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Abstract

The interaction between the T cell receptor and the major histocompatibility complex is one of the most important events
in adaptive immunology. Although several different models for the activation process of the T cell via the T cell receptor
have been proposed, it could not be shown that a structural mechanism, which discriminates between peptides of different
immunogenicity levels, exists within the T cell receptor. In this study, we performed systematic molecular dynamics
simulations of 172 closely related altered peptide ligands in the same T cell receptor/major histocompatibility complex
system. Statistical evaluations yielded significant differences in the initial relaxation process between sets of peptides at four
different immunogenicity levels.
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Introduction

T cells (TC) do not recognize natural antigens but short

peptides (called T cell epitopes) which are presented in the

context of major histocompatibility complex (MHC) molecules

on the surface of specialized antigen presenting cells (APCs)

after uptake and processing. The interaction between T cell

receptor (TCR), peptide, and MHC (TCRpMHC) is one of the

most important processes in adaptive immunology. However,

the detailed structural mechanism of T cell activation (TCA) is

still unknown [1]. Several models for the mechanisms involved

in TCR triggering have been proposed [2]: roughly they can

be grouped in aggregation models, models based on confor-

mational changes, and segregation models. It is known that T

cells can recognize seemingly dissimilar epitopes [3] where

sequence similarity alone is not sufficient to explain immuno-

genicity [4] suggesting that structural rearrangements [5],

changes in heat capacity (which can be an indicator of

conformational change or flexibility [6]), biochemical similar-

ities [7], hydrophobicity, molecular weight and structural

preferences [8] may play an additional important role in

determining immunogenicity. Hence it is difficult to develop

predictive methods for peptide immunogenicity and only few

methods have been published. For example, POPI [9] and its

extension POPISK [8] are based on physicochemical proper-

ties. Also the general alignment methods ALIGN [10] and PSI-

BLAST [11] were used to align new peptides with known

immunogenic ones [9]. In contrast, the binding affinity

between peptide and MHC can be predicted with rather high

accuracy [12] and therefore many predictive studies use the

peptide binding affinity to MHC as an approximation for

immunogenicity [13]. However, this does not provide the full

picture: while binding affinity (usually ,500 nM [14]) is a

prerequisite for immunogenicity, the magnitude of the pMHC

affinity does not correlate well with the magnitude of

immunogenicity ([8] and therein references). The explanation

for immunogenicity is rather to be found in a synergistic

combination of TCRpMHC affinity, mean interaction time,

and relative abundance of both complexes. However, to

incorporate all these factors in a (structural) predictive model

currently does not seem feasible.

Molecular dynamics (MD) [15] is a computational method

to solve Newton’s equations of motion for a given system of

atoms. Various MD studies have been performed in relation to

TCRpMHC interaction: Cuendet et al. investigated the

dissociation of the TCR from the pMHC via a steered MD

simulation and gave insight into the dissociation mechanism of

two complexes, which differed by only a single amino acid

mutation [16]. Yaneva et al. performed MD simulation studies

of HLA-DR3 with and without invariant chain-associated

peptide (CLIP) and found that larger conformational changes

of alpha-helices flanking the MHC binding groove occur

without CLIP [17]. Wan et al. performed free energy

calculations between pMHC and TCR [18]. Painter et al.

[19] as well as Zacharias et al. [20] compared the peptide-

bound and non-bound state of the MHC molecule via MD

studies. Wan et al. published a large scale MD simulation of

the whole TCRpMHC complex and CD4 complex including
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Table 1. TCR regions of interest according to Kjer-Nielsen et al. and VMD.

region chain
start
residue

end
residue

group
nr region chain

start
residue

end
residue

group
nr

Chain nomenclature LC13 TCR beta strand nomenclature according to VMD

Protein ABCDE 1 827 1 Constant alpha chain

TCR alpha D 386 586 2 a-b loop (Beddoe et al.) D 509 516 61

TCR beta E 587 827 3 a D 504 510 62

TCR DE 386 827 4 linker a:b D 511 516 63

b D 517 523 64

LC13 TCR CDRs nomenclature according to Kjer-Nielsen et al. linker D 524 537 65

framework region begin D 386 406 5 c1 D 538 540 66

CDR1 alpha D 407 416 6 linker D 541 543 67

framework region CDR1a:CDR2a D 417 432 7 c2 D 544 548 68

CDR2 alpha D 433 438 8 linker D 549 552 69

framework region CDR2a:CDR3a D 439 473 9 d D 553 562 70

CDR3 alpha D 474 484 10 linker D 563 568 71

framework region CDR3a:linker D 485 495 11 e D 569 571 72

linker V:C D 496 503 12 linker to transmembran region D 572 586 73

framework region begin E 587 608 13 Constant beta chain

CDR1 beta E 609 616 14 a E 707 712 74

framework region CDR1b:CDR2b E 617 632 15 linker E 713 714 75

CDR2 beta E 633 638 16 linker E 715 721 76

framework region CDR2b:CDR3b E 639 678 17 linker E 722 722 77

CDR3 beta E 679 687 18 b E 723 733 78

framework region CDR3b:linker E 688 697 19 linker E 734 737 79

linker V:C E 698 706 20 c E 738 744 80

linker E 745 746 81

LC13 TCR beta strand nomenclature according to Kjer-Nielsen et al. d1 E 747 749 82

V alpha chain linker E 750 752 83

a1 D 387 388 21 d2 E 753 755 84

linker a1:a2 D 389 391 22 linker E 756 759 85

a2 D 392 396 23 d3 E 760 761 86

linker a2:b1 D 397 400 24 linker E 762 770 87

b1 D 401 407 25 e E 771 780 88

linker b1:c1 (, CDR1 alpha) D 408 415 26 linker E 781 785 89

c1 D 416 421 27 linker E 786 789 90

linker c1:c2 D 422 427 28 f E 790 797 91

c2 D 428 433 29 linker E 798 815 92

linker c2:c3 (, CDR2 alpha) D 434 437 30 g E 816 823 93

c3 D 438 439 31 linker to transmembran E 824 827 94

linker c3:d D 440 442 32

d1 D 443 447 33

linker d:e D 448 452 34

e1 D 453 458 35

linker e:f D 459 466 36

f1 D 467 472 37

linker f:g (, CDR3 alpha) D 473 489 38

g1 D 490 495 39

V beta chain

a1 E 589 591 40

linker a1:a2 E 592 593 41

a2 E 594 598 42

MD Simulation of 172 TCRpMHC
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the surrounding membranes [21]. Rognan et al. studied and

predicted the interaction between pMHC and the T cell

receptor via molecular dynamics simulation [22]. Haidar et al.

performed several in silico point mutations in TCRs to

increase the binding affinity to pMHC [23]. Camacho et al.

performed a structural and thermodynamic approach to

modeling peptide immunogenicity for protein antibodies

[24]. De Rosa et al. described a protocol to model the

structure of a TCR based on its sequence on a pMHC

complex. Subsequently they verified their results via MD

simulations [25]. Stavrakoudis perfomed a single MD simula-

tion of the LC13 TCR in complex with HLA-B*08:01 [26].

Cuendet et al. performed a steered MD study of 3 TCRpMHC

complexes [27]. In this study they investigated the dissociation

of the TCR on the basis of the reduction of hydrogen bonds,

an increase of water in the interface and energetic changes.

Narzi et al. used MD simulations to investigate the disease

associated MHC alleles HLA-B*27:09 and HLA-B*27:05 with

different viral and self-peptides [28]. In a previous study our

group showed, via a combination of MD simulation, pMHC

binding assays, and in vitro T cell activation assays, that an N-

terminal peptide flanking region (PFR) of MHC class II can

significantly influence the immunogenicity compared to the

same peptide without the PFR [29]. Recently we could also

show the molecular background of mug pollen Art v 125–36

bound to HLA-DR1 and HLA-DR4 [30]. In another study we

compared data of 3 altered peptides ligands (APLs) related to

experimental allergic encephalomyelitis [31]. Since it is known

that altered peptide ligands often induce alterations in the

TCRpMHC interface [32] we extended our approach of

investigating APLs via MD to a more systematic screening of

172 well described and strongly related TCRpMHC systems.

For this purpose we performed a total of 192 MD simulations

with a total length of 2 720 ns and found indications that more

and less immunogenic complexes might have slightly different

initial relaxation dynamics.

Methods

Experimental Data
We selected the protein data bank [33] identification (PDB-

id) 1mi5 as a structural basis for our study. It contains the

crystal structure of LC13 TCR in combination with HLA-

B*08:01 and the Epstein Barr Virus (EBV) peptide with the

amino acid sequence FLRGRAYGL. We chose this system for

two reasons. Firstly, the TCRpMHC structure has been

determined and described as a whole (PDB-id 1mi5; [34]) as

well as in its unliganded parts: TCR (PDB-id 1KGC; [35]) and

pMHC (PDB-id 1M05; [36]). Secondly, Kjer-Nielsen et al.

depict a systematic substitution study of all 9 amino acid

positions in the peptide with the remaining 19 standard amino

acids. For each of these mutations they provide the results [34]

of a cytotoxicity assay [37] over a range of peptide concen-

trations. This yields 172 (20+8619) experimental immunoge-

nicity values for APLs of the same TCR/MHC complex. This

data set allows for a systematic and explorative comparison

between effects induced by more and less immunogenic

peptides.

Simplifications in the TCRpMHC Structure Avoided
Since the TCRpMHC is a large complex, many authors have

only simulated the variable regions of the TCR, the epitope and

the a1 and a2 domain for MHC class I, or the a1 and b1 domain

for MHC class II. There is evidence that this reduction may be

legitimate [38–42]. However, this view is not shared by everyone,

see, for instance, [43]. In our study the aim is to track subtle

changes in shape and dynamics. Hence we simulated the full

TCRpMHC without any simplifications in the available

Table 1. Cont.

region chain
start
residue

end
residue

group
nr region chain

start
residue

end
residue

group
nr

linker a2:b1 E 599 602 43

b1 E 603 608 44

linker b1:c1 (, CDR 1 beta) E 609 614 45

c1 E 615 621 46

linker c1:c2 E 622 627 47

c2 E 628 634 48

linker c2:c3 (, CDR 2 beta) E 635 636 49

c3 E 637 640 50

linker c3:d1 E 641 648 51

d1 E 649 652 52

linker d1:e1 E 653 658 53

e1 E 659 663 54

linker e1:f1 E 664 671 55

f1 E 672 679 56

linker f1:g1 (, CDR 3 beta) E 680 686 57

g1 E 687 688 58

linker g1:g2 E 689 691 59

g2 E 692 697 60

doi:10.1371/journal.pone.0064464.t001
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TCRpMHC x-ray structure. This includes the constant regions of

the TCR as well as the a3 region and b2 microglobulin of the

MHC.

Construction of the Simulated Complexes
We modeled all 172 TCRpMHC complexes on the basis of

PDB accession code 1mi5. These 172 complexes differ from each

other only by one amino acid substitution in the peptide. We

performed these amino acid side chain substitutions with SCWRL

[44] and visually confirmed them with the substitution method of

SPDBV [45], as this combination turned out to be the most

appropriate way [46,47].

Molecular Dynamics Workflow
We performed MD simulations using Gromacs 4 [48]

according to the following workflow. We immersed each

modeled TCRpMHC structure into a three-dimensional

explicit water cube with side length of 119 Å, allowing for a

minimum distance of 20 Å between protein and box-boundary.

Additionally, we applied periodic boundary conditions. Sub-

Figure 1. Illustration of the overall TCRpMHC complex. Blue: MHC alpha chain. Red: Beta-2 microglobulin. Green: Presented Peptide in the
MHC binding groove. Orange: TCR alpha chain. Yellow: TCR beta chain.
doi:10.1371/journal.pone.0064464.g001
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sequently, we used a steepest descent method to minimize the

energy of the system. In the next step we warmed the system

up to 310 K. Finally, MD simulations were carried out for a

simulation time of 10 ns for each complex (in total yielding a

simulation time of 1720 ns) using bond constraints that allowed

for an integration step of 3 fs [49,50]. Further simulation

parameters were set to values derived in one of our previous

studies [42].

To further investigate the behaviour of the simulations over

a longer time period, we additionally performed 50 ns

simulations of 20 TCRpMHC complexes. For this purpose

we choose the complexes with mutations in position 7 of the

Figure 2. Images of differences, as measured by t-tests. A black dot at time step x and region y indicates that a t-test{[(all ‘‘groupM’’ RMSD
values), (all ‘‘groupL’’ RMSD values)] | x, y, a} yielded a difference. In the subplots below the images of differences the total number of hits per region
and over time is illustrated. (A) Image of differences for a= 0.05. (B) Image of differences for a= 0.01. (C) Image of differences for a= 0.001.
doi:10.1371/journal.pone.0064464.g002
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peptide. This position is considered as pivotal for the

recognition process by the TCR since the tyrosine present in

the x-ray structure protrudes deep within a pocket created by

CDR1alpha, CDR3alpha, and CDR3beta of the TCR [34].

Together with the 10 ns simulations this yields a total

simulation time of 2 720 ns (106172+20650).

Regions of Interest within the TCR
The structure of the investigated TCRpMHC complex is shown

in Figure 1. To systematically investigate the TCR we grouped all

residues according to the secondary structure labelling and

complementary determining regions (CDR) labelling from [35],

as well as the secondary structure labelling provided by the

program VMD [51]. In total we investigated 94 different residue

groups (see Table 1 for a detailed list).

Root Mean Square Deviation (RMSD) Calculations
The RMSD is defined as

RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xi~n

i~1

Aix{Bixð Þ2z Aiy{Biy

� �2
z Aiz{Bizð Þ2

vuut
where n is the number of atoms, i is the current atom, A is the

target structure and B is the reference structure. We employed

the g_rms function of Gromacs to calculate the backbone

RMSD values for the regions of interest described in Table 1.

Thereby we used two different fitting strategies for the

simulation trajectories. Since we are interested in the defor-

mations of the TCR we firstly fitted the model to pMHC to

obtain insight into the overall movements of the TCR and,

secondly, we fitted it to the TCR itself to investigate the

relative deformations within the TCR. Note that these RMSD

calculations yield the norm in Euclidean space between each

single time step and a reference structure, which in our case

was the configuration at time 0.

Statistical Evaluation
Although immunogenicity is a continuous variable and not a

binary property, we had to create such a binary property, between

more and less immunogenic peptides, by segregating the peptides -

at four different concentration thresholds - into two classes: the

more immunogenic peptides (‘‘groupM’’), and the less immuno-

genic peptides (‘‘groupL’’).

N Threshold 1 is determined at the upper limit of the

experimental specificity assay. This means that all APLs which

were able to induce 50% of maximum lysis at an arbitrary

concentration within the range of the assay [34] are classified

as groupM. This threshold is determined at 10–5 M and yields

121 APLs (or 1210 ns of simulation time) in the groupM and

51 APLs (510 ns) in the groupL.

N Threshold 2 is determined at 10–6 M and yields 90 APLs

(900 ns) in the groupM and 82 APLs (820 ns) in the groupL.

N Threshold 3 is determined at 10–7 M and yields 55 APLs

(550 ns) in the groupM and 125 APLs (1250 ns) in the groupL

class.

N Threshold 4 is determined at the lower limit of the assay. This

means that only the most immunogenic APLs pass this

threshold. This threshold is determined at 10–8 M and yields

33 APLs (330 ns) in the groupM and 139 APLs (1390 ns) in

the groupL.

For each of the 94 regions and each of the 3350 time points

(10 ns of simulation time) we performed an unpaired t-test

between the RMSD values of the groupM and the groupL

TCRpMHC complexes at different significance levels, a. In

other words: t-test{[(all ‘‘groupM’’ RMSD values), (all

‘‘groupL’’ RMSD values)] | time, region, a}. This leads to a

number of 314900 (3350694) unpaired t-tests. These are

Figure 3. Effect of the median-method. (A) The identical data as in
Figure 2A is illustrated. Again a black dot at time step x and region y
indicates that a t-test{[(all ‘‘groupM’’ RMSD values), (all ‘‘groupL’’ RMSD
values)] | x, y, a} yielded a difference. This approach is termed the direct-
method. (B) The identical data as in Figure 2A is illustrated, however,
processed with the median-method.
doi:10.1371/journal.pone.0064464.g003
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illustrated as a 1-bit image of significances (see result section).

We conducted this procedure for the 4 thresholds determined

above, both fitting strategies (see previous section) and p-value

thresholds at a = 0.05, 0.01, and 0.001, respectively, leading to

a total number of 7557600 unpaired t-tests.

It is obvious that p-values of this procedure cannot directly

confirm statistical significance on the differences between the

two classes due to the large number of tests. Therefore, we

merely compute labels indicating whether p,a only, as an

intermediate measure for differences. Statistical testing is

relegated to one step further. Our new null hypothesis is that

there are no consistent differences between groups and thus

labels indicating p,a should occur only sporadically and

about equally distributed over time and space. The alternative

hypothesis is that differences show a systematic structure with a

large number of adjacent labels, both in time and space.

We define three measures, applied to the entire map (image),

expressing the extent to which the maps show such a systematic

structure.

The first such systematicity measure is a reduction of ‘‘salt

and pepper noise’’ while the edges of the image are preserved.

For this purpose we used a 2-dimensional median filter

employing a 363 window. This systematicity measure is

defined as

s1 Ið Þ~
XnR

i~1

XnT

j~1

medfilt(I)

where I is the nR x nT image matrix of ‘‘pixels’’ (nR = number

of regions, nT = number of time points), with each ‘‘pixel’’

being 1 if p,a in the t-test, 0 otherwise. The term medFilt is the

median filter as described above. Note, that not all consecutive

regions and residues are covalently bound. There are 6

exceptions at the end of the regions which are not adjacent

to the beginning of the next region (region numbers 4, 12, 20,

39, 60, and 73). These regions cannot be expected to correlate

with their non-adjacent neighbours in the region list of Table 1.

Thus, we computed s1 for 7 distinct sub-images of the 9463350

Figure 4. Distribution of s in 500 random permutation splits. The 95% percentile and the tested map (value of s for the true split) are
indicated for the four different thresholds per method. (A) Direct-method. (B) Median-method. (C) Square-method.
doi:10.1371/journal.pone.0064464.g004
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image and summed up the results. By this way only regions

that show consistent adjacent differences in both space and

time yield large values of s1. We also considered the aspect that

the application to 7 sub-images may penalize boundary regions

of the sub-images too strongly. Hence, we also implemented

this method for the image as a whole. However, the results

were almost identical (data not shown). Therefore we refer to

the median-method as the method being applied to 7 sub-

images.

The second, alternative, systematicity measure is defined as

s2 Ið Þ~
XnR{1

i~2

XnT{1

j~2

X1

k~{1

X1

l~{1

I izk,jzlð Þ
 !2

In other words, for each complete 363 window the sum of all

‘‘pixels’’ equal to 1 is squared, and the resulting values are summed

up. This approach is also applied to the sub-images mentioned

above. Thus, large values of s2 are obtained only if adjacent

regions show consistent differences in both space and time. This

approach is referred to as the square-method.

In the third approach we did not apply any kind of filtering to

the image and directly add up the ‘‘pixels’’ equal to 1:

s3 Ið Þ~
XnR

i~1

XnT

j~1

Ið Þ

This approach is referred to as the direct-method.

In order to finally test whether an observed systematicity value is

significantly high, we approximate the distributions of s1, s2 and s3

under the null hypothesis ‘‘there is no structure’’ by taking 500

random permutation splits of all APLs for the thresholds 1 to 4

determined above. Note that this yields 500 permutations with 121

against 51 APLs, 500 permutations with 90 against 82 APLs, 500

permutations with 47 against 125 APLs, and 500 permutations

with 33 against 139 APLs. These permutations were performed

independent from position meaning that the APLs were chosen

from any position and were not restricted to the grouping of their

initial position in the peptide.

We then calculated the 95% percentile of the respective random

distributions as critical values for the values of s1, s2 and s3 of the

true splits. If that value is larger than the critical value then we can

speak of a significant structure (in its entirety, not in any detail) and

reject the null hypothesis.

Figure 5. Images of differences for a true split and a typical
random permutation split. The same methodology as in Figure 2 is
applied. (A) Random permutation split number 413 without filters. This
permutation has a total number of 3518 dots after the median filter.
Since this value is almost the median number of dots (3517) over all 500
random permutation splits, permutation 413 was selected as a typical
representative. (B) True split without filters. (C) The image of random
permutation split 413 after median filter. (D) The image of the true split
after application of the median filter. (E) Number of differences after
median filter for random permutation split 413, as measured by the t-
tests, for all regions as a sum over time. (F) Number of differences after
median filter for the true split, as measured by the t-tests, for all regions
as a sum over time.
doi:10.1371/journal.pone.0064464.g005
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Results and Discussion

Are Differences to be Found in Local Phenomena Rather
than in Global Rearrangements?

As described in the methods section we first performed unpaired

t-tests and created the corresponding difference images. The first

major difference occurs between the 2 fitting strategies. It turns out

that the fitting of the simulation trajectory to the TCR leads to a

much sharper discrimination between the groups (data not shown)

and therefore only this version is discussed in detail. In the TCR

fitting version several regions are systematically highlighted as

different between the groups (Figure 2). In particular, in several

regions continuous ‘‘lines’’ of differences over a longer time period

can be observed. This effect of fitting suggests that the spatial

rearrangements during the very early relaxation process in

reaction to different peptide immunogenicity classes consist of

local phenomena within the TCR rather than of global

rearrangements of the TCR. This is in agreement with the

literature which proposes small shifts instead of major structural

changes [32]. However, since the simulation time in MD

simulations is limited (10 and 50 ns respectively) major structural

changes occurring later cannot be disproven by this study.

‘‘Lines’’ of Differences Over Time Remain Visible Even for
Smaller Alphas

We additionally applied p-value thresholds of a= 0.01 and

a= 0.001 (Figure 2) to reduce the number of random hits. Even

though the p-value threshold is reduced the rough positions of the

‘‘lines’’ over time remain visually (Figure 2 map plots), as well as in

the sum over time for the different regions (Figure 2 bar plots).

The same applies for the median-method (Figure 3).

Significance Testing: Evidence for Significant Difference
between the TCRpMHC Groups for the Entirety of
Regions

Following the methods described above in the methods section,

we simulated the distribution of systematicity values s by creating

500 random permutation splits between the groups of

TCRpMHC complexes. These distributions of the random splits

are depicted as histogram in Figure 4, together with the 95%

percentiles as critical values. At threshold 1 (10–5 M) and using the

direct-method only 4 out of 500 random permutations yielded a

higher number of hits than the true split (p = 0.008). The results for

the square-method were identical. For the median-method the

result is marginally better (p = 0.006). At threshold 2 (10–6 M) all 3

methods yield the true split as the one with the highest number of

hits. Note that this does not necessarily mean that the true split has

the most extreme differences of all possible combinations; it means

that within these 500 random splits none was more extreme than

the true split. At threshold 3 (10–7 M) the results for the median

and square-method were about equal (p = 0.016). The direct-

methods is marginally better in the discrimination (p = 0.014). At

threshold 4 (10–8 M) the direct-method narrowly reaches statistical

significance (p = 0.046) while the median and square-method both

narrowly fail the significance level (0.050 and 0.054 respectively).

This could be caused by the relatively strong imbalance of 33

versus 139 TCRpMHC complexes for this threshold. However,

one could still argue that there is a strong tendency.

Figure 6. Illustration of the most frequently highlighted regions. White and solid: TCR. White and transparent: MHC. Red: peptide. Green: top
5 most frequently highlighted regions per threshold (i.e. 20 regions where several of them are identical). If the whole TCR beta chain was within the
top regions it was not coloured in green for reasons of visibility. (A) Direct-method. (B) Median-method. (C) Square-method.
doi:10.1371/journal.pone.0064464.g006
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In Figure 5 the corresponding difference image of one such

random permutation split is depicted for comparison with the

apparent systematic structure observed for the true split. The

images depict the structure before (Figure 5AB) and after the

median-method (Figure 5CD) to illustrate the effect of noise

reduction. The systematicity value for the true split is clearly above

the critical value (see also Figure 4). Therefore, we can speak of the

observed image pattern as being a significant one. In comparison,

the random permutation split illustrated in Figure 5 yielded a

systematicity value which corresponds to the median systematicity

value of all 500 random permutation splits.

Most Frequently Different Regions
Among all 94 investigated regions in the TCR most regions with

the largest number of differences over time form parts of the TCR

beta chain. Out of the top 10 regions (the 10 regions with the

highest amount of differences over time) for each of the 4

thresholds (i.e. 40 in total) 34 regions form parts of the TCR beta

chain while 6 formparts of the TCR alpha chain (Figure 3 and

Table 1). Among the top 20 regions over all 4 thresholds (i.e. 80 in

total) 67 regions formparts of the TCR beta chain while 13 form

parts of the TCR alpha chain. These findings are in agreement

with Armstrong et al. who suggested that the beta-chain may play

an important role in ligand recognition [32]. In Figure 6 the

spatial arrangement of the top 5 regions per threshold and method

are illustrated.

If we further investigate clusters of differences, as for example

visible in the bar plots of Figure 3, the results point in the same

direction. Clear clusters with high amounts of differences over

time are visible. In most combinations of methods and thresholds

the major differences are in and around the area of the CDRbeta

regions. Additional clusters of differences are visible in and around

regions 76 and 90 which are both part of the constant TCR beta

chain.

This finding is consistent with the known immunological

background that the recognition of the pMHC is carried out with

the CDRs [1]. For the LC13 TCR in complex with HLA-B*08

detailed investigations on the CDR region were previously

reported by Borg et al. [52]. Here our findings partly disagree

with their conclusion that both CDR3 regions are the hotspot for

the ‘energetic landscape’ of the pMHC recognition and that

changes in the CDR1 and 2 are mainly used as stabilizer for the

ligated CDR3s. However, it was also shown by other authors for

different TCRpMHC systems that CDR1 and 2 can directly

contribute [53].

It was previously reported that the A-B loop (residues 129 to

136) of the constant domain of the TCR alpha chain represents a

‘‘closed’’ conformation in the unbound state and switches to an

‘‘open’’ conformation upon ligation [54]. It was further reported

that antagonistic ligands have a differential ability to change the

conformation of the A-B loop. Using the median-method for the

94 investigated regions we found the A-B loop at rank 10, 25, 22,

and 56 for our thresholds 1 to 4. The square-method yielded the

ranks 8, 14, 17 and 30, while the direct method yielded 4, 21, 23,

and 44. This observed sparse difference in the A-B loop may be

caused by the different timescales on which MD simulations and

the experimental techniques of Beddoe et al. work. However, it

should be noted that the above described clusters of differences

around the regions 76 and 90 are in close spatial proximity to the

A-B loop.

Note, however, that our type of statistical testing only provides

significance for the entirety of regions showing a systematic pattern

(Figure 3) as defined in the direct- median- and square-methods.

No immediate conclusions can be drawn for the statistical

significance of single regions contained in this structure.

Evaluation of 20 Trajectories with a Simulation Length of
50 Ns

As mentioned in the methods section we performed an

additional set of simulations for a real time of 50 ns each. In this

test set we used all possible substitutions of position 7 in the

peptide yielding 20 trajectories of the LC13 TCR in complex with

HLA-B*08:01 presenting FLRGRAXGL (where X denotes for all

20 canonical amino acids).

Although there seems to be a tendency in the differences

between the groups (Figure 7) the application of our above

described methodology for only 20 simulations (14 groupM against

6 groupL at a threshold of 10–5 M) instead of 172 simulations did

not yield statistically significant differences for the entirety of

regions. However, this is an expectable result since the effect found

in 172 trajectories was also not huge. Therefore it seems likely that

20 simulations are statistically underpowered for this type of

analysis. Figure 7 shows the mean RMSD of the TCR alpha and

beta chain for the 2 groups as well as the root mean square

fluctuation (RMSF) of the CDRs. It can be seen that groupM and

groupL differ in several time spans (Figure 7AB) as well as in their

flexibility (Figure 7C–H).

How Structural Dynamics Could Influence T Cell
Triggering

Given the above described differences one could ask how these

differences could further trigger T cell activation: There is plethora

of different hypotheses for T cell triggering available (reviewed in

[2]). In some models mechanical forces and accompanying

deformations play a central role. For example Ma et al. propose

that the T cell is activated by pulling forces originating from the

cytoskeleton that induce conformational changes in the TCR/

CD3 complex [55] [56]. In this model the weak binding between a

TCR and a nonspecific pMHC can be ruptured without signalling

while a specific pMHC bound to the same TCR triggers the T cell.

By this way the TCR acts as an anisotropic mechanosensor [57].

The found differences in the spatial dynamics of the very early

relaxation process between more and less immunogenic

TCRpMHC complexes would be in line with the above described

hypothesis that the TCR acts as a mechanosensor.

Conclusion
MD simulations could provide ultimate details concerning

individual particle motions for many aspects of biomolecular

functions [58]. They range from the role of solvent in protein

dynamics [59] via the description of the structural pathway

between the open and closed conformation of GroEL [60], the

flexibility of a short peptide linker governing the activation of

tyrosine kinases [61], to opening and closing of the long channel in

acetylcholinesterase [62], to protein folding [63].

Figure 7. Comparison of groupM and groupL over a simulation time of 50 ns at threshold 10-5 M. For means of readability the curves of
A and B were smoothed using a moving average. The mean value is indicated by a thick line while the mean value +/2 the standard error of mean is
indicated by thin lines. (A) RMSD TCR alpha chain. (B) RMSD TCR beta chain. (C-H) RMSF of the CDR regions.
doi:10.1371/journal.pone.0064464.g007
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In this study we applied MD to 172 closely related APLs of a

well described TCRpMHC system. This approach gave indica-

tions that the very early relaxation dynamics differ between groups

of TCRpMHC complexes with different levels of peptide

immunogenicity. On this basis we conclude that there is a

correlation between peptide immunogenicity and the way

TCRpMHC complexes start their relaxation process from the

initial (perturbed) x-ray structure within the first 10 ns of

simulation. It was already shown that different physicochemical

properties are related to peptide immunogenicity [9] and that

structural rearrangement during TCR binding contributes to T

cell activation [6]. On this basis it is consequential that different

physicochemical properties cause different structural dynamics

and could be another level of T cell regulation. However, we also

want to point out that the shortness of the simulations could have

introduced a systematic bias, and large conformational changes

taking place may not have been sampled by these simulations.

Additionally an evaluation of a subset of 20 simulations with a

length of 50 ns did show differences between the groups, however,

they were not statistically significant, which might be caused by the

too small sample size. Hence, further studies with several hundred

of complexes with several hundred of nanoseconds each will be

necessary to finally prove or disprove differences between more

and less immunogenic TCRpMHC complexes.

It is known that the variable loops of the TCR undergo

significant changes upon pMHC engagement leading to a loss of

flexibility in the loops [64]. On this basis our study gives

indications that these changes might differ on the basis of different

peptide immunogenicity levels. Thereby our findings agree well

with the proposed idea that the TCR functions as a mechan-

osensor [57] and the beta-chain may play an important role in

ligand recognition [32]. On this basis our findings might have

implications on the development of predictive methods, since the

number of methods directly predicting immunogenicity of pMHC

is limited (see Introduction).
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