelerated dependent competing risks model for Marshall-
Olkin bivariate Weibull distribution with nonconstant pa-
rameters,” Journal of Computational and Applied Mathe-
matics, vol. 366, Article ID 112398, 2020.

[15] Q. Guan, Y. Tang, and A. Xu, “Objective Bayesian analysis
for bivariate Marshall-Olkin exponential distribution,”
Computational Statistics & Data Analysis, vol. 64,
pp. 299–313, 2013.

[16] A. A. Ismail, “Bayes estimation of Gompertz distribution
parameters and acceleration factor under partially accelerated
life tests with Type-I censoring,” Journal of Statistical Com-
putation and Simulation, vol. 80, no. 11, pp. 1253–1264, 2010.

[17] M. E. Ghitany, F. Alqallaf, and N. Balakrishnan, “On the
likelihood estimation of the parameters of Gompertz distri-
bution based on complete and progressively Type-II censored
samples,” Journal of Statistical Computation and Simulation,
vol. 84, no. 8, pp. 1803–1812, 2014.

[18] J. M. Bernardo, “Reference posterior distributions for
bayesian inference,” Journal of the Royal Statistical Society:
Series B, vol. 41, no. 2, pp. 113–128, 1979.

[19] J. O. Berger and J. M. Bernardo, “On the development of
reference priors (with discussion),” in Bayesian Analysis IV,
J. M. Bernardo, Ed., Oxford University Press, Oxford, En-
gland, 1992.

[20] H. Jeffreys,Ieory of Probability, Oxford Univ. Press, Oxford,
1961.

Computational Intelligence and Neuroscience 17



[21] G. S. Datta and M. Ghosh, “Some remarks on noninformative
priors,” Journal of the American Statistical Association, vol. 90,
no. 432, pp. 1357–1363, 1995.

[22] M.-H. Chen and Q.-M. Shao, “Monte Carlo estimation of
Bayesian credible and HPD intervals,” Journal of Computa-
tional & Graphical Statistics, vol. 8, no. 1, pp. 69–92, 1999.

[23] L. Wang, Y. M. Tripathi, S. Dey, and Y. Shi, “Inference for
dependence competing risks with partially observed failure
causes from bivariate Gompertz distribution under general-
ized progressive hybrid censoring,” Quality and Reliability
Engineering International, vol. 37, no. 3, pp. 1150–1172, 2021.

18 Computational Intelligence and Neuroscience


