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Abstract

Filament-forming cytoskeletal proteins are key organizers of all cells. Bacterial homologs of the 

major eukaryotic cytoskeletal families have now been discovered, but studies suggest that yet 

more cytoskeletal proteins remain to be identified. Here we demonstrate that the metabolic 

enzyme CTP Synthase (CtpS) forms filaments in Caulobacter crescentus. These filaments are 

bifunctional and regulate Caulobacter curvature independently of CtpS catalytic activity. The 

morphogenic role of CtpS requires its functional interaction with the intermediate filament 

crescentin. Interestingly, the E. coli CtpS homolog also forms filaments both in vivo and in vitro, 

suggesting that CtpS polymerization may be widely conserved. E. coli CtpS can replace the 

enzymatic and morphogenic functions of Caulobacter CtpS, indicating that Caulobacter has 

adapted a conserved filament-forming protein for a secondary role. These results implicate CtpS 

as a novel bifunctional member of the bacterial cytoskeleton and suggest that localization and 

polymerization may be important properties of metabolic enzymes.

Cellular organization is fundamental to the viability of all cells. In eukaryotes, organization 

is largely achieved through a family of cytoskeletal proteins. These tubulin, actin, and 

intermediate filament cytoskeletal proteins assemble into linear polymers (filaments) that 

play important roles in a wide range of biological processes including cell shape, motility, 

transport, and division. While prokaryotes were classically believed to lack cytoskeletal 

proteins, bacterial homologs of all three canonical eukaryotic cytoskeletal families have now 

been identified. These bacterial cytoskeletons include the tubulin homolog FtsZ1,2, the actin 

homolog MreB3, and the intermediate filament-like protein crescentin4. The bacterial 

cytoskeleton, however, appears to be even more complex as electron cryotomographic 
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studies of Caulobacter crescentus have shown that there are additional filament structures 

within cells whose molecular identities have yet to be determined5,6.

Caulobacter represents a powerful system for studying the bacterial cytoskeleton due to its 

unique curved morphology and asymmetric division cycle that produces one stalked cell and 

one swarmer cell from each predivisional progenitor. For example, crescentin was first 

identified in Caulobacter4. By light microscopy, crescentin appears to form filaments that 

extend along the inner curvature of the cell and are necessary for cell curvature4. In addition 

to their unique asymmetric morphology, Caulobacter cells are also thin enough to allow 

whole-cell electron cryotomography, enabling the direct visualization of cytoskeletal 

structures within intact cells5.

Here we demonstrate that the metabolic enzyme CTP synthase (CtpS) is a novel filament-

forming protein in Caulobacter that is dynamically localized to the inner cell curvature 

during the cell cycle. Studies with the E. coli CtpS confirm that CtpS can polymerize 

independently of other factors and that filament formation is a conserved property of this 

enzyme. In Caulobacter, CtpS filaments interact with crescentin filaments and regulate cell 

curvature independently of enzymatic activity. These results address outstanding questions 

concerning the composition, function, and evolution of the bacterial cytoskeleton.

Results

mCherry-CtpS forms linear structures that co-localize with cellular filaments in 
Caulobacter

A recent electron cryotomography6 (ECT) study discovered a bundle of filamentous 

polymers along the inner curvature of Caulobacter5. These inner curvature filaments 

(hereafter referred to as ECT filaments) formed independently of MreB and crescentin and 

were also distinct from FtsZ5,7. In an effort to identify this elusive cytoskeletal protein, we 

examined a recently generated collection of Caulobacter proteins with non-diffuse 

subcellular localizations8, and found one protein with a similar distribution. Surprisingly, 

this protein encoded the sole Caulobacter homolog of the previously-characterized enzyme, 

CTP synthase (CtpS, CC1720), an enzyme that generates CTP from UTP, ATP, and 

glutamine9. To further examine CtpS localization in Caulobacter, we imaged an N-terminal 

mCherry-ctpS fusion (ZG153) and found that most cells in an asynchronous population 

exhibited linear fluorescent structures along the inner curvature of the cell (Figure 1a).

Time-lapse imaging of synchronized cultures expressing mCherry-CtpS revealed a dynamic, 

cell-cycle regulated localization pattern. Figure 1b shows representative images taken from a 

timelapse in which images were collected every 10 minutes throughout the cell cycle. Early 

in the Caulobacter cell cycle, in newly formed stalked cells, the mCherry-CtpS structures 

were generally short, sometimes even appearing as foci. As the stalked cell developed, the 

structures elongated to form a line roughly 500 nm long that initially did not associate with 

the cell periphery. At later times, the structure moved toward the inner cell curvature, where 

it remained throughout the rest of the cell cycle. The mCherry-CtpS structures were 

preferentially localized in the stalked compartment of late predivisional cells, such that little 

mCherry signal could generally be detected in the newly formed swarmer cell (Figure 1b). 
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Despite these changes in localization, CtpS abundance did not dramatically change during 

the cell cycle (Figure S1).

In order to examine if the ECT filaments and mCherry-CtpS co-localize to the same region 

of individual cells, we used correlated fluorescence light microscopy-ECT10 (fLM-ECT). 

Inner curvature filaments were observed in 5 tomograms of cells that could be aligned with 

their corresponding fluorescence images. Strikingly, all 5 of these cells also displayed 

fluorescent mCherry-CtpS structures in the same subcellular position (Figure 1c, Figure S2).

CtpS abundance and activity affect the cellular filaments

The mCherry-CtpS fusion co-localized with the ECT filaments, but could not fully substitute 

for the essential enzymatic activity of native CtpS (data not shown). Similarly, most other 

fusions to cytoskeletal proteins are not functional but do represent accurate reporters of 

protein localization4,11,12. We thus sought further support for the conclusion that the ECT 

filaments were composed of the native CtpS protein by altering the levels of untagged CtpS 

to assess the corresponding effect on the ECT filaments. At endogenous expression levels 

ECT filaments are found along the inner cell curvature in 23 ± 6% of wild-type Caulobacter 

cells5 (CB15N, 6% = standard error of the proportion, n=50) and averaged 390 nm in length 

(Figure 2a). In contrast, mild ctpS overexpression from a single-copy chromosomal locus 

(ZG215, ~1.5 fold overexpression, Figure S3) resulted in ECT filaments that were longer 

(790 nm on average) and more prevalent (found in 63 ± 17% of cells, n=8, Figure 2b). 

Similar levels of mCherry-CtpS overexpression resulted in similarly elongated mCherry-

CtpS structures (Figure S4). Strong ctpS overexpression from a multi-copy plasmid (ZG208, 

~4 fold overexpression, Figure S3) also increased the prevalence of ECT filaments to 70 ± 

10%, but furthermore dramatically altered filament morphology, leading to structures that in 

most cases (76 ± 11%, n=20) resembled large collections of splayed filaments radiating 

from the inner curvature of the cell (Figure 2c).

We were unable to delete the Caulobacter ctpS gene, indicating that CtpS is essential. We 

were able to generate a depletion strain (further characterized below), but this strain grew 

very poorly, making it difficult to image by ECT. We thus sought a rapid method to acutely 

perturb CtpS, focusing on an irreversible small molecule CtpS inhibitor, 6-diazo-5-oxo-L-

norleucine (DON)9,13. Treating mCherry-CtpS cells (ZG153) with 1 μM or higher 

concentrations of DON led to a rapid and complete disruption of the mCherry-CtpS 

fluorescent structures (n > 100) (Figure 2d, e). Similarly, after treatment with DON, the ECT 

filaments were only observed in 1 of 40 wild-type cells (CB15N, 2.5 ± 2% n=40, Figure 2f, 

as compared to 23 ± 6% of untreated cells examined), confirming that DON treatment 

indeed disrupts both mCherry-CtpS structures and the ECT filaments (Figure 2e–f). Thus, 

the inner curvature ECT filaments both co-localize with and depend upon CtpS. These data 

suggest that in Caulobacter crescentus, CtpS forms the inner curvature bundle, polymerizing 

into stacks of long filaments along the inner membrane.

Caulobacter CtpS can self-associate and form filaments upon heterologous expression

To determine if CtpS can itself form polymers, we first attempted to purify Caulobacter 

CtpS to study its polymerization in vitro, but the protein proved insoluble, preventing further 
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analysis. We were able to demonstrate that CtpS monomers can self-associate in an 

Escherichia coli BACTH bacterial two-hybrid assay14 (Figure S5a). Though the ability to 

self-associate is an expected property of polymers, the BACTH assay does not distinguish 

dimerization from filament formation. We thus examined whether CtpS can form filaments 

in the absence of other Caulobacter proteins by expressing it in heterologous systems, as 

described previously for other bacterial cytoskeletons15,16. We expressed Caulobacter 

mCherry-ctpS in E. coli and in the eukaryote, Schizosaccharomyces pombe (Figure 2g–h). 

48 ± 2% of the E. coli cells (n=328, ZG219) and 29 ± % of the S. pombe cells (n=135, 

ZG222) expressing mCherry-ctpS contained linear fluorescent structures. These mCherry-

CtpS filamentous structures did not resemble any known E. coli or S. pombe structures or 

localization patterns, indicating that mCherry-CtpS is not assembling on a known scaffold. 

Furthermore, the mCherry-CtpS structures appeared to retain at least some of their native 

properties since they were still delocalized by DON treatment in all cases (Figures 2e, i–j). 

Thus, CtpS appears to be capable of forming filamentous structures in the absence of any 

bacterial-specific cofactors.

CtpS regulates Caulobacter cell shape independently of its enzymatic activity

Since CtpS localizes to the inner cell curvature, we examined whether CtpS might also 

regulate Caulobacter shape. Whereas wild-type Caulobacter cells have a characteristic 

curved morphology, cells overexpressing CtpS (ZG208) were significantly straighter. In this 

population of cells overexpressing CtpS, some cells were completely straight while other 

cells appeared hooked with reduced curvature at one end (Figure 3a). Though CtpS is 

essential, we were able to reduce CtpS levels by replacing the native CtpS promoter with a 

leaky xylose-inducible promoter and growing the resulting strain (ZG215) in the absence of 

xylose. These cells mildly depleted of CtpS grew very slowly but displayed a sharp kink 

near the middle of the cell consistent with this region of the cell “over-curving” (Figure 3a). 

These results implicate CtpS as a negative regulator of curvature.

We next examined whether CtpS filament formation and cell shape regulation are coupled to 

its enzymatic activity. The CtpS enzyme is comprised of two domains, a synthetase domain 

and a glutamine amidotransferase (GAT) domain17,18 (Figure 3). Based on homologous 

mutations that had been previously characterized, we constructed catalytic residue point 

mutations that are predicted to inactivate the catalytic sites of the synthetase (G147A) and 

GAT (C388G) domains19,20. Compared to wild-type mCherry-ctpS, the G147A synthetase 

domain mutation produced no detectable change in the frequency or morphology of 

filamentous structures (ZG154, Figure 3b–c). In contrast, the C388G GAT domain mutation 

dramatically perturbed the ability of mCherry-CtpS to form linear structures (in ZG155, only 

13 ± 0.3% of cells retained filamentous localization in contrast to 79 ± 3% of wild-type 

cells, Figure 3d). None of the point mutations in CtpS affected protein stability, as mCherry-

CtpS protein levels were similar in all strains (Figure S6). The GAT mutant’s impaired 

assembly is consistent with the fact that the GAT domain is also the binding target for the 

CtpS delocalizing agent, DON.

Whereas the C388G mutation implicates the GAT domain in CtpS assembly, the G147A 

synthetase domain mutant that still forms filaments provided us with an opportunity to 
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functionally separate the filament-forming properties of CtpS from its enzymatic activity. 

We thus tested if these mutants retained the ability to regulate cell shape upon 

overexpression. Overexpression of the filament-forming G147A synthetase mutant resulted 

in straightened cells that were largely indistinguishable from those overexpressing wild-type 

CtpS (ZG208 and ZG209, Figure 3e–f). By contrast, overexpression of the C388G GAT 

mutant that can neither function as a CTP synthase nor form filaments had no detectable 

effect on cell shape (ZG210, Figure 3g). Consequently, the effects of CtpS on Caulobacter 

cell shape appear to require GAT-domain-dependent filamentation, but not enzymatic 

activity.

CtpS functionally interacts with crescentin to regulate Caulobacter curvature

Since CtpS regulates Caulobacter curvature, we examined whether it might function 

through the other known curvature regulator, the intermediate filament-like protein 

crescentin4,21. We found that ctpS overexpression dramatically disrupted the localization of 

a fully-functional CreS fusion to a tetra-cysteine FlAsH-binding epitope (CreS-tc). Rather 

than localizing CreS to an inner curvature structure that stretched from pole to pole, these 

cells primarily localized CreS to a single focus (ZG212, Figure 3h). The straightest cells 

retained no detectable CreS along the inner curvature, while the less affected cells retained 

faint inner curvature CreS, providing a potential explanation for this strain’s heterogeneous 

morphology (Figure 3e, h). Consistent with the effects on morphology, the mislocalization 

of crescentin depended upon the CtpS GAT domain but not the synthetase domain (Figure 

3i–j). The cell straightening and CreS mislocalization observed upon CtpS overexpression 

closely resemble the phenotypes induced by a dominant negative creS mutant that inhibits 

CreS assembly22. Neither CtpS overexpression nor depletion was associated with changes in 

crescentin abundance (Figure S3a). We also determined whether the presence of crescentin 

is required for the hyper-curved cell shape of the CtpS depletion strain. Indeed, ΔcreS strains 

depleted for ctpS remained straight and did not kink (ZG216, Figure 4b, d). These results 

support the hypothesis that CtpS acts through crescentin to regulate cell curvature.

Since CtpS can affect crescentin localization, we also examined whether crescentin can 

affect CtpS localization. In ΔcreS cells (ZG285), we found that mCherry-CtpS still formed 

linear structures, but these structures no longer associated with the cell periphery in most 

cells. Only 19 ± 2% of cells retained membrane-associated localization (Figure 4e, f). 

Similarly, in most of the ΔcreS cells examined by ECT (5 of 6 cases), filament bundles 

resembling the inner curvature bundle were seen extending through the cytoplasm away 

from the membrane (Figure 4g). In the previous ECT analysis of Caulobacter cytoskeletal 

filaments, an inner curvature bundle was found in one ΔcreS cell, proving that this particular 

filament bundle type is not crescentin5. While in the absence of specific ECT labels, we 

cannot confirm that these ECT filaments are CtpS, taken together, the ECT and mCherry-

CtpS data show that CtpS forms filaments in the absence of crescentin but requires 

crescentin for proper localization along the inner curvature. This membrane tethering of 

CtpS filaments by crescentin could explain the CtpS cell-cycle localization dynamics 

wherein CtpS first localizes in the cytoplasm and then moves to the inner curvature (Figure 

1b).
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Consistent with a potential interaction between the two proteins, mCherry-CtpS and CreS-tc 

co-localize to the inner curvature of Caulobacter cells (ZG218), though the crescentin 

structures extend beyond those of CtpS (Figure 4h). To determine if the colocalization of 

CtpS and CreS is mediated by other Caulobacter-specific proteins, we expressed both 

mCherry-CtpS and CreS-tc in E.coli, where each of these proteins can form filaments on its 

own22 (ZG221, Figure 2g). When co-expressed in E. coli, mCherry-CtpS and CreS-tc 

always co-localized (Figure 4i), and as in Caulobacter, the crescentin structures extended 

beyond those of CtpS (Figure 4h, i). While not all cells co-expressed both proteins, they 

colocalized in each case in which both proteins could be detected. The fact that crescentin 

localization extends beyond that of CtpS in both Caulobacter and E. coli suggests that this 

difference may reflect intrinsic properties of these filaments. We also found that CtpS and 

crescentin can interact with one another in an E. coli BACTH assay (supplemental 

information, Figure S5b–c). These results support the conclusion that crescentin and CtpS 

functionally interact, though it is unclear whether the interaction is direct.

E. coli CtpS forms filaments both in vivo and in vitro

CtpS forms filaments and regulates cell shape in Caulobacter, but since CtpS is a 

universally conserved enzyme, CtpS could also form filaments in other organisms. We thus 

examined the localization of an mCherry fusion to the E. coli homolog of CtpS (also known 

as PyrG, but hereafter referred to as EcCtpS). In E. coli, the mCherry-EcCtpS fusion 

(ZG283) formed filamentous structures that closely resembled those of Caulobacter 

mCherry-CtpS (Figure 5a). To assay the localization of the endogenous EcCtpS protein, we 

purified and raised an antibody to EcCtpS and performed immunofluorescence microscopy 

(IF). We found that in wild-type E. coli (NCM3722), CtpS filaments could be detected by IF 

in 72 ± 5% of cells (n=365), indicating that the native CtpS protein can form linear 

structures in vivo (Figure 5b). Though the E. coli CtpS antibody could weakly detect 

Caulobacter CtpS on Western blots, IF with Caulobacter cells proved unsuccessful.

Having purified CtpS protein from E. coli, we were able to directly test whether CtpS, like 

other cytoskeletal proteins, can polymerize on its own in vitro. Indeed, examining the 

purified CtpS protein by electron microscopy (EM) revealed clear linear filaments (Figure 

5c). The filaments were approximately 200–400 nm in length and appeared in stacks of 

roughly 3–5 filaments with a gap of approximately 8–9 nm between adjacent filaments 

(Figure 5c). These characteristics of EcCtpS observed in vitro were comparable to those of 

Caulobacter CtpS observed by ECT (~390 nm long in stacks of ~3, spaced ~10 nm apart)5. 

As a second assay for polymerization, we found that much of the CtpS protein sediments 

upon ultracentrifugation (Figure S7). The activity buffer used for the CtpS in vitro assays 

includes 10 mM MgCl2. Since high levels of Mg2+ can affect protein interactions, we 

confirmed that CtpS still polymerizes in the presence of 2 mM MgCl2, as assayed by both 

EM and sedimentation (Figure S7).

Since Caulobacter and E. coli CtpS appear to form similar filaments, we tested whether E. 

coli CtpS can substitute for Caulobacter CtpS. We found that Caulobacter cells in which the 

Caulobacter ctpS gene was replaced with the E. coli ctpS homolog (ZG286), were not only 

viable but had wild-type morphology. Furthermore, E. coli mCherry-EcCtpS localized to the 
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inner curvature of these Caulobacter (Figure 5d). Thus, the abilities of Caulobacter CtpS to 

both form filaments and regulate cell curvature are conserved with E. coli CtpS.

Discussion

Here we demonstrate that CtpS forms filaments both in vivo and in vitro, and that 

filamentation is conserved in Caulobacter and E. coli. Furthermore, Caulobacter CtpS both 

forms linear filaments and regulates cell shape, thereby defining CtpS as a novel member of 

the bacterial cytoskeleton. CtpS forms filaments and regulates cell shape independently of 

enzymatic activity, indicating that Caulobacter CtpS is bifunctional with separable 

metabolic and cytoskeletal roles. While CtpS is the first reported example of a polymer-

forming enzyme that regulates cell shape, other enzymes have been shown to either 

polymerize or structurally resemble known cytoskeletons23,24. Thus, CtpS may reflect a 

widespread cytoskeletal parallel to other bifunctional proteins like lens crystallins25, 

suggesting that protein polymerization potentially serves multiple functions in different 

cellular contexts.

Caulobacter CtpS filaments regulate cell curvature, but our work indicates that CtpS also 

forms filaments in E. coli, which are not curved. So what function might CtpS 

polymerization serve in E. coli? The previously characterized enzymatic activity of CtpS is 

to generate CTP from UTP, ATP, and glutamine. Polymerization could regulate enzymatic 

activity, perhaps coordinating the regulation of many CtpS subunits to cooperatively 

transition between active and inactive states. Such regulation of CtpS polymerization could 

explain why CtpS polymers are more prevalent in replicatively active stalked cells than in 

quiescent swarmer cells, despite the similar abundance of CtpS in these two cell types. 

Dynamic regulation of CtpS assembly could also explain why CtpS structures are more 

prevalent when observed by fluorescence microscopy than by ECT. Additionally, CtpS 

localization could restrict its enzymatic activity to specific subcellular regions, thereby 

enabling localized regulation of its substrate or product levels. CTP is required for DNA, 

RNA, and phospholipid synthesis so CtpS localization could preferentially enrich these 

products in the replicatively active stalked cell. Thus, protein localization may be a general 

and largely underappreciated mode of metabolic regulation.

CtpS limits the extent of Caulobacter cell curvature by interacting with another cytoskeletal 

element, crescentin. Specifically, crescentin tethers CtpS to the inner curvature membrane 

where CtpS in turn mitigates crescentin-mediated curvature. The details of how CtpS 

regulates crescentin assembly or localization remain unknown, but this activity is 

independent of CtpS enzymatic activity. In one model for how crescentin regulates 

curvature22, crescentin forms an elastic filament that acts like a spring. This spring locally 

compresses peptidoglycan, such that the cell grows with a circumferential gradient of 

peptidoglycan insertion. CtpS could decrease the stiffness of this crescentin spring, perhaps 

by loosening connections or destabilizing certain conformations. In this scenario, depleting 

CtpS hypercurves cells because the spring is unabated, while CtpS over-expression relaxes 

or disengages the spring. The fact that curvature formation depends on cell growth may also 

explain why the transient absence of CtpS filaments in many swarmer cells does not 

significant affect the morphology of these slow-growing cells.
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The ability of E. coli CtpS to replace both the enzymatic and morphogenic functions of 

Caulobacter CtpS suggest that Caulobacter CtpS has not been specifically adapted for its 

role in regulating curvature. Thus, Caulobacter appears to have co-opted a conserved 

filament for a secondary structural role and adapted its other cell shape regulators to interact 

with CtpS. It is possible that many proteins polymerize, often for non-structural, perhaps 

regulatory functions. Once these filaments are present, they can be co-opted for additional 

structural purposes. Gene duplication and diversification would then allow some proteins to 

retain only their cytoskeletal characteristics. This hypothesis could explain the similarity 

shared by eukaryotic actin and bacterial MreB with several enzymes such as hexokinase and 

Hsp70 family chaperones26. Thus, our findings suggest a general pathway for the evolution 

of structural cytoskeletal functions from polymer-forming enzymes.

Methods

Bacterial strains and growth conditions

All Caulobacter crescentus, Escherichia coli, and Schizosaccharomyces pombe strains were 

derived from CB15N27, DH5α, NCM3722, and ySP228 respectively, and were grown at 

30°C (Caulobacter and S. pombe) or 37°C (E. coli) in PYE, LB or EMM media 

supplemented with the appropriate antibiotics or amino acids. Full genotypes of all strains 

are detailed in Supplemental table 1. Plasmids (supplemental table 2) were introduced into 

E.coli and Caulobacter by electroporation as described previously29,30.

For imaging, all S. pombe strains were grown from single colonies in EMM media with the 

appropriate amino acids and thiamine when necessary. Caulobacter strains depleted for or 

overexpressing CtpS were grown overnight in PYE media containing the appropriate 

antibiotics and in the presence of glucose, xylose, or neither sugar. All other Caulobacter 

and E. coli strains were grown to stationary phase in PYE or LB, subcultured in media and 

grown for two hours, and induced with 0.03% xylose, 1mM vanillate, 0.01mM IPTG, or 

0.2% arabinose for two hours31. Cells expressing CreS-tc fusions were incubated with 2 μM 

FlAsH reagent one hour after induction and were washed twice in media containing 1x BAL 

WASH buffer (Invitrogen) before being resuspended in media without WASH buffer prior 

to imaging.

Light microscopy

All cells were observed in exponential growth phase. For still images, cells were 

immobilized on pads of 1% agarose dissolved in water. Pads were supplemented with 1–2 

μM DON when appropriate. For time-lapse images, cells were synchronized27 and 

immobilized on pads of 1% agarose dissolved in PYE and supplemented by 0.03% xylose. 

Pads were sealed by a 1:1:1 mixture of paraffin, Vaseline, and lanolin after coverslip 

placement. Images were captured with a Nikon90i epifluorescent microscope equipped with 

a 100 × 1.4 NA objective (Nikon), Rolera XR cooled CCD camera (QImaging), and NIS 

Elements software (Nikon).
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Electron cryotomography (ECT)

For ECT, Caulobacter cells were grown to exponential phase in PYE medium. 2 mL of cell 

culture were centrifuged for 5 minutes at 1500 × g and resuspended in ~50 μl supernatant. A 

solution of 10 nm colloidal gold was treated with BSA to prevent aggregation of the gold 

particles. The treated colloidal gold was added to the concentrated cells immediately before 

plunge freezing. 4 μl drops of gold-and-cell solutions were manually applied to glow-

discharged R2/2 copper-Rhodium Quantifoil™ grids (Quantifoil Micro Tools, Jena, 

Germany), and then the grids were automatically blotted and plunged into liquid ethane or a 

liquid ethane-propane mixture using a Vitrobot (FEI Company, Hillsboro, OR)32,33. Frozen 

grids were stored under liquid nitrogen until use and kept below −165°C during loading and 

data collection. EM images were collected using an FEI Polara™ (FEI Company, Hillsboro, 

OR, USA), 300 kV FEG transmission electron microscope equipped with a Gatan energy 

filter (slit width 20 eV) on a 2 × 2 k Gatan Ultrascan CCD camera or later a lens-coupled 4 × 

4 k Ultracam (Gatan, Pleasanton, CA). Pixels on the CCD represented between 0.67 and 1.2 

nm on the specimen. Tilt-series from −60° to 60° with an increment between 0.5° and 1° 

were recorded semi-automatically around one or two axes34 at 10 and 12 μm underfocus 

using the predictive UCSF-Tomo package or Leginon 35,36. A cumulative dose of 200 e−/Å2 

or less was used for the directly plunge frozen samples and 100 e−/Å2 or less for the 

correlated fLM-ECT tomograms. Three dimensional reconstructions were calculated using 

the IMOD package37 or RAPTOR38.

Correlated fluorescence light microscopy electron crytomography (fLM-ECT)

Caulobacter cells expressing mCherry-CtpS were induced with 0.03% xylose for two hours 

of growth in exponential phase. 800 μl of the induced cell culture were added to 200 μl 5x 

concentrated fixing solution (12.5% paraformaldehyde in 150mM Na-phosphate buffer, pH 

7.5) and incubated for 15 min at room temperature. Cells were washed twice in Na-

phosphate buffer and resuspended in ~40 μl fresh buffer. H2 gold finder TEM grids covered 

with R2/2 Quantifoil were glow discharged before 5 μl of 0.5 mg/ml sterile-filtered poly-L-

lysine (Sigma P1524) was added to each grid. The grids were then dried in a 60°C oven 

before use. A 4 μl droplet of the fixed cell solution was added to a poly-L-lysine treated grid, 

blotted with filter paper and gently rinsed with buffer. The grid was immediately transferred 

onto a droplet of Na-phosphate buffer on a glass slide and covered with a coverslip. After 

imaging the grid using a Nikon 90i fluorescence microscope, the grid was carefully taken 

from the slide. A 4 μl droplet of BSA-treated 10 nm gold solution was added and the grid 

was plunge-frozen in a liquid ethane-propane mixture as described above. Tilt series were 

recorded of the same cells imaged by fluorescence light microscopy.

CtpS purification and antibody production

E.coli CtpS was purified from BL21 cells expressing an N terminal His-tagged EcCtpS in 

pET22HT, generously provided by the Williamson lab (Scripps). 2 liters of cells were grown 

to an OD600 of 0.5 and induced with 1 mM IPTG for 4 hours. Cells were harvested by 

centrifugation at 10,000 × g for 30 minutes and lysed in 200 mL lysis buffer (50 mM K-

Hepes (pH 7.6), 1 M NaCl, 20 mM imidazole, 10% glycerol) by a cell cracker 

(Microfluidics). Lysates were centrifuged at 31,000 × g and loaded onto an Ni-NTA 
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(Qiagen) column (25 mL resin) equilibrated with lysis buffer minus glycerol. The column 

was washed with six volumes of equilibration buffer and the protein was eluted with 

equilibration buffer with 250 mM imidazole. Purified protein was treated with AcTEV 

protease (Invitrogen) as per manufacturer’s instructions to remove the N terminal His tag. 

Cleaved protein was then dialyzed against 4 L of 50 mM K-Hepes (pH7.6), 20 mM β-

mercaptoethanol, 5 mM glutamine with 50% glycerol using a 3,500 MWCO Slide-A-Lyzer 

dialysis cassette (Thermo Scientific). Purified protein was used to create polyclonal rabbit 

antibodies (Pocono Rabbit Farm and Laboratory).

Immunofluorescence

Immunofluorescence microscopy was performed as described previously39 with 

modifications. Cells were treated with a 1:1000 dilution of rabbit anti-CtpS antibody. A 

Goat anti rabbit Alexa Fluor 488 antibody (Invitrogen) was used at a 1:200 dilution to detect 

the primary antibody.

Electron microscopy of purified EcCtpS protein

5 μL of purified EcCtpS protein (≈2mg/mL) was incubated 10 minutes in 15 μL of a buffer 

described to enable CtpS enzymatic activity (50 mM Tris HCl pH 7.8, 1 mM UTP, 1 mM 

ATP, 0.2 mM GTP, 10 mM MgCl2, 10 mM glutamine)40 at room temperature and applied to 

200 mesh thin-film carbon with nitrocellulose, glow-discharged grids and stained with 1% 

uranyl acetate. Grids visualized at 80kV on a Zeiss912AB Transmission Electron 

Microscope equipped with an Omega Energy Filter (Confocal and Electron Microscopy 

Core Facility Laboratory, Princeton University). Micrographs were captured using a digital 

camera from Advanced Microscopy Techniques.

Sedimentation of purified EcCtpS protein

5 μL of purified EcCtpS protein (≈2mg/mL) was incubated at room temperature for 10 

minutes in 45 μL of a buffer described to enable CtpS enzymatic activity. Samples were 

spun at 55K RPM for 30 minutes at 4 C in a Beckman Optima TLA-100.2 rotor. After 

centrifugation the supernatant was removed and the pellet was resuspended in the same 

volume. Pellet and supernatant samples were analyzed for CtpS protein by Western blot.

Bacterial two-hybrid assays

N- and C-terminal fusions of CtpS and CreS to the T18 and T25 subunits of adenylate 

cyclase were constructed in vectors pUT18, pUT18C, pKT25, and pKNT25 (Euromedex). 

Two-hybrid strains were constructed by simultaneously electroporating pairs of vectors into 

BTH101. Single transformants were grown in selective LB media to stationary phase and 

were pinned in triplicate onto LB media with antibiotics, 40 μg/mL X-gal, and 0.25 mM 

IPTG. Plates were incubated at 30°C for 36 hours to allow blue color to develop on indicator 

media. The resulting colonies were imaged using a Sony Cyber-shot DSC-P8 digital camera 

(Sony).
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Site directed mutagenesis

Site directed mutants of Caulobacter CtpS were constructed using the Stratagene quik-

change site directed muatgenesis kit (Stratagene). Mutagenic primers were constructed using 

Stratagene’s quik change site directed mutagenesis program (http://www.stratagene.com/

sdmdesigner/default.aspx). Specific primer sequences are available upon request. Site 

directed mutagenesis protocols provided by Stratagene were used with the exception of 

replacement of the DNA polymerase with KOD DNA polymerase (Novagen).

Protein abundance in CtpS, CreS, and site directed mutant strains

Appropriate strains (noted in Supplementary Figure legends) were grown overnight in the 

presence or absence of 0.3% xylose. Samples of each culture normalized by OD660 

measurements were run on a PAGE gel and transferred to a nitrocellulose membrane 

(Whatman). For the cell cycle experiment, the same volume of cells was used for each lane. 

All quantitation was done by normalizing protein levels to MreB. CtpS levels were detected 

with an αCtpS antibody (1:2,500) raised against purified E.coli CtpS. CreS levels were 

detected with an αCreS antibody (1:15,000). MreB levels were detected with an αMreB 

antibody (1:15,000) and were used as a loading control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. mCherry-CtpS is dynamic and co-localizes with linear filamentous structures along the 
inner curvature of Caulobacter cells
(a) mCherry-CtpS localization in asynchronous Caulobacter cells. mCherry-ctpS expressing 

cells (ZG153) were induced for two hours with xylose and imaged. A merged phase and 

fluorescence image is shown. Scale bar represents 2 μm. (b) mCherry-CtpS localization in 

synchronized Caulobacter cells. mCherry-ctpS expressing cells (ZG153) were induced for 

two hours with xylose, synchronized, and imaged at 10-minute intervals in the presence of 

xylose. Merged phase and fluorescence (top), fluorescence (middle), and cartoon depictions 

(bottom) are shown for two fields of representative cells at 0, 50, 80, and 110 minutes from 

the beginning of the timelapse. Scale bar represents 2 μm. (c) Co-localization of mCherry-

CtpS and filamentous structures in Caulobacter. mCherry-ctpS expressing cells (ZG153) 

were fixed on EM grids and imaged first by fluorescence light microscopy and then by ECT. 

Shown is an ECT slice, phase-fluorescence overlay (left inset), and cartoon depiction (right 

inset) of the same cells. These cells correspond to cells #15 from the field shown in Figure 

S2. Arrows point to the ends of the filaments in the ECT image, which correspond to the 

positions of the mCherry-CtpS structure shown in the inset. Scale bars represent 100 nm for 

EM and 1 μm for the inset LM images.
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Figure 2. CtpS forms filaments in Caulobacter.
(a–c) Tomographic slices through wild-type Caulobacter with endogenous ctpS levels (a, 

CB15N) and strains with mild (b, ZG215) and strong (c, ZG208) ctpS overexpression. 

Arrows point to the filament ends. (d–e) Merged phase and fluorescence (left) and 

fluorescence (right) images of cells expressing mCherry-ctpS (ZG153) in the absence (d) or 

presence (e) of 1 μM DON. (f) Tomographic slice of CB15N grown in 1 μM DON. (g–h) 

Heterologous expression of Caulobacter mCherry-ctpS in E. coli (g, ZG219) and S. pombe 

(h, ZG222). The mCherry-CtpS structures are delocalized by DON in both E.coli (i) and S. 

pombe (j). Phase-fluorescent merge (top) and fluorescent images (bottom) are shown in each 
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case. Black scale bars (ECT slices) represent 100 nm and white scale bars (LM images) 

represent 2 μm.
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Figure 3. CtpS regulates Caulobacter cell shape independently of enzymatic activity
(a) Morphological effect of overexpression and depletion of CtpS. Shown are phase images 

of wild type Caulobacter (left), and Caulobacter overexpressing (middle) or depleted (right) 

for CtpS. Above panels b–j is a cartoon representation of the synthetase and GAT domains 

of Caulobacter CtpS (not to scale). (b–d) Localization of wild-type and mCherry-CtpS point 

mutants. Merged phase-fluorescence (top) and fluorescence (bottom) images of cells 

expressing wild-type mCherry-CtpS (b, ZG153), synthetase domain mutant (c, ZG154), and 

GAT domain mutant (d, ZG155). (e–j) Effects of overexpression of wild-type CtpS (e, 

ZG208) and (h, ZG212), the synthetase mutant (f, ZG209) and (i, ZG213), and the GAT 

mutant (g, ZG210) and (j, ZG214) on cell shape (e–g) and CreS-tc localization (h–j). The 

arrow in (i) points to faint residual CreS-tc localization along the side of the cell. Scale bars 

are 2 μm.
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Figure 4. CtpS regulates cell shape through an interaction with crescentin
(a–d) Cell morphology of Caulobacter cells with wild-type (a and b) and depleted (c and d) 

CtpS levels in a background either with creS (a and c, creS+, ZG215) or without creS (b and 

d, ΔcreS, ZG216). (e–f) Localization of Caulobacter mCherry-CtpS (red) in creS+ (e, 

ZG287) and ΔcreS (f, ZG285) backgrounds. Merged fluorescent images are shown, and the 

cell periphery is marked with a gfp fusion (green) to the periplasmic protein encoded by 

CC2395. (g) ECT filaments in ΔcreS cells (ZG17). Arrows point to filaments ends. (h–i) Co-

localization of Caulobacter mCherry-CtpS (red) and CreS-tc (green) in both Caulobacter (h, 

ZG218) and upon heterologous co-expression in E.coli (i, ZG221). White scale bars 

represent 2 μm, black scale bars represent 100 nm.
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Figure 5. The E. coli CtpS homolog forms filaments both in vivo and in vitro
(a) Localization of an mCherry fusion to the E. coli CtpS homolog (referred to here as 

EcCtpS but also known as pyrG) in E. coli. mCherry-EcCtpS expressing cells (ZG283) were 

induced for two hours with IPTG and imaged. Merged phase fluorescent (left) and 

fluorescent (right) images are shown. (b) Localization of the endogenous, untagged E.coli 

CtpS. Immunofluorescence microscopy was performed on wild type E. coli cells 

(NCM3722) probed with an α CtpS antibody. Merged phase and fluorescent (left) and 

fluorescent (right) images are shown. (c) Electron microscopy image of purified CtpS 

filaments observed in vitro after 10 minutes of incubation in CtpS activity buffer. (d) 

Localization of E.coli mCherry-EcCtpS in Caulobacter. A Caulobacter strain where 

Caulobacter CtpS was replaced with EcCtpS at the endogenous ctpS locus and mCherry-

EcCtpS was expressed under the xylose promoter (ZG286) were induced with xylose and 

imaged. Shown are the phase fluorescent merged (left) and fluorescent (right) images. Black 

scale bars represent 2 μm; white scale bars represent 100 nm.
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